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Abstract

Noninvasive approaches to measuring cerebral circulation and metabolism are crucial to furthering our understanding of
brain function. These approaches also have considerable potential for clinical use ‘‘at the bedside’’. However, a highly
nontrivial task and precondition if such methods are to be used routinely is the robust physiological interpretation of the
data. In this paper, we explore the ability of a previously developed model of brain circulation and metabolism to explain
and predict quantitatively the responses of physiological signals. The five signals all noninvasively-measured during
hypoxemia in healthy volunteers include four signals measured using near-infrared spectroscopy along with middle cerebral
artery blood flow measured using transcranial Doppler flowmetry. We show that optimising the model using partial data
from an individual can increase its predictive power thus aiding the interpretation of NIRS signals in individuals. At the same
time such optimisation can also help refine model parametrisation and provide confidence intervals on model parameters.
Discrepancies between model and data which persist despite model optimisation are used to flag up important questions
concerning the underlying physiology, and the reliability and physiological meaning of the signals.
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Introduction

Improvements in noninvasive approaches for measuring cere-

bral circulation and metabolism have the potential to significantly

increase our understanding of the healthy and injured brain. Of

current interest is the use of near-infrared spectroscopy (NIRS) to

monitor simultaneously brain oxygenation, haemodynamics and

metabolism [1–4], particularly as part of a multimodal monitoring

strategy in neurointensive care [5]. In order to guide patient

management, the robust extraction of clinically relevant informa-

tion from these systems is key. However, interpretation of NIRS

and other measured signals requires both considerable knowledge

of the underlying physiology, and an understanding of the physics

of the measurement process itself. In situations such as these where

understanding in vivo physiology requires measurement whose

interpretation is itself dependent on an understanding of the

physiology we naturally require methodologies where modelling,

both of physiology and of the measurement process, play a key

role.

In this paper, the predictions of a previously developed model of

brain circulation and metabolism [6], termed BrainSignals, are

compared with experimentally measured data from ten healthy

volunteers each undergoing a series of three hypoxemic challenges

as described in [7]. BrainSignals itself was constructed and

parametrised primarily using published data, much of it from

in vitro experiments, and hence of a very different kind to the in vivo

measurements presented here. Thus one goal is to evaluate the

performance of BrainSignals in an in vivo context where there is

considerable physiological and measurement noise, and repeat-

able, controlled experiments are impossible. Preliminary studies

[8] suggested that in this context qualitative trends in certain

signals could be predicted with some consistency by the model.

Here, the aim is to carry out a more complete, quantitative,

comparison of data and model prediction, using both default and

optimised model parameters. This work should be seen in the

broad context of an iterative process of model development and

comparison to data gradually leading to convergence between

model predictions and measurements.

A key aspect if a model is ever to be used at the bedside in a

clinical context is that it must be able to inform not only on

averaged behaviour, but also on the behaviour of individuals who

will display a wide range of natural physiological and pathophys-

iological variation. The level of success of subject-specific

optimisations of physiology-based models, particularly those of

some complexity, is an important topic going beyond the specifics

of cerebral circulation and metabolism described here. Making a

model subject-specific involves reparametrisation in such a way as

to maximise its ability to describe the physiology of a particular

individual. In this context, success of the model is characterised via

its ability to reproduce data for an individual subject, given

PLoS ONE | www.plosone.org 1 June 2012 | Volume 7 | Issue 6 | e38297



available prior information/data on the subject. Here, the prior

information takes the form of a part of the experimental data-set

with the goal being to optimise the model using this data in such a

way as to improve the predictive capabilities of the model for the

rest of the data set. Hence the work presented here can be seen as

a step towards a more ambitious, longer-term aim of ‘‘subject-

specific’’ modelling. In particular our goals are:

1. To quantify the predictive capabilities of the model for each of

the different signals.

2. To find out to what extent model reparametrisation can

improve model predictions.

3. To determine the robustness with which physiologically

important model parameters can be determined for an

individual from data.

4. To identify systematic discrepancies between model predictions

and data and to speculate about the origins and resolutions of

these inconsistencies.

5. To generate testable hypotheses about how physiologically

important, but hard to measure, quantities might behave

during hypoxia.

However, it is important to clarify at the outset that we are

neither attempting to ‘‘validate’’ the model against the measure-

ments, nor to ‘‘validate’’ the measurement technologies with the

aid of the model.

Materials and Methods

Description of the Experiment
This study was approved by the Joint Research Ethics

Committee of the National Hospital for Neurology and Neuro-

surgery and the Institute of Neurology. The data analysed here is

from a study of 10 healthy subjects (7 male, 3 female, median age

32 years, range 30–39) for which all subjects gave written informed

consent. The details of the experimental protocols and measure-

ment methodologies are provided in previous publications [7,9].

In brief, inspired oxygen concentration (FiO2) was measured

using an inline gas analyser, and a pulse oximeter probe measured

arterial oxygen saturation (SaO2). The study commenced with five

minutes monitoring at normoxia. Then nitrogen was added to the

inspired gases with the aim of inducing a gradual fall in SaO2 to

approximately 80%; immediately after this was achieved, FiO2

was returned to normal for five minutes. This cycle was repeated

three times. Throughout the study, end tidal carbon dioxide

tension (EtCO2) and breathing rate were measured continuously

and fed back to subjects in order to adjust their minute ventilation

to maintain normocapnea. Heart rate and mean arterial blood

pressure (ABP) were also measured continuously.

A combination of two continuous wave near-infrared spectrom-

eters, an in-house developed broadband spectrometer (BBS)

previously described by Tisdall et al. [7], and the commercially

available NIRO 300 (Hamamatsu Photonics KK), were used in

conjunction with transcranial Doppler (TCD) ultrasonography to

monitor brain tissue haemodynamics, oxygenation and metabo-

lism [10]. Further details of the NIRS signals are given in the

following section. Mean velocity of blood (vMCA) was measured

in the basal right middle cerebral artery.

