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Abstract

Autism spectrum disorder (ASD) has been linked to atypical large-scale brain dynamics, but it is
unclear how these alterations extend across the broader autism phenotype. We applied a seven-
class resting-state EEG microstate model (A—G) to adults with clinical ASD and to typically
developing adults with high (TD-High) and low (TD-Low) autistic traits, quantified with the
Autism-Spectrum Quotient. We compared temporal parameters, spatial coverage, explained
variance, and both observed and chance-corrected transition probabilities.

Across all microstates, the ASD group showed a globally more fragmented regime than both TD
groups, with markedly shorter but more frequent microstate episodes and reduced duration
variability. By contrast, TD-High and TD-Low were similar on these global indices. At the network
level, Microstate C showed reduced explained variance and coverage in ASD relative to both TD
groups. In Microstates E and G, explained variance and coverage increased from TD-Low to TD-
High to ASD, with TD-High consistently occupying an intermediate position. Mean GFP and GFP
variability for Microstate E were also elevated in ASD relative to both TD groups.

Transition analyses revealed reduced short-range transitions within an early A—C ensemble and
increased transitions from these states into other microstates in ASD, with TD-High again showing
an attenuated, intermediate pattern. Chance-corrected transitions confirmed that sensory/self-
related routes occurred less often than expected, whereas routes from these states into other
microstates were over-expressed.

These findings support a dimensional account in which EEG microstates index autism-related
network organisation across clinical and subclinical ranges.

Graphical abstract
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1. Introduction

Autism spectrum disorder (ASD) is increasingly characterised as a condition of altered large-
scale brain dynamics, yet how these alterations extend across the broader autism phenotype
(BAP) remains under-specified. EEG microstates—brief, quasi-stable scalp topographies tiling
spontaneous activity on the order of tens of milliseconds—provide a window onto rapid
reconfigurations of large-scale functional states that complements slower hemodynamic
measures (Lehmann et al., 2009; Khanna et al., 2015; Michel & Koenig, 2018; Van de Ville et
al., 2010).

Beyond the traditional four-class solution, source-informed seven-class taxonomies (A—G)
improve functional interpretability by aligning microstate maps with canonical resting-state
networks (RSNs). Building on Custo et al. (2017) and the recent synthesis by Tarailis and
colleagues, we adopt a taxonomy in which Microstate A is linked to audio-visual processing and
arousal, Microstate B to self-related visual imagery and autobiographical memory, Microstate C
to personally significant and self-referential mentation, Microstate D to executive/attentional
control, Microstate E to interoceptive—emotional and salience processing, Microstate F to default
mode network (DMN) and Theory-of-Mind (ToM)-related mentation, and Microstate G to
somatosensory/sensorimotor processing. This functionally grounded A—G framework allows a
more fine-grained mapping between microstate dynamics and large-scale network organisation
than four-class schemes.

Several studies have reported atypical microstate profiles in ASD, most often involving visually
biased Microstate B and DMN-related Microstate C. Across individual reports, ASD has been
associated with increased duration and coverage of Microstate B and reduced presence of
Microstate C, alongside more variable findings for attention- and sensorimotor-related states
(e.g., Das et al., 2022; Takarae et al., 2022; Kalburgi et al., 2023). A recent meta-analysis
confirmed that, at the group level, Microstate B coverage and duration tend to be greater in ASD,
whereas Microstate C occurrence is reduced, but also showed substantial heterogeneity across
studies and highlighted age as a major moderator of effect size and direction. These
inconsistencies likely reflect differences in age range, symptom severity, analytic pipelines, and
microstate taxonomies.

Much less is known about how these microstate alterations extend into the non-clinical range.
Autistic traits are continuously distributed in the general population and can be quantified with
the Autism-Spectrum Quotient (AQ; Baron-Cohen et al., 2001). However, clinical ASD and



high-trait typical individuals are rarely examined within a single, harmonised microstate
framework. As a result, it remains unclear whether typically developing individuals with high
autistic traits (TD-High) show microstate profiles intermediate between clinical ASD and low-
trait typical adults (TD-Low), or whether clinical ASD reflects qualitatively distinct network
dynamics rather than an extension of Broad Autism Phenotype (BAP) related variation (Hull et
al., 2017).

In addition to standard temporal parameters (mean duration, occurrence, coverage, explained
variance), transition structure provides a complementary window on large-scale dynamics. First-
order transition matrices quantify how often the brain moves from one microstate to another,
while chance-corrected deviations (ATM; observed minus expected transitions given each state’s
base rate) disentangle differences in state occupancy from differences in preferential routing
between networks. Applying both organisational transition probabilities (OrgTM) and ATM can
therefore reveal whether group effects arise from spending more time in particular states, from
atypical patterns of switching between them, or both.

Aims and research questions
Guided by RSN-based seven-class microstate taxonomies and dimensional accounts of the BAP,
this study had three main aims:

1. Temporal dynamics across seven microstates. To characterise group differences in
resting-state microstate temporal dynamics (A—G) in adults with ASD, TD-High, and TD-
Low, focusing on mean duration, occurrence rate, coverage, GFP-based strength, and
explained variance.

2. Transition structure. To quantify group differences in microstate transition dynamics,
analysing both raw organisational transition probabilities (OrgTM) and chance-corrected
deviations (ATM = OrgTM — expected) in order to separate effects driven by state
occupancy from differences in preferential routing between microstates.

3. Positioning within the broader autism phenotype. To situate any observed differences
within a dimensional BAP framework by testing whether TD-High participants show
intermediate microstate profiles between ASD and TD-Low, and by exploring
associations between AQ scores and key microstate parameters across the combined
sample.

By combining an open clinical ASD dataset with newly collected AQ-stratified typical cohorts,
processed under a harmonised preprocessing and microstate pipeline, we aim to provide an
integrated picture of how large-scale electrophysiological dynamics vary from low-trait typical
adults, through high-trait individuals, to clinically diagnosed ASD.



2. Methods

2.1. Demographics & Ethics

EEG microstate analysis was conducted on three groups: individuals with clinical ASD (Milne,
2021), a high-AQ typical group, and a low-AQ typical group. The publicly available ASD dataset
comprised of 28 adults (12 female; M = 44.34 + 13.31 years; range = 18—67) with clinician-
confirmed diagnoses under DSM-IV, DSM-V, or ICD-10 criteria, as described by Dickinson,
Jeste, & Milne (2022). The clinical ASD group had a mean Social Responsiveness Scale (SRS)
score of 67.71 (SD =10.01).

For the typically developing cohort, 5000 recruitment emails were distributed through the
university mailing list, SONA, and word of mouth. Of 291 respondents who completed the
Autism-Spectrum Quotient (AQ; Baron-Cohen et al., 2001), high- and low-AQ groups were
defined as >1 SD above and <1 SD below the sample mean (M = 18, SD = 6), yielding cut-offs
of >24 (TD-High) and <13 (TD-Low). Forty volunteers were invited for EEG recording. The
TD-High group (n =21; 10 female, 11 male; M age = 22.76 + 4.76 years, range 18-36) and the
TD-Low group (n = 19; 13 female, 6 male; M age =22.42 + 4.09 years, range 17-31) reflect the
upper and lower extremes of typical trait variation, not clinical ASD (AQ > 32 indicates
clinically significant levels of autistic traits). All procedures were approved by the University of
Essex Ethics Committee (NC1612), and written informed consent was obtained.

2.2. Preprocessing and Software Environment

All analyses were performed in MATLAB (R2024b) using EEGLAB (2024.2) and the
MICROSTATELAB plugin (Poulsen et al., 2018). Preprocessing followed the standardized
pipeline of Dickinson et al. (2022) to ensure consistency across datasets. Continuous EEG was
filtered (140 Hz), resampled to 512 Hz, visually inspected for artifacts, re-referenced to the
average, and interpolated to the standard 25-channel 10-20 montage. Independent Component
Analysis (ICA) was applied for artifact rejection using ICLabel with a > 75% confidence
threshold, and Artifact Subspace Reconstruction (ASR; k = 20) removed transient high-
amplitude noise. The first 120s of artifact-free data were retained for microstate extraction,
ensure comparability between the TD and clinical ASD dataset.

2.3. Microstate Analysis

2.3.1. Microstate Clustering Procedure

Microstate segmentation followed the k-means approach of Kalburgi et al. (2023). Clustering
was restricted to Global Field Power (GFP) peaks to emphasize high signal-to-noise time points,
with polarity ignored (Khanna et al., 2015). EEG maps were normalized before clustering to



prevent amplitude bias. Cluster solutions ranging from 4 to 7 microstates were explored, and the
algorithm was restarted 20 times to ensure stable convergence.