For the purposes of input to the model, and comparison with

model output, measured signals were preprocessed as follows: all

signals were visually inspected for well-characterised artifacts,

which, if present were manually removed; all signals were low pass

filtered to remove high frequency instrumentation and physiolog-

ical noise using a 5th order Butterworth filter with a cut-off

frequency of 0.1 Hz; all signals were resampled to 1 Hz; and linear

detrending was carried out on the differential spectroscopy signals.

From here on, the subjects will be referred to as Subject 1 to

Subject 10. The full set of three hypoxemic challenges carried out

on a subject will be termed an experiment, and a single

hypoxemic challenge will be referred to as a challenge. Thus 10

experiments each involving 3 challenges were carried out, giving a

total of 30 challenges. For the purposes of analysis, the division of

each experiment into three challenges was carried out manually by

choosing time-points in the middle of the periods of normoxia

between hypoxemic challenges, and cutting all data-sets at these

points.

Near-Infrared Spectroscopy
Four out of the five signals considered here are measured using

NIRS. Changes in tissue oxy- and deoxy-haemoglobin concen-

trations, termed DHbO2 and DHHb respectively, can be

measured using differential spectroscopy systems [11–13]. In the

analysis here, rather than directly using DHbO2 and DHHb, two

derived quantities, the total haemoglobin concentration change

DHbT~DHbO2zDHHb, and changes in the difference

DHbdiff~DHbO2{DHHb are used. The third signal under

consideration is the absolute tissue oxygen saturation (TOS),

which provides a percentage measure of mean oxygen saturation

across all vascular compartments in the region of tissue queried.

TOS has been used extensively as a marker of tissue oxygenation

in a range of applications [14–17] but its relationship to underlying

physiology is still under investigation [18–20]. Finally, in addition

to the haemoglobin chromophores, the CuA centre in cytochrome

c oxidase (CCO) is a significant NIR absorber. Changes in

oxidation of this centre give rise to the fourth NIRS signal

considered here, referred to as DoxCCO. Interpretation of the

physiological meaning of DoxCCO is, however, nontrivial. This

signal has been extensively investigated as a marker of cellular

oxygen metabolism [21–24], and a number of clinical studies have

been performed to elucidate its role as a measure of cerebral well

being [5,25,26]. Theoretical, qualitative analysis of how it

responds to changes in oxygenation, substrate supply, and

metabolic demand were carried out in [27], with more quantita-

tive discussion in [6].

The BrainSignals Model
The BrainSignals model is described in [6], and available for

download at [28]. This model is a simplification of the large scale

BRAINCIRC model in [29] and was constructed to aid prediction

of a number of measurable signals (including those described

above), thus allowing model performance to be better evaluated

against in vivo data and maximise the clinical relevance of the

previous modelling work. At the same time, model complexity was

minimised by removing or simplifying components of the

physiology regarded as nonessential to the basic observed

behaviours. This simplification resulted in a model consisting of

two components: a submodel of the cerebral circulation, which is

known to respond in complicated ways to a variety of stimuli [30],

and a submodel of mitochondrial metabolism related to those

presented in [31,32]. The two components are linked via the

processes of oxygen transport and consumption. Where possible,

model parameters were chosen to be consistent with thermody-

namic principles and in vitro data. Necessarily, a number of

parameters which were either expected to have wide physiological

variation between individuals or can be hard to measure were

given ‘‘typical’’ values, in the anticipation that they could be set via

more extensive comparison with in vivo data, as carried out here.

Modelling Cerebral Signals during Hypoxemia
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Inputs and Outputs of the Model. Inputs to the Brain-

Signals model were three measured systemic signals: mean ABP,

SaO2 and EtCO2 (which was assumed to be equal to arterial

partial pressure of CO2, a model input parameter). Fig. 1 shows

typical input data for one subject (Subject 6). Note that the

experimental protocol meant that each hypoxemic episode was

neither necessarily of the same magnitude nor of the same

duration. Thus extrapolating from one hypoxemic challenge to the

next becomes nontrivial. Note further that a single challenge

cannot simply be treated as a drop in oxygen, as a number of other

systemic effects may be simultaneously occurring. These included

significant changes in mean blood pressure, and in some cases

significant changes in CO2 levels. These collateral effects were

extremely variable across the subject range. For example Subject 2

showed a rise in blood pressure during the experiment (Fig. 2, left),

while Subject 5, unlike Subject 6 shown in Fig. 1, did not show

significant CO2 drops during the hypoxemic challenges (Fig. 2,

right).

The four NIRS signals TOS, DoxCCO, DHbT and DHbdiff
along with vMCA were used to provide a comparison between

model and data. For the purposes of comparison between

measured and modelled signals, vMCA was scaled by an arbitrary

factor, which was chosen to equalise the average measured and

modelled signals in each case. The three differential spectroscopy

signals (DoxCCO, DHbT and DHbdiff) were subject to an

arbitrary baseline shift again chosen to equalise the average

signals. Measured and modelled TOS were compared without any

scaling or baseline shift.

In addition to predicting the above five signals, the model

produces a number of outputs which were not measured, and are

in general difficult to measure in clinical contexts, including the

levels of various chemical quantities in different compartments,

and perhaps most importantly cerebral metabolic rate for oxygen

(CMRO2). Model predictions of change in this quantity will be

detailed in the results. The full range of model variables and

outputs is described in [6].

Model optimisation. Carrying out model optimisation for a

number of data sets, as done here, is an important means of

identifying inadequacies of the model class, and problems with the

measurement process. An outline of the optimisation process is

presented in Fig. 3. Model optimisation broadly refers to

attempting to minimise the distance between a set of model-

predicted quantities and the corresponding measured quantities.

The compatibility of a measured data set with a particular set of

models (defined, for example, by free parameters in a model) is

quantified by the minimal distance achieved through the

optimisation process.

In this case to obtain the set of models for optimisation the

parameters which most affected the model predictions of the five

signals in question were determined through a dual approach.

Discussion with clinical collaborators was used to establish which

model quantities were potentially of most clinical use and also

which quantities might be expected to show widest physiological

variation. At the same time, a preliminary sensitivity analysis was

carried out on a large range of model parameters in different

scenarios. The seven optimisation parameters chosen through this

process were:

1. The normal venous-arterial volume ratio, VARn (i.e., 1/AVRn

in [6]). This can be expected both to vary from individual to

individual and to be sensitive to the particular placing of the

NIRS probes. Further, preliminary simulations showed that the

haemoglobin-related NIRS quantities were sensitive to the

values of this parameter.

2. Blood concentration of haemoglobin [Hb] (termed [Hbtot] in

[6]), which can also be thought of as representing haematocrit.

This is known to vary considerably between individuals. As

with AVRn, haemoglobin-related NIRS quantities showed

sensitivity to the values of this parameter.

3. A typical arteriolar radius rn. All haemodynamic model

quantities were sensitive to values of this parameter, and for

this reason it was included.

Figure 1. Typical input traces. SaO2 (%, top panel), mean ABP (mmHg, middle panel) and EtCO2 (mmHg, bottom panel) for a typical subject
(Subject 6) following the resampling and filtering described in the text. Each experiment lasted 30–40 minutes in total.
doi:10.1371/journal.pone.0038297.g001

Modelling Cerebral Signals during Hypoxemia
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4. A dimensionless parameter u, representing normal energy

demand. All five outputs, including DoxCCO, showed

sensitivity to this parameter. However, preliminary simulations

gave ambiguous results about whether it could be reliably

determined from the data.

5. RO, the strength of cerebral blood flow (CBF) regulation in

response to arterial O2 levels. Given the potential clinical

importance of quantifying the regulatory response to changes

in O2 tension, we were keen to know whether this model

parameter could be determined consistently for an individual

from physiological data. Preliminary results were ambiguous,

so it was included.

6. RP, the strength of CBF autoregulation in response to changes

in blood pressure. Again, this is a quantity of potential clinical

importance. Although the challenge did not involve any

explicit manipulations of blood pressure, blood pressure often

showed considerable spontaneous natural fluctuation during

the challenge. Preliminary simulations suggested that this

model parameter could be determined with some accuracy for

an individual from physiological data.

7. tP, the typical time-constant for the pressure autoregulation

response. Preliminary investigation suggested that the flow

responses (as recorded by vMCA) did not show the delays

suggested by the literature on pressure autoregulation (e.g.

[33,34]). We wanted to find out if this was consistently the case.

Certain other parameters given initial consideration, for

example, the typical time-constant for autoregulatory response to

hypoxia, were found to be hard to determine from the data, and

hence were excluded. The computational methodology used a

simulated annealing approach using a simplex method, as

described in [34]. This choice was considered appropriate given

the large number of parameters being explored, the noisy nature

of the data, and consequent uncertainty about the smoothness of

the objective function. The initial temperature, the number of

temperature drops, and the stopping criteria were determined

heuristically. For the optimisations involving seven parameters and

all five output signals, a maximum of 10,000 steps were allowed.

When optimising for each signal individually a maximum of 1000

steps were allowed. All optimisations were run using the

BRAINCIRC modelling environment [36].

Table 1 shows the model default values, and the lowest and

highest values allowed by the optimisation process before a sliding

penalty was applied, all other model parameters were fixed at

default values. To avoid introducing undue bias into our results

the penalty applied was only a weak one, the reasons for applying

the penalty outside certain bounds were both to try to ensure

that the parameters remained within physiological ranges, and

also to ensure model stability. A graded penalty was applied to

avoid discontinuities in the objective function thus stabilising the

optimisation process.

Measuring the Success of the Optimisation Process
Comparing Model and Data. Given a particular signal, the

mean distance between the measured and modelled values of this

signal provides a quantification of the success of the model at

reproducing that signal (mean distances as opposed to the RMS

distances were chosen in order not to give undue weight to

outliers). More precisely, given a signal R, for subject s, during

challenge c, then ~dd(R,s,c), is the unweighted mean of the absolute

difference between measured and modelled values of R during the

challenge (rescaled in the case of vMCA and with baseline shifted

in the case of the differential spectroscopy signals).

Figure 2. Examples of behaviour of the input signals. In both figures, arrows indicate the start of each hypoxemic challenge. Left. The mean
arterial blood pressure trace for Subject 2 showing a marked increase during the experiment. Right. The end tidal CO2 tension for Subject 5 was
maintained relatively constant across the hypoxemic challenges.
doi:10.1371/journal.pone.0038297.g002

Figure 3. Schematic of the model optimisation methodology.
Healthy subjects undergo a hypoxemic challenge, during which
systemic and cerebral data is gathered noninvasively. The systemic
data is fed into the physiological model, which then predicts expected
values of the cerebral signals. The difference between measured and
predicted values of these signals is used to construct an objective
function, and minimisation of this function is used to reparametrise the
model.
doi:10.1371/journal.pone.0038297.g003
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It should be noted that the difficulties involved in robustly

reproducing five signals simultaneously are considerably greater

than in reproducing one or two signals. For a given set of signals,

the weighted average of the distances across the signals provides a

measure of the success of the model at reproducing the signals

collectively. For two different signals R1 and R2 the distances
~dd(R1,s,c) and ~dd(R2,s,c) are not easily comparable as the signals

are measured in different units and have different typical values, or

typical changes during an experiment. In order to make the

quantities comparable, we define weights cR, and weighted

distances d(R,s,c)~cR
~dd(R,s,c). The total distance between model

and data is then defined as a sum of the quantities d(R,s,c).