2.3.2. Back-Fitting and Temporal Parameter Extraction

Prototypical microstate maps were back-fitted to continuous EEG, restricted to GFP peaks, using
a smoothness parameter A = 0.3 and a 30 ms temporal smoothing window (Michel & Koenig,
2018). For each participant, standard temporal metrics—mean duration, occurrence, and
coverage—and spatial transition measures were computed. Duration reflects network stability,
occurrence captures engagement frequency, and coverage quantifies the proportion of time each
network dominates (Khanna et al., 2015; Michel & Koenig, 2018). Transition matrices were
computed both as observed transitions (OrgTM) and as chance-corrected deviations (ATM =
OrgTM — ExpTM), representing preferential or disrupted network switching.

2.3.3. Template Sorting and Group-Level Averaging

Microstate classes were sorted using the seven-map template of Custo et al. (2017), consistent
with recent ASD research (Das et al., 2024; Ran et al., 2023; Portnova & Martynova, 2023).
Group-level mean maps were computed for each cohort (ASD, TD-High, TD-Low) and re-sorted
using the same template. A grand-average map across all participants was generated for
visualization and cross-group alignment.

2.4. Statistical Analysis

We assessed group-level differences in EEG microstate dynamics across the three groups (ASD,
TD-High, TD-Low) using a hierarchical analysis framework consisting of omnibus group tests,
gated post-hoc comparisons, and correction for multiple comparisons using the Benjamini—
Hochberg false discovery rate (FDR).

Microstate Variables
The following EEG microstate metrics were extracted and analyzed:

e Temporal metrics (per microstate class A—G):
O Mean duration, occurrence rate (Hz), and duration standard deviation

o Across-class averages for duration and occurrence (MeanDurationAll,
MeanOccurrenceAll)

e Coverage metrics:

o Coverage (i.e., percent time occupied) for each microstate class



e Strength/amplitude metrics:
o Mean global field power (GFP) and GFP standard deviation per microstate class
e Explained variance metrics:

o Variance explained by each microstate class (IndExpVar X) and total explained
variance across all classes (TotalExpVar)

e Transition dynamics:
o Observed transition probabilities (OrgTM; e.g., A—B) and

o Chance-adjusted transition probabilities (DeltaTM), derived by subtracting
expected transition frequencies from observed values

o A total of 42 directed transitions were evaluated in each matrix

Group Comparisons

For each scalar variable, we first conducted an omnibus test across the three groups. Normality
was assessed with the Shapiro—Wilk test, and homogeneity of variance with a median-centered
Levene’s test. When both assumptions were met, a one-way ANOVA was used and n? was
reported as the effect size. If assumptions were violated, a Kruskal-Wallis test was applied, and
€2 was reported.

Post-hoc pairwise group comparisons (ASD vs TD-High, ASD vs TD-Low, TD-High vs
TD-Low) were conducted only when the corresponding omnibus test was significant at p <.05.
Welch’s t-tests were used for parametric data and Dunn’s tests (with tie correction) for non-
parametric data. Effect sizes were estimated using Cliff’s delta, with 95% bootstrap confidence
intervals (10,000 resamples) computed adaptively based on distribution skew and boundedness.

Correction for Multiple Comparisons

To control the false discovery rate, we applied the Benjamini—Hochberg FDR procedure at p =
.05, independently within each conceptually defined family of variables:

e Temporal metrics: duration, occurrence, duration variability for each microstate.

e Coverage metrics: proportion of time spent in each microstate (time coverage, %).
e Strength metrics: mean global field power (GFP) and GFP variability for each
microstate.



e Explained variance metrics: total explained variance across all microstates and
individual explained variance for each microstate class.

e Transition dynamics: observed transition probabilities (OrgTM) and chance-corrected
transitions (DeltaTM), analysed together as one family. Because transition probabilities
are strongly influenced by state coverage, we report both OrgTM and DeltaTM (OrgTM
— expected).

Only comparisons that survived FDR correction (p <.05) were interpreted as statistically
significant. All statistical analyses and bootstrap routines were implemented in Python using
custom code.

2.5. Visualization and Taxonomic Alignment

Microstate maps and temporal-dynamic plots were visualized as PNGs for individual and group
analyses. Initially, our labeling diverged from Custo et al. (2017), who assigned the
salience/interoceptive network to Microstate F and the anterior-DMN/ToM network to
Microstate E. However, our topographies aligned with the revised taxonomy of Tarailis et al.
(2024), who corrected this inversion. Accordingly, we retained the updated labeling: Microstate E
corresponds to the salience/interoceptive—emotional network, and Microstate F to the anterior-
DMN/ToM network (see Figure 1). This alignment enhances interpretability and cross-study
comparability of ASD-related network differences.
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Figure 1. Comparison of canonical EEG microstate maps from Tarailis et al. (2024) and group-
level maps from the present study.

(a) Grand-average microstate maps (A—G) reproduced from Taraili et al. (2024) for reference.
(b) Group-average microstates from the Low Autism Spectrum Quotient (ASQ) group.
(c) Group-average microstates from the High-ASQ group.

(d) Group-average microstates from the clinically diagnosed Autism Spectrum Disorder (ASD)
group.

All scalp topographies represent voltage distributions at time points of peak Global Field Power
(GFP), computed using a 7-cluster k-means solution. Maps are displayed using the same
diverging colormap (RdBu) with a fixed scale of —2.5 to +2.5 uV, enabling direct visual
comparison. Red indicates positive potentials; blue indicates negative potentials

3. Results

Group differences across Clinical ASD, TD-High, and TD-Low were evaluated with one-way
ANOVA (when assumptions held) or Kruskal-Wallis tests otherwise. Benjamini—Hochberg false
discovery rate (FDR) control (q = .05) was applied separately within three conceptually defined
families: Temporal (mean duration, occurrence, duration variability, explained variance, GFP),
Coverage (proportion of time spent in each microstate), and Transition Dynamics (observed
transition probabilities, OrgTM, and chance-corrected transitions, DeltaTM). Post-hoc pairwise
comparisons were conducted only for variables with a significant omnibus test (p <.05) and are
reported here only when the corresponding pairwise contrast also survived FDR correction
within its family (FDR-adjusted p <.05). All descriptive statistics are reported as bootstrap-based
central estimates (medians or means, depending on the distribution of each measure) with 95%
confidence intervals.

3.1 Mean duration and occurrence across microstates

Kruskal-Wallis tests revealed robust group differences in global temporal microstate metrics
averaged across classes A—G (see Table 1). Compared with both typical groups, the clinical ASD
group showed markedly shorter mean microstate durations and substantially higher occurrence
rates. FDR-corrected post-hoc tests confirmed that MeanDurationAll was lower and
MeanOccurrenceAll higher in ASD than in both TD-High and TD-Low (all p <.001, |Cliff’s A| =
1.00), whereas no significant differences emerged between TD-High and TD-Low on either
global index.

Taken together, these results indicate that resting-state microstate sequences in clinical ASD are
globally more fragmented and rapid—composed of shorter, more frequent episodes—while the
two typical groups share a highly similar temporal regime.



Table 1. Global temporal microstate metrics (averaged across A—G) for Clinical ASD, TD-High,
and TD-Low.

Measure Clinical TD-High  TD-Low Kruskal- Eff  Significant

ASD (n=21) (n=19) Wallis ect FDR-adjusted

(n = 28) Median Mean H(2) size  pairwise differences

Median 957 Cll [95% (&)

[95% CI

CI]
Mean 12.3 ms 40.7 ms 41.1 ms H(Z) = 72 ASD < TD-High;
Duration [10.9, [36.6,41.6] [39.3, 48.86,p < ASD < TD-Low;
(Microstates 14.4] 43.4] 001 TD-High vs
A-G) TD-Low: n.s.
Mean 85.8 24.8 24.7 H(2)= 72 ASD > TD-High;
occurrence events/s events/s events/s 48.86,p < ASD > TD-Low;
(events/s, [76.9, [23.1,26.5] [23.1, .001 TD-High vs
Microstates ~ 93-2] 26.4] TD-Low: n.s.

A-G)

Note. Values are bootstrap-based medians with 95% confidence intervals in brackets.
Omnibus tests used Kruskal-Wallis across the three groups.

p = Benjamini—Hochberg false discovery rate—adjusted p-values for post-hoc tests within the
Temporal family; only FDR-significant pairwise differences are listed.

3.2 State-specific temporal metrics

Within the Temporal family (48 variables, including mean duration, duration variability,
occurrence, explained variance, and GFP measures), 31 variables showed a significant main
effect of Group after FDR correction (p <.05). Below we summarise the state-specific temporal
measures; full descriptive statistics for mean duration and occurrence are reported in Table 2, and
duration variability in Table 3.

3.2.1 State-specific mean duration (Microstates A—G)

For state-specific mean duration, all seven microstates (A—G) showed robust group effects (all
omnibus tests p <.001, all FDR-adjusted p <.001). Kruskal-Wallis tests were significant for
Microstates A—E, and one-way ANOVAs were significant for Microstates F and G, with effect
sizes (n*/€?) in the moderate-to-large range (Table 2).



Across all microstates, a highly consistent pattern emerged: Clinical ASD exhibited markedly
shorter mean durations than both typical groups, whereas TD-High and TD-Low did not differ
significantly after FDR correction. For each microstate A—G, median durations were shortest in
the Clinical ASD group and substantially longer—but comparable—across TD-High and
TD-Low (all ASD vs TD-High and ASD vs TD-Low post hoc tests FDR-adjusted p <.001; all
TD-High vs TD-Low contrasts FDR-adjusted p > .05). Median state-specific durations in
Clinical ASD generally fell in the range of ~9—14 ms, compared with ~29—-50 ms in both TD
groups (see Table 2). For example, for Microstate E, the median mean duration was
approximately 12.3 ms in Clinical ASD (95% CI [9.75, 14.36]), compared with 34.3 ms in TD-
High (95% CI1[32.76, 37.24]) and 30.5 ms in TD-Low (95% CI [27.93, 33.19]).

Overall, these state-specific duration findings closely mirror the global mean duration index:
microstates are substantially more transient in Clinical ASD, whereas TD-High and TD-Low
show similarly sustained episodes across all microstate classes (see Table 2).

Table 2. Metrics for duration and occurrence for state-specific temporal measures

Microstate TD- TD-
Clinical High Low Kruskal- Effect Significant
ASD (n=21) (=19)  Wallis size FDR-adjusted pairwise
(n=28) H(2) (&) differences
A 13.3 38.2 40.9 HQ2) = g2 =
[11.6, [37.0, [36.7, 4938,p 0.73
144]  406]  450]  <.001 ASD vs TD-High: ASD

<TD-High; ASD vs
TD-Low: ASD < TD-Low;
TD-High vs TD-Low: n.s.




13.5
[11.5,
14.7]

14.0
[11.9,
15.7]

11.2
8.5,
12.4]

12.3
[9.8,
14.4]

37.8
[35.9,
44.9]

49.2
[40.9,
52.2]

37.0
[34.2,
40.7]

343
[32.8,
37.2]

40.2
[39.4,
44.9]

50.6
[46.7,
55.6]

31.8
[29.5,
35.6]

30.5
[27.9,
33.2]

H(2) =
49.10, p
<.001

H(2) =
48.97,p
<.001

H(2) =
49.57, p
<.001

H(2) =
49.39,p
<.001

0.73

ASD vs TD-High: ASD
<TD-High; ASD vs
TD-Low: ASD < TD-Low;
TD-High vs TD-Low: n.s.

ASD vs TD-High: ASD

< TD-High; ASD vs
TD-Low: ASD < TD-Low;
TD-High vs TD-Low: n.s.

ASD vs TD-High: ASD
<TD-High; ASD vs
TD-Low: ASD < TD-Low;
TD-High vs TD-Low: n.s.

ASD vs TD-High: ASD
<TD-High; ASD vs
TD-Low: ASD < TD-Low;
TD-High vs TD-Low: n.s.




F 10.0 30.8 32.5 F(2,65)= n*=

92,  [30.1, [30.2, 22501,p 0.87 .
11.0] 335 348] <.001 ASD vs TD-High: ASD

<TD-High; ASD vs
TD-Low: ASD < TD-Low;
TD-High vs TD-Low: n.s.

G 9.5[7.9, 30.7 28.9 F(2,65)= n?=
10.6] [27.9, [26.5, 257.19,p 0.89 )

< TD-High; ASD vs
TD-Low: ASD < TD-Low;
TD-High vs TD-Low: n.s.

Note. Values are bootstrap-based medians or means depending on distribution, with 95%
confidence intervals in brackets.

Omnibus tests used one-way ANOVA or Kruskal-Wallis, as appropriate, across the three groups.

p = Benjamini—Hochberg false discovery rate—adjusted p-values for post-hoc tests within the
Temporal family, only FDR-significant pairwise differences are listed.

3.2.2 Duration variability across microstates

Duration variability (standard deviation of episode duration within each microstate class) also
showed robust group effects for all microstates A—G (all ¢(FDR,omni) <.001; Table 3). In
general, ASD showed lower duration variability than both TD groups, consistent with a more
stereotyped temporal structure.

For Microstates A, B, C, D, F, and G, ASD had significantly lower duration SD than both TD-
High and TD-Low (all ASD vs TD-High and ASD vs TD-Low pFDR) < .015), while

TD-High and TD-Low did not differ significantly (all p(FDR) >.07). For Microstate E, all three
pairwise contrasts were significant: ASD < TD-High < TD-Low (all p(FDR) <.014), indicating a
graded increase in duration variability along the autistic-trait continuum.



Table 3. Metrics for duration variability across microstates

Microstate TD- TD- Kruskal- Effect Significant
Clinical High Low Wallis size  FDR-adjusted pairwise
ASD(n (m=21) (n=19) H(?2) () differences
=28) Mean  Mean
Mean [95%  [95%
[95%  CII C1j
Cl]
A 9.8 ms 232ms 273 ms HQ2)= 72
[8.2, (194, [22.6, 48.50,p < ASD < TD-High;
10.4] 25.9] 31.2] .001 ASD < TD-Low;
TD-High vs
TD-Low: n.s.
B 9.8 ms 242ms 29.0ms H(?2)= .65
[8.8, [20.4, [23.5, 44.53,p< ASD < TD-High;
10.9] 29.8] 33.8] .001 ASD < TD-Low:
TD-High vs
TD-Low: n.s.
C 11.2 ms 37.6 ms 422ms H(2)= .70
[10.3, [29.0, [38.6, 47.33,p< ASD < TD-High;
14.1] 44.0] 46.1] .001 ASD < TD-Low:
TD-High vs

TD-Low: n.s.




D 7.6 ms 243ms 18.6ms H(2)= .61

[6.4, [20.8, [16.6, 41.77,p < ASD < TD-High;
9.1] 27.9] 25.2] .001 ASD < TD-Low;
TD-High vs
TD-Low: n.s.
E 10.8 ms 209ms 152ms H_2)= 41
[9.8, [18.5, [12.9, 28.60,p < ASD < TD-High;
13.1] 23.7] 17.8] .001 ASD < TD-Low;
TD-High <
TD-Low
F 8.2 ms 199ms 189 ms H(2)= .67
[7.3, [16.5, [17.2, 4531,p< ASD < TD-High;
9.5] 21.7] 21.9] .001 ASD < TD-Low;
TD-High vs
TD-Low: n.s.
G 7.4 ms 186ms 143 ms H(2)= .64
[6.2, [14.2, [13.0, 43.76,p< ASD < TD-High;
8.5] 20.9] 17.3] .001 ASD < TD-Low;
TD-High vs
TD-Low: n.s.

Note. Values are bootstrap-based medians with 95% confidence intervals in brackets.
Omnibus tests used Kruskal-Wallis across the three groups.

p = Benjamini—Hochberg false discovery rate—adjusted p-values for post-hoc tests within the
Temporal family, only FDR-significant pairwise differences are listed.

3.2.3 State-specific occurrence (Microstates A—G)

State-specific occurrence rates (events/s) for microstates A—G also showed strong group effects
(all pFDR,omniy <.001; Table 4). The pattern inverted relative to duration: ASD showed higher



occurrence rates than both TD groups for every microstate, while TD-High and TD-Low again
did not differ significantly after FDR correction.

Across microstates, ASD occurrence frequencies ranged from ~7.8—14.2 events/s, compared with
~2.0-6.1 events/s in the TD groups (Table 4). FDR-corrected post-hoc tests indicated that for
each microstate A—G, ASD > TD-High and ASD > TD-Low (all p <.002), whereas TD-High vs
TD-Low was non-significant for all states (all p > .24). Taken together with the duration results,
this confirms a globally more fragmented and rapid microstate regime in Clinical ASD.

Table 4. Metrics for State-specific occurrence (Microstates A—G)

Microstate . TD-High Kruskal- Effect Significant
Clinical - (y=31)  ppow Wallis  size  FDR-adjusted
ASD Mean (n=19) H(2) (&) pairwise
(n=28)  95¢, CI] Mean differences
Mean
[95%
[95% CI|
CI]
A 13.81 3.81 4.39 HQ2) = g2 =
[12.03, [3.23, [3.85, 49.00,p< 0.72 ASD vs TD-High:
15.77] 4.38] 4.97] .001 ASD > TD-High;
ASD vs TD-Low:
ASD > TD-Low;
TD-High vs
TD-Low: n.s.
B 12.77 3.82 4.46 H(2) = g2 =
[11.52, [3.25, [4.08, 4943, p< 0.73 ASD vs TD-High:
15.12] 4.36] 4.85] .001 ASD > TD-High;
ASD vs TD-Low:
ASD > TD-Low;
TD-High vs

TD-Low: n.s.