For each of the thirty challenges individually, an optimisation

was carried out to find the minimum achievable total distance

between the model and the data. From these preliminary

optimisations ~ddmin(R), the smallest achievable values of ~dd(R,s,c)
for each R and across a range of subjects and challenges could be

estimated. The weights cR were then chosen in such a way that

cR
~ddmin(R) was similar for each of the five signals, for brevity this

set of optimisations is termed Fit 1. This methodology can be seen

both as normalising the signals, and also taking into account the

relative ability of the model to fit the signals individually.

Prediction factors. An important question is whether the

optimisation process improves the model’s ability to predict data

unseen by the optimisation. We are interested in whether for a

given subject and challenge, optimising the model for another

challenge from the same subject improves the model performance

compared to the unoptimised model. Let d(R,s,cD0) refer to the

scaled distance between model prediction and data for signal R,

subject s during challenge c, using the unoptimised model and

d(R,s,cD~cc) refer to the corresponding distance following optimisa-

tion of the model for subject s, challenge ~cc. So, for example,

d(R,1,1D2) would refer to the predicted distance in R for subject 1,

challenge 1, following optimisation for subject 1, challenge 2.

Then the percentage

P(R,s,cD~cc):100
d(R,s,cD0){d(R,s,cD~cc)

d(R,s,cD0)
,

provides a measure of the improvement in prediction of R for

subject s during challenge c given knowledge of challenge ~cc.

P(R,s,cDc) can be regarded as a measure of the success of the

optimisation process for a particular signal. 100% represents

maximum improvement, that is an exact match between model-

prediction and data, post-optimisation, while values less than zero

represent a worsening of the prediction following optimisation

compared to predictions of the default model. This latter

possibility is not unrealistic: it can occur that in attempting to

find the best fit to all five quantities, the fit to some of the quantities

actually worsens. Hence the importance of appropriate choice of

the weights cR. For subject s and signal R we can compute the

quantity:

P(R,s)~
1

6
(P(R,s,1D2)zP(R,s,1D3)zP(R,s,2D1)

zP(R,s,2D3)zP(R,s,3D1)zP(R,s,3D2)):

P(R,s) will be termed a prediction factor. It quantifies the average

increase in predictability of signal R during a challenge on subject

s given knowledge of one other challenge for the same subject.

Results

Behaviour of the Unoptimised Model
Prior to discussing model optimisation and individualisation, it

is important to explore briefly the ability of the model with default

parameter values to reproduce the five signals. This was found to be

widely variable, both across subjects and across the different

signals with, however, some consistent trends. For illustrative

purposes we have chosen the individual challenges corresponding

to the best and worst fits pre-optimisation for each of the signals.

The results are shown in Fig. 4. The weighted distances from

model to data are also shown in each case.

Fig. 4 illustrates that even prior to optimisation the model

predictions were sometimes remarkably close to the data. However

there was considerable variation in this success, both across

subjects, and across signals. For example TOS showed many of

the worst initial fits as a consequence of the fact that its baseline

varies widely. Subject 10 showed some of the worst fits across a

range of signals. Each signal is examined in more detail in the

discussion.

Summary of Results of the Optimisation Process
Figure 4 shows the effect on the model performance of

optimisating each signal individually for those signals which

showed the best and worst performances prior to optimisation.

The signals for which the model had the best performances prior

to optimisation had on the whole only small improvement post

optimisation (and in some cases show small deterioration in

performance). The signals for which the model showed the worst

performance prior to optimisation highlight the level of variation

seen post optimisation, with some signals showing large improve-

ments (e.g. TOS) and others showing only small improvements

(DHbT). These results are illustrative of the range of results seen,

Table 2 shows the average values of d(R,:,:) for each of the signals,

across all of the challenges. The values in Table 2 can be

interpreted in the following way: the optimisation process makes

the most substantial difference to the signals TOS and DHbdiff .

Thus a mismatch between modelled and measured values of TOS

and DHbdiff may be at least partly attributable to the choice of

model parameters. On the other hand, the process does not

considerably improve DHbT, vMCA and DoxCCO.

In the case of the CCO signal, optimising this signal individually

gives a 12% improvement in fit, while the collective optimisation

causes an insignificant change. This should not be interpreted to

mean that the model was unsuccessful at predicting CCO: in fact

in 14/30 challenges d(DoxCCO,:,:) were less than 0.7 prior to

Table 1. Optimisation parameters.

Parameter Model default Penalty below Penalty above

VARn 3 1 5

[Hb] (mM) 9.1 5 12

rn (cm) 0.0187 0.012 0.022

u 1 0.1 4

Ro 1.5 0.1 8

Rp 4.0 0.5 10

tp (s) 5.0 0.5 10

Vext 0 0.0 0.7

The model defaults of the free parameters and lowest and highest values
permitted before the penalty was applied.
doi:10.1371/journal.pone.0038297.t001

Modelling Cerebral Signals during Hypoxemia
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optimisation, which corresponds, given the low signal-to-noise

ratio of the CCO signal, to a reasonable fit. Rather, altering

parameters from the parameter set chosen does not appreciably

improve the DoxCCO fit on average.

For DHbT and vMCA, the outcome of the optimisation process

across challenges was very variable with maximum improvements

of 47% (DHbT) and 40% (vMCA), but also noticeable deterio-

ration in the fits for some subjects. The 28% and 33%

improvements following the respective single-signal optimisations,

compared to negligable improvements for collective optimisation,

suggests that there are difficulties associated with simultaneously

optimising the signals. It should be noted that DHbT changes were

on the whole considerably smaller than DHbdiff changes during

this challenge (see Fig. 4 for example), implying a greater signal-to-

noise ratio as both are derived from the same quantities and

measured in the same units. We return to these issues in the

discussion.