13.95
[12.41,
16.22]

9.36
[8.17,
10.60]

11.47
[10.40,
12.59]

11.08
[8.53,
13.53]

5.04
[4.88,
5.69]

3.56
[2.78,
4.37]

3.07
[1.79,
4.24]

2.80
[2.26,
3.32]

5.83
[5.34,
6.29]

2.40
[1.43,
3.49]

2.15
[1.73,
2.58]

3.11
[2.69,
3.51]

H(2) =
50.24, p <
.001

F(2, 65) =
57.67,p <
001

H(2) =
4798,p <
.001

H(2) =
48.92, p <
001

0.64

g2 =

0.72

ASD vs TD-High:
ASD > TD-High;
ASD vs TD-Low:
ASD > TD-Low;
TD-High vs
TD-Low: n.s.

ASD vs TD-High:
ASD > TD-High;
ASD vs TD-Low:
ASD > TD-Low;
TD-High vs
TD-Low: n.s.

ASD vs TD-High:
ASD > TD-High;
ASD vs TD-Low:
ASD > TD-Low;
TD-High vs
TD-Low: n.s.

ASD vs TD-High:
ASD > TD-High;
ASD vs TD-Low:
ASD > TD-Low;
TD-High vs
TD-Low: n.s.




G 8.15 2.31 1.92 H(?2)= g2=
[7.63, [1.67, [1.60, 46.23,p< 0.68 ASD vs TD-High:
9.83] 2.60] 2.24] .001 ASD > TD-High;
ASD vs TD-Low:
ASD > TD-Low;
TD-High vs
TD-Low: n.s.

Note. Values are bootstrap-based medians or means depending on distribution, with 95%
confidence intervals in brackets.

Omnibus tests used one-way ANOVA or Kruskal-Wallis, as appropriate, across the three groups.

p = Benjamini—Hochberg false discovery rate—adjusted p-values for post-hoc tests within the
Temporal family; only FDR-significant pairwise differences are listed.

3.3 Explained variance and GFP-based strength

3.3.1 Total explained variance

Total explained variance across the seven microstates showed a robust main effect of group
(Kruskal-Wallis H(2) = 24.04, p < .001, &2 = .34, p(FDR) = <.001; Table 5).

Median total explained variance was lowest in the ASD group (Mdn = 0.49, 95% CI1 [0.46,
0.54]), and higher in both TD groups (TD-High: Mdn = 0.63, 95% CI [0.59, 0.65]; TD-Low:
Mdn = 0.59, 95% CI[0.57, 0.65]).

FDR-corrected post-hoc tests confirmed that ASD had lower total explained variance than both
TD-High and TD-Low, whereas TD-High and TD-Low did not differ reliably from each other
(Table 5).



Table 5. Metrics for total explained variance and individual microstate explained variance

Microstate . Kruskal- Effect Significant
Clinical - TD- TD- Wallis ~ size FDR-adjusted
ASD High  Low H(2) (&) pairwise differences
(n=28) (m=21) (n=19)
Mean Mean Mean
[95% [95% [95%
CI] CI] CI]
Total explained 0.49 0.63 0.59 H(?2)= g =
variance (A—G) [0.46, [0.59, [0.57, 24.04,p< 0.34 ASD vs TD-High:
0.54] 0.65] 0.65] .001 ASD < TD-High; ASD
vs TD-Low:
ASD <TD-Low;
TD-High vs
TD-Low: n.s.
A 0.06 0.08 0.10 F(2,65)= n*=
[0.05, [0.07, [0.08, 4.01,p= 0.11 ASD vs TD-High: n.s.;
0.09] 0.09] 0.13] 0.023 ASD vs
TD-Low: ASD < TD-
Low; TD-High vs TD-
Low: n.s.
C 0.13 0.19 0.24 F(2,65)= n*=
[0.11, [0.17, [0.21, 10.88, p< 0.25 ASD vs TD-High:
0.17] 0.24] 0.29] .001 ASD < TD-High; ASD

vs TD-Low:
ASD <TD-Low;
TD-High vs
TD-Low: n.s.




E 0.07 0.05 002  HQ)= &=

[0.05, [0.03, [0.01, 1791,p< 0.24 ASD vs TD-High: n.s.;
0.09] 0.09] 0.03] .001 ASD vs
TD-Low: ASD > TD-
Low; TD-High vs TD-
Low: TD-High > TD-

Low
G 0.03 003 002  HQ)= &=
[0.02, [0.02,  [0.01,  7.17,p= 0.08  ASD vs TD-High: n.s.;
0.03] 0.03] 0.02] 0.028 ASD vs

TD-Low: ASD > TD-
Low; TD-High vs TD-
Low: TD-High > TD-
Low

Note. Values are bootstrap-based medians or means depending on distribution, with 95%
confidence intervals in brackets.

Omnibus tests used one-way ANOVA or Kruskal-Wallis, as appropriate, across the three groups.

p = Benjamini—Hochberg false discovery rate—adjusted p-values for post-hoc tests within the
Explained variance family; only FDR-significant pairwise differences are listed.

3.3.2 Microstate-specific explained variance (A, C, E, G)

Explained variance for individual microstates showed significant group effects for Microstates
A, C, E, and G after FDR correction within the explained-variance family (all FDR-adjusted p <
.041; Table 5). Explained variance for Microstates B, D, and F did not differ significantly
between groups (all FDR-adjusted p > .10) and are not discussed further.

For Microstate A (audio—visual/arousal), a one-way ANOVA revealed a small but reliable group
effect in explained variance (F(2, 65) =4.01, p =.023, n> = .11, FDR-adjusted p = .035). Median
explained variance was lowest in the Clinical ASD group (Mdn = 0.06, 95% CI [0.05, 0.09]) and
highest in TD-Low (Mdn = 0.10, 95% CI [0.08, 0.13]). FDR-corrected post-hoc tests confirmed
a significant reduction in Microstate-A explained variance in ASD relative to TD-Low, whereas
contrasts involving TD-High did not reach FDR-corrected significance (Table 5).

For Microstate C (personally significant/self-referential mentation), explained variance showed a
moderate group effect (F(2, 65) = 10.88, p <.001, n?> = .25, FDR-adjusted p <.001). Median



explained variance for C was lowest in ASD (Mdn = 0.13, 95% CI [0.11, 0.17]), intermediate in
TD-High (Mdn =0.19, 95% CI[0.17, 0.24]), and highest in TD-Low (Mdn = 0.24, 95% CI
[0.21, 0.29]). FDR-corrected post-hoc comparisons indicated that ASD showed significantly
reduced Microstate-C explained variance relative to both TD-High and TD-Low, while the two
typical groups did not differ significantly (Table 5).

For Microstate E (salience/interoceptive—emotional network), a Kruskal-Wallis test indicated a
pronounced group effect in explained variance (H(2) = 17.91, p <.001, > = .24, FDR-adjusted p
<.001). Median values showed a graded pattern consistent with a dimensional autism—BAP
continuum: TD-Low (Mdn = 0.02, 95% CI[0.01, 0.03]) < TD-High (Mdn = 0.05, 95% CI [0.03,
0.09]) <ASD (Mdn = 0.07, 95% CI [0.05, 0.09]). After FDR correction, TD-Low had
significantly lower Microstate-E explained variance than both TD-High and ASD, whereas the
ASD vs TD-High contrast did not differ reliably (Table 5).

For Microstate G (somatosensory/sensorimotor), explained variance also differed by group (H(2)
=7.17,p=.028, €2 = .08, FDR-adjusted p = .041). Explained variance was lowest in TD-Low
(Mdn = 0.02, 95% CI1[0.01, 0.02]) and higher in both ASD (Mdn = 0.03, 95% CI [0.02, 0.03])
and TD-High (Mdn = 0.03, 95% CI [0.02, 0.03]). FDR-corrected post-hoc tests showed that TD-
Low had lower Microstate-G explained variance than both ASD and TD-High, with no reliable
difference between ASD and TD-High (Table 5).

Taken together, the explained-variance results indicate a reduced contribution of Microstate C in
Clinical ASD, alongside increased contributions of Microstates E and G with higher autistic
traits, with TD-High typically occupying an intermediate position along the ASD-BAP spectrum.

3.3.3 GFP-based strength measures (Microstate E)

We next examined whether group differences in Microstate E extended to signal strength (mean
global field power, GFP) and its variability. Within the GFP family, only Microstate E showed
reliable group effects after FDR correction; mean GFP and GFP variability for Microstates A—D,
F, and G did not differ significantly between groups (all FDR-adjusted p > .14).