Improvement in Prediction Following Optimisation
We can term the process of optimising a model to partial data

from an individual model individualisation. The model

individualisation in this case involved optimising the model for

one challenge thus, allowing the remaining two challenges for that

experiment to be predicted. The success of model individualisation

is quantified by the prediction factors P(:,:). The prediction factors

for each signal, and for their weighted sum, are presented for each

subject in Table 3, showing that on average there is a considerable

improvement in the prediction of two signals, TOS and DHbdiff ,

Figure 4. Best and worst performance of the unoptimised model and optimisation results for each signal. Bold lines are the model
output post optimisation, grey lines are the unoptimised model output, while the dashed lines are measured data. The best fit prior to optimisation is
on the left, while the worst fit is on the right. The weighted distances d are on the bottom left of each plot, while the subject and challenge are on the
bottom right (e.g., ‘‘2(a)’’ means ‘‘Subject 2, first challenge’’).
doi:10.1371/journal.pone.0038297.g004

Modelling Cerebral Signals during Hypoxemia
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following model individualisation. This is consistent with the

results obtained from optimising each challenge individually,

implying knowledge of the data during one challenge for an

individual improves the ability of the model to predict the

behaviour of these signals in subsequent challenges.

Predicting TOS Change during Hypoxia
Following analysis of the results of Fit 1, a systematic

discrepancy between modelled and measured TOS was identified.

While optimisation led to successful fitting of baseline TOS, the

model, both prior to and post optimisation, consistently overes-

timated the TOS drop during hypoxia. This occurred despite the

fact that arterio-venous volume ratio and haematocrit were free

parameters in the optimisation. The single-signal optimisations for

TOS were slightly better able to reproduce the observed signal (see

Table 2), but the systematic discrepancy remained. Thus it

appears that the comparatively low observed drops in TOS during

hypoxia were not compatible with the model variation allowed in

Fit 1.

In order to explore this discrepancy, a new quantity termed

TOSc, a corrected TOS defined as a weighted average between a

fixed default TOS and actual model-predicted TOS, was

constructed. One of the original set of seven free parameters (rn)
was replaced with the weighting used in the definition of TOSc,

termed Vext, and a second optimisation was carried out. This

second set of optimisations is termed Fit 2. Table 4 shows the

average values and % change of d(R,:,:) for Fit 2. This second

optimisation resulted in considerably better fits to the TOS data,

examples of the improvements observed are shown in Fig. 5 where

the distance between modelled and measured data is noticeably

decreased compared to Fit 1. When comparing the remaining

signals with Fit 1, vMCA and DHbdiff both show improvements

in the average results, DoxCCO shows no change and DHbT
shows that on average there is a slight decrease in the predictive

capabilities of the model. As with Fit 1 the results for DHbT were

still extremely variable with a maximum improvement of 35%.

To highlight the impact on model individualisation Table 5

presents the prediction factors for each signal, and their weighted

sum, for Fit 2. The overall values for Fit 2 are slightly better than

those for Fit 1, with an average improvement in prediction of

22.8% (Fit 1) and 24.6% (Fit 2). Moreover an improvement in

prediction of TOS after Fit 2, compared to Fit 1, occurred for

almost all subjects (see Tables 3 and 5), with very marked

improvement in some cases.

Robustness of Parameters Determined from Optimisation
One important question is whether certain clinically relevant

parameters, for example the strength of pressure autoregulation,

can be determined robustly via the optimisation process from data

of the kind presented here. Given some parameter X , the

following questions are relevant:

N How does the average value of X determined by optimisation

compare to the default values of X used in the model?

N What is the variation in X across the 30 challenges?

N What is the variation in X for an individual across the three

challenges?

Table 6 summarises the answers to these three questions

following Fit 1 and Fit 2 (model default values are given in

Table 1). Some parameters showed considerably wider variation

across the thirty challenges than others, quantified in the third and

sixth columns of Table 6. For example the standard deviation in

the optimal values obtained for u following Fit 1 was 68% of the

mean value. A large value like this may reflect different facts:

1. It is inherent in the physiological meaning of certain

parameters that model behaviour is sensitive to changes in

their values, for example they may occur squared or

exponentiated in certain model equations;

2. There can be naturally occurring differences in the amount of

physiological variability in certain quantities;

3. Some parameters may be hard to estimate from the data-set in

this study, and this is reflected in the high variability.

In order to distinguish between possibilities 2 and 3 above, it is

important to examine the difference between population standard

deviation as estimated from all 30 challenges (third and sixth

columns of Table 6) and the average population standard

deviation as estimated from each subset of three challenges on

an individual (fourth and seventh columns of Table 6). For every

Table 2. The (weighted) signal-to-data distances for each of
the five measured signals, and the sum of these distances,
averaged across all thirty challenges for Fit 1.

TOS vMCA DoxCCO DHbT DHbdiff
dtot(Fit
1)

Unoptimised: 1.87 0.60 0.81 1.11 1.10 5.47

Single-signal: 0.60 0.40 0.71 0.80 0.53 –

Fit 1: 0.70 0.55 0.78 1.02 0.66 3.72

Fit 1
(% improvement):

62% 8% 3% 7% 40% 32%

The first row contains these distances for the unoptimised model. The second
row shows the results following optimisation to each signal separately. These
numbers quantify the maximal ability of the model-class to reproduce the
signals individually. The third and fourth rows represent the distances and
percentage improvement following collective optimisation of the signals during
Fit 1. As we would expect, these distances are consistently higher than those
from the single-signal optimisations.
doi:10.1371/journal.pone.0038297.t002

Table 3. The prediction factors P(:,:) for each subject and
each signal following Fit 1.