For mean GFP in Microstate E, there was a significant main effect of group (Kruskal-Wallis
H(2)=9.48, p =.009, &> = .12, FDR-adjusted p = .014). Median estimates indicated higher GFP
amplitude in the Clinical ASD group (Mdn = 7.49 pnV, 95% CI [6.64, 8.30]) than in both TD-
High (Mdn = 5.78 nV, 95% CI [4.66, 8.11]) and TD-Low (Mdn = 5.74 pnV, 95% CI [5.18, 6.27]).
FDR-corrected post-hoc tests confirmed that ASD had greater mean GFP than each typical
group, whereas TD-High and TD-Low did not differ significantly (see Table 6).



Table 6. Metrics for GFP-based strength measures

Measure Kruskal- Effect Significant
Clinical TD-Hi TD-Lo Wallis size FDR-adjusted pairwise
ASD gh W H(2) () differences
(n=28) (n=21) (n=19)
Mean Mean Mean
[95% [95% [95%
CI] CI] CI]
g’ = ASD vs TD-High: ASD
?/Isf‘)n GFP 5 49 5.78 5.74 HQ)= 012 >TD-High; ASD vs
Muicr,ostate [6.64, [4.66, [5.18, 948, p= TD-Low: ASD >
8.30] 8.11] 6.27] 0.009 TD-Low; TD-High vs
E
TD-Low: n.s.
GFP SD 3.47 2.19 2.12 H(2)= g2 =
(nv), [2.79, [1.77, [1.85, 10.03,p= 0.12 ASD vs TD-High: ASD
Microstate  4.19] 3.12] 2.38] 0.007 > TD-High; ASD vs
E TD-Low: ASD > TD-
Low; TD-High vs TD-
Low: n.s.

Note. Values are bootstrap-based medians with 95% confidence intervals in brackets.
Omnibus tests used Kruskal-Wallis across the three groups.

p = Benjamini—Hochberg false discovery rate—adjusted p-values for post-hoc tests within the
Strength metrics family, only FDR-significant pairwise differences are listed.

GFP variability in Microstate E showed a similar pattern. GFPStdDev_E differed across groups
(H(2) =10.03, p=.007, ¢> = .12, FDR-adjusted p = .011), with the Clinical ASD group again
showing the highest variability (Mdn = 3.47 uV, 95% CI [2.79, 4.19]) relative to TD-High (Mdn
=2.19 nV, 95% CI[1.77, 3.12]) and TD-Low (Mdn = 2.12 uV, 95% CI [1.85, 2.38]).
FDR-adjusted post-hocs indicated greater GFP variability in ASD than in both TD groups, with
no reliable difference between TD-High and TD-Low (Table 6).

Taken together with the explained-variance and coverage results, these findings reinforce
Microstate E as a central locus of group differences: in Clinical ASD, this salience/interoceptive
state not only accounts for a larger proportion of variance, but is also expressed with stronger and
more variable GFP than in either typical group, while TD-High again occupies an intermediate,
BAP-consistent position.



3.4 Spatial coverage

Within the Coverage family (proportion of time spent in each microstate), FDR-corrected
omnibus tests (p < .05 within family) indicated reliable group effects only for Microstates C, E,
and G (Table 7). Coverage for Microstates A, B, D, and F did not differ significantly between
groups after FDR correction (all p > .05).

For Microstate C, a Kruskal-Wallis test showed a robust group effect,

H(2) =22.58, p <.001, €2 = .32. Central estimates indicated that Clinical ASD spent the least
time in C (ASD: =19.2% of recording, 95% CI [17.7, 20.9]), compared with both TD groups
(TD-High: =26.5%, 95% CI [23.2, 29.6]; TD-Low: =29.7%, 95% CI [27.3, 31.0]).
FDR-corrected Dunn tests (p < .05) showed that ASD spent significantly less time in C than both
TD-High and TD-Low, whereas TD-High and TD-Low did not differ reliably.

For Microstate E, there was again a significant group effect,

H(2) =17.26, p <.001, €2 = .23. Coverage showed a graded pattern along the autism—BAP
continuum: ASD spent the most time in E (=12.4%, 95% CI [10.4, 14.9]), followed by TD-High
(=10.3%, 95% CI[7.2, 13.8]) and TD-Low (=6.0%, 95% CI [4.6, 7.7]). Post-hoc tests revealed
that TD-Low spent significantly less time in Microstate E than both ASD and TD-High (p <.05),
whereas the difference between ASD and TD-High did not survive FDR correction.

For Microstate G, group differences were again reliable,

H(2)=16.15,p <.001, &2 = .22. Coverage was highest in ASD (=9.1%, 95% CI [8.1, 10.3]),
intermediate in TD-High (=7.2%, 95% CI [5.8, 8.5]), and lowest in TD-Low (=5.7%, 95% CI
[5.0, 6.2]). FDR-adjusted post-hoc comparisons indicated that ASD showed greater coverage of
G than both TD groups (ASD > TD-High and ASD > TD-Low, both p <.05), whereas TD-High
and TD-Low did not differ significantly after correction.

Taken together, coverage results converge with the explained-variance findings: Clinical ASD is
characterised by reduced time in Microstate C and increased occupancy of Microstates E and G,
with TD-High generally showing an intermediate but more “BAP-like” pattern than TD-Low.
Statistics for coverage measures are reported below in Table 7.



Table 7. Metrics for Spatial coverage

Microstate TD- TD-Low Kruskal-W Eff Significant
Clinical High (n=19) allis ect FDR-adjusted pairwise
ASD(m (= Mean H(2)(Krusk al- size differences
=28) 21) [95% Wallis) g’ within Coverage family
Mean Mean CI]
[95% [95%
C1] CI]
A .04 None (omnibus n.s.
168%  14.9% 18.1%  H(2)=4.57,p= after FDR)
[15.3, [12.6, [15.7, 102, p
17.5] 17.2]  20.4] =.129
B .01 None (omnibus n.s.
18.0%  15.7% 18.8%  H(Q)=2.75,p= after FDR)
[16.7, [12.8, [l6.7, 253, p
19.3] 18.6]  20.8] =.253
C 19.2% 26.5% 29.7% .32 ASD <TD-High; ASD <
[17.7, [21.8, [26.6, HQ2) = TD-Low; TD-High vs TD-
20.9] 31.5]  32.6] 22.58,p < Low: n.s.
.001,p=
.00009
D .04 None (omnibus n.s.
9.9% 13.7% 8.2% H(2)=4.40,p = after FDR)
(8.9, [10.4, [5.3, All, p=
11.8] 17.2] 11.9] 129




E 12.4% 10.3% 6.0% .23 TD-Low <ASD;

[11.3, [6.1, [4.6,8.2] H(2)= TD-Low < TD-High;
15.9] 14.4] 17.26,p < ASD vs TD-High: n.s.
001, p=
.00062
F 9.1% .07 None (p > .05; treated as n.s.
11.8% [74  102% H(Q2)=6.33,p= after FDR)
[10.9, 10.9]  [8.9, 042, p
12.8] 11.4] =.074
G 9.1% 72%  5.7% .22 ASD > TD-High; ASD >
(8.2, [5.1, [4.8,6.6] H(2)= TD-Low; TD-High vs TD-
10.1] 8.4] 16.15,p < Low: n.s.
001, p=
.00073

Note. Values are bootstrap-based medians with 95% confidence intervals in brackets.
Omnibus tests used Kruskal-Wallis across the three groups.

p = Benjamini—Hochberg false discovery rate—adjusted p-values for post-hoc tests within the
Coverage family, only FDR-significant pairwise differences are listed.

3.5 Transition dynamics

The TransitionDynamics family comprised 84 variables: 42 observed transition probabilities
(OrgTM; e.g., OrgTM_A—B) and 42 chance-corrected transitions (ATM; e.g., DeltaTM_A—B).

After Benjamini—Hochberg FDR correction of omnibus tests within this family, 32 OrgTM and
21 ATM edges showed reliable group effects (p <.05). Within these omnibus-significant
transitions, FDR-adjusted post-hoc tests indicated that Clinical ASD differed from TD-Low on
the majority of edges, with fewer but still systematic differences between TD-High and TD-Low,
and only a subset of transitions distinguishing Clinical ASD from TD-High. This pattern is
consistent with an intermediate, broader-autism-phenotype profile in TD-High.



3.5.1 Observed transition probabilities (OrgTM)

A first set of robust effects involved the short-range “ping-pong” among early sensory/attentional
microstates A, B, and C. All six directed transitions within this ensemble (A—B, A—C, B—A,
B—C, C—A, C—B) showed significant omnibus group differences (all p<.05; Table §). FDR-
corrected post-hoc tests consistently indicated that TD-Low had higher transition probabilities
than both Clinical ASD and TD-High for every A—C edge, whereas Clinical ASD and TD-High
did not differ significantly from each other on any of these transitions. Bootstrapped group
estimates showed that TD-Low always had the highest transition probabilities, with ASD and
TD-High showing similarly reduced short-range recurrences (ASD lowest or comparable to TD-
High; Table 8). Thus, short-range sensory recurrences within the A—C ensemble are most
prominent in TD-Low and attenuated in both Clinical ASD and TD-High.

A second cluster of OrgTM effects involved loops linking higher-order microstates D and E with
the sensorimotor map G (Table 8). For the D—E loop (D—E, E—D), omnibus tests were
significant and FDR-corrected post-hoc comparisons showed that TD-Low had lower transition
probabilities than both Clinical ASD and TD-High, whereas ASD and TD-High did not differ
significantly from each other. Bootstrapped estimates followed a graded pattern TD-Low < ASD
< TD-High for both directions, suggesting that higher-order cycling between D and E is
particularly enhanced in TD-High, with ASD intermediate and TD-Low lowest. For transitions
between E and G (E—G, G—E), median transition probabilities increased along a TD-Low <
TD-High < ASD continuum. FDR-corrected post-hoc tests indicated that ASD had higher E-G
coupling than both TD groups, whereas TD-Low and TD-High did not differ reliably, again
pointing to especially strong E-G coupling in Clinical ASD. For G—D, TD-Low also showed
the lowest transition probability, and ASD exhibited significantly stronger G—D routing than
TD-Low, while TD-High was descriptively higher than TD-Low but did not differ significantly
from either group after FDR correction.

Taken together, the OrgTM findings show that Clinical ASD is characterised by attenuated short-
range sensory “ping-pong” within the A—C ensemble and enhanced routing between higher-order
(D/E) and sensorimotor (G) states. TD-High differs reliably from TD-Low on all A—C transitions
and on the D«~E loop, and often occupies an intermediate or more “ASD-like” position for
D/E/G edges, consistent with broader-autism-phenotype variation in network routing.



Table 8. Summary of metrics for OrgTM edges

Transitio  Clinical TD-High TD-  Omnibus test &2 Significant
n ASD(n (n= Lo FDR-adjusted pairwise
= 21) w (n differences (q_adj <
28) = .05)
19)
A—B 1.99 0.1TD-Low > ASD;
[1.77, 241 3.72 HQ)= 9 TD-Low > TD-High
2.28] [1.90, [3.03, 14.05,p<
3.38] 4.43] .001
A—C 3.83 0.1TD-Low > ASD;
[3.34, 4.13 620 HQ2)= 2 TD-Low > TD-High
4.68] [3.11, [5.22, 10.06,p =
5.32] 7.14] .007
B—A 2.02 0.1TD-Low > ASD;
[1.78, 2.19 3.66 H(Q2)= 6 TD-Low > TD-High
2.41] [1.81, [3.00, 12.32,p=
3.32] 4.32] .002
B—C 4.34 0.1TD-Low > ASD;
[4.00, 4.19 6.70 H(2)= 5 TD-Low > TD-High
4.69] [3.66, [5.57, 11.54,p=
5.39] 7.84] .003
C—A 3.90 0.1TD-Low > ASD;
[3.12, 4.07 6.14 HQ2)= 4 TD-Low > TD-High
4.63] [3.23, [5.13, 11.07,p=
5.21] 7.111 .004
C—B 435
[3..98 4.04 6.54 H(2)=9.92,p= 0.1TD-Low > ASD;
4.71]’ [3.71, [5.42, .007 2 TD-Low > TD-High
5.58] 7.60]
D—E 1.70 242 0.91 H(2)=9.02,p= 0.1TD-Low <ASD;
[1.53, [1.03, [0.57, .011 1 TD-Low < TD-High
1.91] 3.17] 1.62]




E—D 1.72 H(2)=8.58,p= 0.1TD-Low < ASD;

[1.55, 1.93 077 .014 0 TD-Low < TD-High
1.89] [1.04, [0.42,
3.07] 1.55]
E—G 1.97 0.3ASD > TD-High;
[1.73, 1.11 0.80 HQ)= 4 TD-Low <ASD
2.20] [0.87, [0.59, 24.02,p <
1.86] 1.01] .001
G—E 2.06 0.4ASD > TD-High;
[1.83, 1.21 0.76 HQ)= 2 TD-Low <ASD
2.29] [0.79, [0.54, 29.57,p<
1.63] 0.99] .001
G—D 186 TD-Low < ASD
[1' pes 2.10 1.10 H@2)=8.01,p= 0.0
51 1]’ [0.89, [0.54, .018 9
2.28] 1.44]

Note. Values are bootstrap-based medians with 95% confidence intervals in brackets.
Omnibus tests used Kruskal-Wallis across the three groups.

p = Benjamini—Hochberg false discovery rate—adjusted p-values for post-hoc tests within the
Transition dynamics family,; only FDR-significant pairwise differences are listed.

3.5.2 Chance-corrected transitions (ATM)

To account for differences in microstate coverage, we next examined chance-corrected transitions
(ATM = OrgTM — expected), which quantify deviations from a null model based on each state’s
base rate. Within the TransitionDynamics family, 21 ATM edges showed significant omnibus
effects after FDR correction. Of these, 19 distinguished ASD from TD-Low, 16 distinguished
ASD from TD-High, and 4 distinguished TD-High from TD-Low at the FDR-adjusted level.
Overall, the ATM pattern closely mirrored the OrgTM results, indicating that group differences
reflect genuine reorganisation of routing structure rather than trivial consequences of time spent
in each state.

The four ATM edges that differentiated TD-High from TD-Low after FDR correction were
B—E, D—B, E—-B, and G—E. All of these also showed significant differences between ASD
and TD-Low, whereas ASD and TD-High did not differ significantly after FDR correction on any
of these edges. Bootstrapped estimates indicated that ATM B—E deviations were most negative



in TD-Low, less negative in TD-High, and least negative in ASD, implying that transitions from
B to E are most strongly under-expressed relative to chance in TD-Low, with both ASD and TD-
High showing reduced suppression. For D—B, ATM was strongly negative in both ASD and TD-
High but only mildly negative in TD-Low, suggesting that returns from D to

B are markedly under-expressed in ASD and TD-High compared with TD-Low. For E—B, TD-
Low showed clear under-expression, ASD values were close to chance, and TD-High exhibited a
slight positive deviation, indicating that ASD and TD-High both deviate from TD-Low in the
same direction, with TD-High showing the strongest relative preference for E—B. Finally, for
G—E, deviations were negative in TD-Low, positive in TD-High, and strongly positive in ASD,
indicating that routing from G to E is favoured above chance in ASD and TD-High but under-
expressed in TD-Low. Across these four edges, effect sizes for TD-High—TD-Low and ASD-TD-
Low contrasts were again large, supporting robust differences in chance-corrected routing
relative to TD-Low.

For the remaining ATM edges, FDR-significant post-hoc effects primarily contrasted ASD with
both typical groups, with TD-High generally showing intermediate deviations that followed the
same direction as ASD. In particular, short-range sensory recurrences (A<>B, C<>A/B) were
under-expressed relative to chance in ASD compared with both TD groups, while several
sensory/sensorimotor — higher-order routes showed more positive ATM in ASD, consistent with
preferential routing from sensory and sensorimotor states into salience and higher-order networks
once base rates were controlled.

Overall, the ATM results reinforce the OrgTM findings: short-range sensory loops are
specifically under-expressed in Clinical ASD, whereas routes from sensory and sensorimotor
microstates into salience and other higher-order networks (e.g., B—E, G—E) are relatively
favoured. TD-High again occupies an intermediate position between TD-Low and ASD, showing
attenuated but directionally similar deviations, consistent with a dimensional broader-autism-
phenotype account. Key ATM edges are summarised in Table 9.

Table 9. Summary of metrics for ATM edges

FDR-significant pairwise differences
Kruskal- Effect

Wallis size
H(2) &M’

Edge
(ATM)




A—B

A—C

A—D

A—F

B—A

B—E

B—F

H(2) = 24.20, p
<
001

H(2)=12.02, p

0.002

H(2)=10.71, p

0.005

H(2) = 25.80, p
<
001

F(2, 65) =
14.65, p
<.001

F(2, 65) = 8.86,

p
<.001

H(2) = 20.06, p
<
001

0.34

0.15

0.13

0.37

0.31

0.21

0.28

ASD < TD-Low; ASD < TD-High; TD-High vs
TD-Low: n.s.

ASD > TD-Low; ASD > TD-High; TD-High vs
TD-Low: n.s.

ASD < TD-Low; ASD < TD-High; TD-High vs
TD-Low: n.s.