Subject TOS vMCA DoxCCO DHbT DHbdiff dtot

1 20.3 24.9 24.2 2.9 36.2 17.1

2 76.0 28.4 211.3 19.9 57.7 48.9

3 215.5 23.3 2.3 216.0 22.7 3.0

4 32.2 6.7 20.1 28.2 47.0 15.0

5 10.9 11.9 4.9 2.0 7.1 6.5

6 65.1 214.9 22.0 12.0 38.6 37.5

7 39.3 6.1 26.6 11.8 32.4 20.6

8 3.3 3.7 20.1 3.9 20.1 6.1

9 50.4 229.8 20.1 10.8 50.5 29.1

10 81.3 10.3 22.2 27.3 28.3 44.0

average 36.3 0.4 21.1 3.2 34.1 22.8

The table is read as follows: consider the TOS entry for subject 4 (i.e., P(TOS,4))
which has value 32.2. This value means that the prediction of the value of TOS
for Subject 4 during some challenge was on average 32% improved by model
optimisation to data from a different challenge.
doi:10.1371/journal.pone.0038297.t003
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parameter and each optimisation, the latter is lower, suggesting

picking a model parameter X and estimating its value from data

for an individual, yields more clustered values than random choice

of this parameter from the distribution. This reassures us that

partial data from an individual can help us estimate each of the

parameters for an individual. It is consistent with the increased

predictability of signals from an individual following optimisation

using part of that individual’s data.

For the majority of the predicted parameters the average values

were reasonably close to their model default values, reflected in the

fact that entries in the second and fifth columns of Table 6 are

close to 1. However, for certain parameters the predicted averages

suggest values which whilst within the expected physiological limits

are further from the model defaults. In the case of tP, the data

consistently suggested values closer to 0.5 second, as opposed to

the default model value of 5 seconds. The blood concentration of

haemoglobin (haematocrit) [Hb], was also consistently lower than

model default of 9 mM and was on average closer to 5 mM. The

results also indicated a slightly stronger CBF response to arterial

O2 levels. The weighting Vext given to default model-predicted

TOS in Fit 2 can be seen as a damping factor, a damping factor of

0% would correspond to measured TOS responding as predicted

by the model, while 100% would correspond to completely

unresponsive TOS. The optimisation process resulted in an

average damping factor of 42+14%, illustrating the consistency of

the mismatch between model and data.

Model Prediction of Unmeasured Quantities: CMRO2

A key goal of the original modelling work was to create a model

capable of informing on the behaviour of quantities which are

hard to measure in clinical situations. One quantity which is both

hard to measure noninvasively and is of clinical importance is

CMRO2. According to the model moderate hypoxia, as carried

out here, resulted in a small but not negligible percentage drop in

CMRO2. The model predictions, prior to optimisation, were

remarkably consistent and were not appreciably altered by the

optimisation procedure. All thirty challenges resulted in small

percentage drops in CMRO2, the values of this percentage drop

were:

N Unoptimised model: 5.50 6 1.01 (range: 2.37% to 7.58%)

N Fit 1: 5.92 6 1.33(range: 2.11% to 9.49%)

N Fit 2: 5.73 6 1.10 (range: 2.27% to 9.34%)

The maximum change to the value of any particular drop as a

result of optimisation was small, with the majority of optimisations

having little effect on the model-predicted CMRO2 drop.

Figure 5. Error in predicted TOS during two challenges for Fit 1 and Fit 2. The TOS error is defined as TOS (model) - TOS (data). TOS error is
shown following Fit 1 (dashed line) and Fit 2 (bold line) for two example challenges (Subject 2, challenge 1 and Subject 8, challenge 2). The plots
illustrate that optimisation 2 considerably reduced the error in the prediction of TOS by reducing the expected drop in TOS during the hypoxemic
challenge.
doi:10.1371/journal.pone.0038297.g005

Table 4. The (weighted) signal-to-data distances for each of
the five measured signals, and the sum of these distances,
averaged across all thirty challenges for Fit 2.

TOSc vMCA DoxCCO DHbT DHbdiff dtot(Fit 2)

Unoptimised: 1.76 0.60 0.81 1.11 1.10 5.36

Fit 2: 0.44 0.50 0.78 1.13 0.63 3.48

Fit 2 (%change): 75% 17% 3% 22% 43% 35%

The first row contains these distances for the unoptimised model. The second
and third rows represent the distances and % change following collective
optimisation of the signals during Fit 2.
doi:10.1371/journal.pone.0038297.t004

Table 5. The prediction factors P(:,:) for each subject and
each signal following Fit 2.

subject TOSc vMCA DoxCCO DHbT DHbdiff dtot

1 8.5 213.7 3.7 4.3 38.9 14.7

2 82.6 26.2 213.3 225.8 62.1 46.2

3 214.7 23.3 2.2 220.0 26.6 4.0

4 28.1 21.2 2.2 210.1 52.2 16.8

5 43.4 7.0 2.8 29.6 11.6 13.1

6 70.0 7.4 20.4 29.2 50.0 38.7

7 50.9 27.6 21.9 9.3 23.6 22.9

8 3.6 6.3 20.2 0.8 25.9 7.6

9 66.4 11.4 22.1 20.3 51.3 34.2

10 89.2 20.4 1.3 210.1 29.0 47.9

average 42.8 7.0 20.6 27.1 37.1 24.6

Note that improvements in the prediction of TOS and DHbdiff were often
accompanied by a slight worsening of the prediction of DHbT.
doi:10.1371/journal.pone.0038297.t005
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Examples of SaO2 (measured) and CMRO2 (model predicted)

during an experiment are shown in Fig. 6. Discussion of this

prediction, and its relationship to the literature, can be found in

the concluding section.

Discussion

We have shown that the BrainSignals model has some success at

simultaneously reproducing qualitative and quantitative behaviour

of five measurable physiological signals during a hypoxemia

challenge. Further, model optimisation can be used to improve

model predictions for an individual. In this concluding section, we

first provide detail summarising the behaviour of the different

signals, as measured and as predicted by the model, and

highlighting any systematic discrepancies. We then explore some

possible origins of these discrepancies, and the extent to which

they could be resolved by altering model assumptions. Finally, the

optimisation process itself is examined in order to draw

conclusions about model parametrisation.

Behaviour of the Measured and Modelled Signals
A number of open questions exist in the literature about the

reliability, reproducibility, and interpretation of NIRS signals in

the context of various physiological challenges (see references in

the introduction). Provided some caution is exercised, there is the

potential for model-based approaches to inform on these debates.