ASD > TD-Low; ASD > TD-High; TD-High vs
TD-Low: n.s.

ASD <TD-Low; ASD < TD-High; TD-High vs
TD-Low: n.s.

ASD > TD-Low; ASD vs TD-High: n.s.;
TD-High > TD-Low

ASD > TD-Low; ASD > TD-High; TD-High vs
TD-Low: n.s.




C—A

C—B

C—F

C—-G

D—B

D—F

D—-G

H(2)=30.07, p
<

.001

H(2)=22.57,p
<

.001

H(2)=21.05, p
<
001

F(2, 65) =
21.87,p
<.001

F(2, 65) = 3.85,

p
=0.026

H(2)=8.05,p=
0.018

H(2) = 13.66, p

0.001

0.43

0.32

0.29

0.40

0.11

0.09

0.18

ASD > TD-Low; ASD > TD-High; TD-High vs
TD-Low: n.s.

ASD > TD-Low; ASD > TD-High; TD-High vs
TD-Low: n.s.

ASD < TD-Low; ASD < TD-High; TD-High vs
TD-Low: n.s.

ASD < TD-Low; ASD < TD-High; TD-High vs
TD-Low: n.s.

ASD < TD-Low; ASD vs TD-High: n.s.; TD-
High vs TD-Low: n.s.

ASD > TD-Low; ASD vs TD-High: n.s.; TD-
High vs TD-Low: n.s.

ASD > TD-Low; ASD > TD-High; TD-High vs
TD-Low: n.s.




E—B

F—B

G—B

G—C

G—E

F(2, 65) = 4.01,

p
=0.023

F(2, 65) =
15.66, p
<.001

H(2)=10.61, p

0.005

H(2) = 26.36, p
<
001

F(2, 65) = 5.54,

p
=0.006

F(2, 65) =
42.41,p
<.001

H(2) = 14.38, p
<
001

0.11

0.33

0.13

0.37

0.15

0.57

0.19

ASD vs TD-Low: n.s.; ASD vs TD-High: n.s.;
TD-High > TD-Low

ASD > TD-Low; ASD > TD-High; TD-High vs
TD-Low: n.s.

ASD vs TD-Low: n.s.; ASD > TD-High; TD-
High vs TD-Low: n.s.

ASD < TD-Low; ASD < TD-High; TD-High vs
TD-Low: n.s.

ASD vs TD-Low: n.s.; ASD > TD-High; TD-
High vs TD-Low: n.s.

ASD <TD-Low; ASD < TD-High; TD-High vs
TD-Low: n.s.

ASD > TD-Low; ASD vs TD-High: n.s.;
TD-High > TD-Low

Note. Values are bootstrap-based medians or means depending on distribution, with 95%

confidence intervals in brackets.



Omnibus tests used one-way ANOVA or Kruskal-Wallis, as appropriate, across the three groups.

p = Benjamini—Hochberg false discovery rate—adjusted p-values for post-hoc tests within the
Transition dynamics family, only FDR-significant pairwise differences are listed.

4. Discussion

This study compared resting-state EEG microstate dynamics in adults with clinical autism
spectrum disorder (ASD) and typically developing adults with high (TD-High) and low (TD-
Low) autistic traits. Using a seven-class microstate taxonomy and a hierarchical inferential
framework (omnibus tests — gated post-hoc comparisons — Benjamini-Hochberg FDR control
within variable families), we identified robust group differences in temporal, spatial, and
transition-based metrics.

Overall, Clinical ASD was characterised by a globally more fragmented and stereotyped
microstate regime, shorter but more frequent microstate episodes with reduced duration
variability, alongside pronounced alterations in microstates linked to salience/interoception (E),
self-referential DMN processing (C), and somatosensory/sensorimotor processing (G). TD-High
participants showed fewer and more selective departures from TD-Low, typically in metrics
linked to Microstates E and G and in specific transition edges, consistent with an intermediate
position on the broader autism phenotype (BAP) rather than a simple “subclinical copy” of
clinical ASD.

4.1 Temporal and spatial microstate dynamics

The most striking temporal finding was a global shift in Clinical ASD toward shorter and more
frequent microstate episodes. Across all seven classes, clinical participants showed markedly
reduced mean microstate duration, increased occurrence rates, and lower duration variability
relative to both TD groups, with effect sizes (Cliff’s A) close to =£1.00 and no differences
between TD-High and TD-Low. Together, these global indices suggest that large-scale brain
states in ASD enter and exit more rapidly and with less temporal diversity, consistent with a more
fragmented and stereotyped temporal organisation of resting-state network dynamics.

At the state-specific level, FDR-corrected omnibus tests revealed group effects in mean duration
and occurrence for all microstates (A—G), with a highly consistent pattern in the post-hoc
contrasts: for each class, Clinical ASD showed shorter duration and higher occurrence than both
TD-High and TD-Low, whereas no duration or occurrence differences between the two TD
groups was exhibited. This indicates that the global fragmentation of microstates in ASD is not
driven by a single aberrant state but reflects a system-wide temporal reconfiguration of canonical
microstate classes—including A (multimodal auditory—visual/arousal-related), B (self-related
visual/autobiographical), C (self-referential DMN), D (executive), E (salience/interoceptive), F
(DMN/mental simulation/ToM), and G (somatosensory/sensorimotor) as synthesised in recent
meta-analytic taxonomy (Tarailis et al., 2024).



Explained-variance metrics provided a more network-selective picture. Total explained variance
across all microstates was significantly lower in Clinical ASD than in both TD groups,
suggesting that canonical microstate templates captured a smaller proportion of scalp-EEG
variance in the clinical cohort. At the level of individual classes, Microstate C showed reliably
reduced explained variance in Clinical ASD relative to both TD groups, whereas Microstates E
and G showed the opposite pattern: explained variance was lowest in TD-Low, higher in TD-
High, and highest (or comparably high) in Clinical ASD. These graded differences in E and

G (especially the TD-Low < TD-High < ASD pattern for Microstate E) are consistent with a
BAP-like continuum in which salience/interoceptive and somatosensory/sensorimotor dominance
increases with autistic traits.

Spatial coverage metrics converged on a similar story. After FDR correction within the Coverage
family, Microstate C coverage was reduced in Clinical ASD relative to both TD-High and TD-
Low, while Microstates E and G showed increased coverage in Clinical ASD and, to a lesser
extent, in TD-High compared with TD-Low. Again, TD-High typically occupied an intermediate
position, but many TD-High vs TD-Low contrasts did not reach FDR-corrected significance,
indicating that subclinical differences are subtler and more patchy than the robust clinical-typical
contrasts.

Finally, GFP-based strength metrics for Microstate E (mean GFP and GFP variability) showed
selective amplification in Clinical ASD relative to both TD groups, whereas the two TD groups
did not differ significantly after FDR correction. This combination—greater explained variance,
increased spatial coverage, stronger amplitude, and higher GFP variability—indicates that the
salience/interoceptive microstate is both more dominant and more labile in Clinical ASD, even at
rest. By contrast, Microstate F, associated with DMN-related mental simulation and Theory of
Mind, showed no robust differences in explained variance or spatial coverage and only a modest
subset of altered transitions, despite sharing the global temporal fragmentation pattern observed
across all microstates. This suggests that ToM-related network alterations may be more
prominent in task-based contexts than in spontaneous eyes-closed resting activity.

4.2 Transition dynamics and large-scale routing of sensory information

Transition analyses, corrected for multiplicity within the TransitionDynamics family, revealed
widespread group differences in both observed transition probabilities (OrgTM) and chance-
corrected transitions (DeltaTM).

For OrgTM, the largest and most consistent differences involved transitions originating from
microstates A, B, and C, which, under the updated taxonomy, jointly index early multimodal
sensory/arousal (A), self-related visual/autobiographical imagery (B), and self-referential DMN
processing (C). Relative to TD-Low, Clinical ASD showed reduced bidirectional transitions
within this A-B—C ensemble (e.g., A«~B, A«—C, B—~C) and increased transitions from A and B
into higher-order networks, including those expressed by microstates C, E, F, and G. Similar—
but not identical—patterns emerged when comparing Clinical ASD with TD-High, with ASD



showing systematically higher A—F/G, B—E/F/G, and C—F/G transition probabilities and
altered routing via Microstate G.

The DeltaTM results recapitulated these findings in terms of deviations from chance structure. In
Clinical ASD, A<»B and C<A/B transitions showed more negative deviations than in both TD
groups (occurring less often than expected given marginal frequencies), whereas A—C/F,
B—E/F/G, and C—F/G transitions showed more positive deviations, signifying preferential,
above-chance routing from A/B/C into salience/interoceptive (E), DMN/ToM-related (F), and
somatosensory/sensorimotor (G) microstates. TD-High again showed fewer and more selective
deviations from TD-Low, mostly restricted to a subset of edges linking perceptual/self-related
and higher-order states (e.g., B&E, G—E), consistent with a weaker but directionally similar
pattern to Clinical ASD.