Below, comments on each of the five measured signals are

presented and the question of how model-predicted changes in

CMRO2 relate to previous observations in the literature, is briefly

discussed.

DoxCCO. This is probably the signal with the lowest signal-

to-noise ratio, and also the signal which is hardest to interpret

physiologically. In this context, the unoptimised model was

relatively successful at reproducing the observed signal. However

the optimisation process did not greatly reduce the model-to-data

distance, either when carried out on the signal in isolation, or in

combination. For certain individuals, the signal prior to detrending

shows drifts and/or large fluctuations (in the region of 1 mM or

more) which are not reflected in the other signals (data not shown),

and it is possible that the signal processing carried out here is

insufficient to allow robust quantitative analysis when this is the

case. Interestingly, it is fairly easy to identify, without reference to

the model, experiments where the DoxCCO signal appears to be

inconsistent with physiological expectations.

vMCA. Inspection of the data suggests that this signal is fairly

consistent with model predictions both before and after optimi-

sation. While the optimisation process did not cause a large

improvement in the match between the modelled and measured

data, this can be at least partly attributed to the fact that the model

generally successfully predicted changes in vMCA even before

optimisation. Unlike previous modelling work [29,33], the

BrainSignals model ignored possible changes in middle cerebral

artery diameter during dilation. The data from the present study

broadly justifies this choice.

TOS. This was the signal to which optimisation made the

biggest difference, primarily because baseline TOS varied widely.

On the other hand the model, both before and after optimisation,

could not account for the comparatively small drops in TOS

observed during hypoxia. The heuristic assumption that observed

TOS changes were ‘‘damped’’ (Fit 2) led to a considerable

Table 6. Values of the free model parameters following
optimisation.

Fit 1 Fit 2

X X (+s(X )) s(X )=X s(Xi)=Xi X (+s(X )) s(X )=X s(Xi)=Xi

VARn 0.93(60.39) 0.42 0.27 0.94(60.34) 0.37 0.16

[Hb] 0.58(60.17) 0.30 0.15 0.59(60.15) 0.25 0.10

rn 0.92(60.14) 0.15 0.11 – – –

u 1.09(60.75) 0.68 0.45 0.87(60.55) 0.64 0.43

Ro 1.90(60.99) 0.52 0.34 1.17(60.67) 0.57 0.40

Rp 1.15(60.42) 0.36 0.20 1.21(60.30) 0.25 0.14

tp 0.13(60.13) 0.97 0.48 0.14(60.10) 0.69 0.56

Vext – – – 0.42(60.14) 0.33 0.25

X represents the mean value of parameter X across all thirty challenges. In all
cases except Vext , the value is divided by the default parameter value. Thus a
value close to 1 implies that the model default is consistent with the data from
the study. s(X ) is the population standard deviation of values of X across all
thirty challenges. A low value of s(X )=X implies that parameter X does not
show great variation between subjects. Xi represents the mean value of
parameter X across the three challenges for individual i (normalised, except for
Vext). s(Xi) represents the population standard deviation of values of X across
all three challenges for individual i. Low values of s(Xi)=Xi suggest that a
parameter can be reliably determined for an individual.
doi:10.1371/journal.pone.0038297.t006

Figure 6. Two examples of measured SaO2 and model-predicted CMRO2 during an experiment. The model predictions are without
optimisation. In each case the dashed line is SaO2 as a ratio, while the bold line is CMRO2 normalised to its initial value. Left. Subject 1. This is a fairly
typical trace. Right. Subject 5. Both SaO2 and CMRO2 are more variable, but again the model predicts that CMRO2 changes follow the trends in
SaO2 .
doi:10.1371/journal.pone.0038297.g006
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improvement in fit. This is discussed further in the following

section.

DHbdiff. This was another signal which even prior to

optimisation had a reasonable match between measured and

modelled values. It was also the signal to which the optimisation

process made the second largest difference. The worst fit shown in

Fig. 4 is not consistent behaviour and appears to be more related

to the time-course of the DHbdiff drop during the hypoxemic

challenge than its magnitude. As a difference between two

measured signals (DHbO2 and DHHb) it is possible that some

correlated measurement errors cancel, leading to an improved

signal-to-noise ratio.

DHbT. This signal was of fairly small magnitude, consistent

with the the relatively small increase in vMCA, and suggesting that

vascular dilation caused by hypoxia of this magnitude does not

cause large blood volume changes. The relatively large (weighted)

model-to-data distance for some subjects may be partly explained

by small absolute changes in DHbT. However this may not be the

whole story: when optimised singly, model and data could be

better matched than when the optimisation included all signals.

This suggests that there may be confounding physiological (as

opposed to measurement) effects.

DCMRO2. This was not directly measured, but, as mentioned

previously, the model was quite consistent in its prediction that

drops in SaO2 of the order of 15–20% should lead to small but not

negligible drops in CMRO2. Ref. [37] suggests that while severe

hypoxia causes significant decreases in CMRO2, moderate

hypoxia in the range considered here does not alter CMRO2.

On the other hand, it is worth noting that a drop of a few percent

is within the margins of error in the data in [37]. Moreover, the

challenges were carried out in anaesthetised dogs, where the

average CBF increase observed (150%) during the moderate

hypoxia considerably exceeds the average CBF increase inferred

from the vMCA data in our study, possibly compensating for the

drop in oxygen tension. The data for anaesthetised and awake rats

in [38] is similarly inconclusive, suggesting that hypoxia in the

range considered here caused significant decreases in CMRO2

under anaesthetised conditions but not under awake conditions.

Again, it is not clear whether changes in CMRO2 in the 5% range

could be reliably estimated by the biophysical BOLD model in

question. In sum, it remains an open question whether moderate

hypoxia causes a small, but non-negligible, change in CMRO2.