Taken together, FDR-corrected OrgTM and DeltaTM analyses indicate that Clinical ASD is not
only characterised by altered amounts of time in specific microstates but also by a qualitatively
different routing architecture. Short-range transitions within the A—B—C ensemble are
downweighted, whereas longer-range transitions from these perceptual/self-related states into
salience, DMN, and somatosensory/sensorimotor states are upweighted. Notably, short-range A—
B—C loops are most prominent in TD-Low, attenuated in TD-High, and most strongly reduced in
Clinical ASD, whereas chance-corrected transitions from B and G into E show the opposite
graded pattern (TD-Low < TD-High < ASD), further supporting a BAP-like continuum in
routing structure. . This dynamic routing pattern fits well with triple-network accounts of ASD.

4.3 Neurobiological and clinical implications

The pattern of results reinforces a central role for the salience/interoceptive microstate E in
autism. Across multiple independent metrics, explained variance, coverage, GFP amplitude and
variability, and transition structure, Microstate E shows robust, convergent alterations in Clinical
ASD, with TD-High often falling between TD-Low and ASD for the more tonic measures (e.g.,
coverage and explained variance). This combination is compatible with hyperactive yet unstable
salience processing, which may underpin heightened interoceptive sensitivity, stress reactivity,
and sensory overload frequently reported in ASD.

In parallel, Microstate C, indexing self-referential DMN processing, shows reduced explained
variance and coverage in Clinical ASD, consistent with previous reports of atypical DMN
engagement and self-related mentation in autism. The fact that microstates A and B (multimodal
sensory/arousal and self-related visual/autobiographical, respectively) increasingly route into E,
C, and F may reflect non-canonical integration of sensory input with self-referential and
interoceptive networks, potentially contributing to difficulties in filtering and prioritising
incoming stimuli.

Microstate G, putatively linked to somatosensory/sensorimotor processing, also shows graded
increases in explained variance and coverage across the autism—BAP continuum. This is



compatible with findings of atypical sensorimotor involvement in ASD, and, in the context of the
current transition results, suggests that perceptual and bodily information may be over-routed
into somatosensory and salience networks, potentially contributing to motor restlessness and
heightened bodily awareness or discomfort.

From a clinical perspective, these findings highlight Microstate E and the sensory/self-related —
salience/DMN/somatosensory transition architecture as particularly promising resting-state
markers for ASD. The observed pattern in TD-High participants—who often show intermediate
values for Microstates E and G but largely typical global temporal metrics—supports the view
that EEG microstates capture neural endophenotypes linked to the broader autism phenotype.
However, the intermediate pattern is not uniform across all measures: some indices (e.g., global
duration, global occurrence) showed clear clinical-typical separation with little evidence of
graded subclinical disruption. This suggests that BAP-related alterations may manifest in specific
network components (e.g., salience and somatosensory) and at the level of connectivity/transition
structure rather than as a uniform shift of the entire microstate regime.

4.4 Methodological strengths and limitations

Several methodological features strengthen the interpretability of these findings. First, we
integrated clinical and subclinical cohorts within a unified analytical framework, using a
contemporary seven-class microstate taxonomy anchored in recent meta-analytic synthesis and
explicit mapping to large-scale functional networks (Tarailis et al., 2024).

At the same time, important limitations must be acknowledged. Sample sizes were modest,
particularly for the TD-High and TD-Low groups, which limits statistical power for detecting
subtler BAP effects and increases uncertainty around some estimates, even with bootstrap Cls.
The ASD dataset was drawn from a previously published cohort, whereas the TD groups were
collected locally. Although we harmonised preprocessing as far as possible (e.g., identical
filtering, re-referencing, 25-channel montage, and a uniform 120 s artefact-free segment per
participant), differences in recruitment context, recording hardware, or environmental conditions
cannot be fully excluded as residual sources of variance. We partially mitigate this by focusing
on relative group differences and by using non-parametric and robust statistics, but cross-cohort
integration remains a limitation.

A key limitation of the present study concerns potential confounding effects of both age and data
source. The clinical ASD group was substantially older than the TD-High and TD-Low groups
and was drawn from a different dataset, whereas the two typical groups were younger and
collected locally using identical procedures. Age is known to influence EEG microstate
parameters, including microstate duration, coverage, and transition structure, and has been
identified as a major moderator of ASD-related microstate effects in prior meta-analyses (Wei et
al., 2025). In addition, subtle differences in recording context, participant characteristics, and
unmeasured site-specific factors may have contributed to group differences beyond diagnostic
status or autistic traits per se.



Critically, the open-access dataset used for the clinical ASD group does not provide individual-
level demographic information (e.g., participant-by-participant age, sex., etc). In the primary
publication describing and/or citing this dataset, demographic information is reported only in
aggregate (means, ranges, and standard deviations), rather than at the level of each participant.
As a result, we were unable to include these variables as covariates, conduct demographic
matching, or perform stratified sensitivity analyses to statistically control for potential
demographic confounding between cohorts.

Although we harmonised preprocessing, channel montage, epoch length, and microstate analysis
pipelines across datasets, residual cohort effects cannot be fully ruled out. Consequently, the
observed group differences, particularly the pronounced temporal fragmentation in the ASD
group, should be interpreted with caution, and future studies should prioritise age-matched,
single-site designs and/or open datasets that include individual-level demographics to more
definitively isolate autism-related microstate alterations from developmental and dataset-specific
influences.

In addition, while we stratified TD participants into high- and low-trait groups using the Autism-
Spectrum Quotient (AQ), the sample size was not sufficient to support fine-grained correlational
analyses between continuous AQ scores and microstate metrics. Our design was optimised for
detecting group-level differences across ASD, TD-High and TD-Low, rather than for high-
dimensional correlational modelling. We therefore interpret TD-High vs TD-Low differences as
proof-of-concept evidence for BAP-related modulation of microstate dynamics, and see
comprehensive AQ—microstate correlation analyses as an important target for future, larger-scale
studies.

Finally, all data were collected in a resting-state condition. This is well suited to characterising
baseline network dynamics but may underestimate differences in networks such as the
DMN/ToM-related Microstate F, which is typically more engaged during social-cognitive tasks.
Our findings for Microstate F should therefore be interpreted as resting-state boundaries on these
processes rather than an exhaustive account of mentalising network function in ASD.

4.5 Future directions

Future work can address these limitations in several ways. Larger, prospectively collected
cohorts spanning the full range of autistic traits (and including more detailed symptom and
sensory profiles) would allow robust dimensional analyses of AQ—microstate relationships and
the mapping of specific symptom clusters onto microstate features. Incorporating task-based
paradigms probing social cognition, interoception, and sensory processing would clarify when
and how Microstates E, F, and G are differentially engaged and how resting-state abnormalities
translate into task-evoked network dynamics.

Methodologically, the present results provide a principled basis for feature selection in machine-
learning pipelines, where microstate temporal metrics, coverage, and transition patterns might be



combined with other EEG features (e.g., spectral or connectivity metrics) to develop multivariate
biomarkers for ASD and BAP traits. Longitudinal designs could further test whether salience-
network microstate measures, particularly Microstate E dominance and sensory/self-related —
salience/DMN transition biases, serve as stable trait markers or change with intervention, making
them candidates for treatment monitoring.

4.6 Conclusion

Using a rigorous analysis of seven-class EEG microstates aligned with contemporary taxonomy,
this study demonstrates that Clinical ASD is characterised by globally fragmented microstate
dynamics, reduced expression of self-referential DMN microstate C, and pronounced
amplification of salience (Microstate E) and somatosensory/sensorimotor (Microstate G)
networks, including altered routing from multimodal and self-related microstates A and B into
these systems. TD-High individuals often show intermediate values for key metrics, particularly
in Microstates E and G and in selected transitions, consistent with a dimensional, BAP-consistent
model rather than a categorical split between “clinical” and “typical” brains.

Our findings strengthen the evidence that salience/interoceptive dysregulation and altered
sensory/self-related — higher-order transition structure are core features of autism-related large-
scale brain dynamics at rest. EEG microstates therefore represent a promising, low-cost tool for
probing these dynamics across the autism spectrum and for developing translational markers for
early identification and intervention monitoring.
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Highlights:

e EEG microstates reveal salience network instability in clinical ASD at rest

e TD-High ASQ individuals show intermediate neural traits, supporting a dimensional
model of autistic traits.

e Microstate E shows heightened but brief engagement in ASD, indicating hyperarousal.

e Atypical sensory-to-salience transitions mark altered neural routing in ASD.