Explaining Systematic Discrepancies between Model and
Data

The compatibility of a data-set with a model class is represented

by the ability of a model to reproduce the data-set following

optimisation. When optimisation cannot adequately reproduce a

data-set, there may be conceptually distinct explanations:

N Incompleteness of the physiological model class: certain

physiological effects are missing from the model, or alterna-

tively, the parameter set chosen for optimisation does not allow

sufficient room to obtain the observed behaviours.

N Signal misrepresentation in the physiological model: the

physiological interpretation of certain signals is incorrect or

incomplete. For example, the two-compartment characterisa-

tion of TOS as the weighted sum of arterial and venous

haemoglobin saturation, may be too simplistic.

N Signal misinterpretation in the measurement model: the

modelling of the measurement process external to the

physiological model may be incomplete or flawed, leading,

for example, to incorrect translations of raw NIRS data into

concentrations or concentration changes.

With these broad principles in mind, we focus in on the most

marked and consistent discrepancy between model predictions and

data, which concerned the behaviour of TOS during hypoxia. The

origin of the discrepancy between model predicted TOS and

observed TOS remains unclear, and given the reproducibility of

the TOS signal is perhaps the most important discrepancy to

explain. Based only on the definition of TOS, it is possible to gain

some insight into why model-predictions for TOS drops during

hypoxia exceed the observed drops. Indeed, a simple interpreta-

tion of TOS as a weighted sum of arterial and venous saturations

allows calculation of the approximate changes in TOS which

might be observed during hypoxia. Define SvO2 to be mean

venous oxygen saturation, and

TOS~
AVR SaO2zSvO2

1zAVR
:

Assume initially SaO2~96% and SvO2~62% and AVR~1=3,

giving TOS~70:5%. Given an SaO2 change, by simple conser-

vation of O2, the ratio of initial to final CMRO2 is simply the ratio

of initial to final CBF multiplied by the ratio of initial to final

arterio-venous saturation difference. For example, assume that a

drop in SaO2 down to 80% occurs, which leads to a 5% drop in

CMRO2, a 10% increase in CBF (as seen approximately in the

vMCA data), and a 15% increase in AVR due to arterial dilation.

This results in SvO2 dropping to approximately 48% and TOS to

about 57%. This 13–14% predicted drop compares with a 7–8%

drop actually observed in the data. An explanation based on

physiology is possible, but requires one or more of:

1. CMRO2 drops to be greater than predicted;

2. CBF changes to be larger than reflected in the vMCA changes;

3. Arterio-venous volume ratio changes during hypoxia to be

considerably larger than predicted.

Each of these possibilities is hard to justify. Further, the damped

response of TOS is consistent with preliminary studies on the

simultaneous response of TOS and vMCA to changes in inspired

CO2 levels [39]. In this case, increased CO2 causes significant

increases in vMCA, and hence presumably in CBF, which are not

visible to the expected degree in the TOS signal.

Conclusions about Model, Physiology and
Pathophysiology

Several of the difficulties inherent in pursuing clinically-directed

modelling work have been previously described [40]. Of these, the

most pressing involves setting the boundaries of the model class,

that is choosing what physiology to include in the model and

defining ‘‘tolerances’’ for the values of model parameters. To this

end the range of behaviours associated with healthy physiology are

examined to ultimately inform on pathophysiology. In this study,

we have made progress in these directions, in particular towards

finding average values and ranges of variation of model

parameters consistent with measured data from healthy volun-

teers. Progress has also been made towards identifying and

explaining areas of discrepancy between model and data.

Model Parametrisation. In some cases the optimisations

suggest that model default values of certain parameters need to

be corrected. For example, the expected delay in the CBF

response to blood pressure changes is not observed in NIRS or

TCD data, suggesting short-timescale autoregulatory processes,

perhaps superimposed on the slower ones. The model optimi-

sations also indicate a lower default haematocrit. Measurements

taken from each of the subjects prior to the start of the study
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gave an average blood concentration of haemoglobin of

9:05(+0:6)mM which is in line with the model default of

9.1 mM. The average value post optimisation of 5.27 mM may

at least in part be attributed to the differences between venous

and cerebral haematocrit. Studies have consistently reported

cerebral haematocrit as lower than peripheral venous haemato-

crit [41,42] suggesting the need for a change in the model default

value. The exact relationship between venous and cerebral

haematocrit is not however, straightforward [42] and further

analysis is required to determine by what magnitude this

parameter should be reduced. Similarly, the optimisations suggest

somewhat stronger regulatory response to arterial O2 levels than

previous model default values. Of course, given the small number

of individuals in the study such suggestions about average values

need to be treated cautiously. Nevertheless, they provide

suggestions for improvements to model parametrisation.
Confidence in Model Parameter Values. The values

determined by optimisation provide some insight into the potential

variability to be expected in model parameters. For example, the

results on haematocrit tell us that variations of the order of +30%
around the default value (Table 6) are consistent with haemoglo-

bin-related NIRS data from this study. On the other hand

variability in the predictions for a single subject are +15%,

suggesting that some of the +30% variation can be attributed to

genuine inter-subject variability, as opposed to, say, measurement

noise. The same general conclusion is true for the other

parameters.
Information of Clinical Relevance. An important question

is what meanings can be ascribed to parameter values obtained for

an individual from the optimisation process. For example, even

though this study did not explicitly involve blood pressure

manipulations, it is instructive to ask what conclusions can be

drawn from this data about a subject’s ability to regulate CBF in

response to hypoxia and changes in blood pressure. The rows

relating to the quantities RO and RP in Table 6 provide an answer

to this question. The lower intra-individual variation compared to

the total group variation of RP is marked, suggesting in theory, we

can distinguish between subjects with a weak or strong CBF

response to pressure changes. The results of CBF regulation in

response to blood gas changes were less robust. The variation in

values for RO was considerably larger than that in values of RP.

This indicates that extracting reliable estimates of RO for an

individual is a harder task than extracting reliable values of RP.

This may also reflect the fact that each rapid fluctuation in blood

pressure provides data to estimate RP, whereas each challenge

involves essentially a single drop in SaO2, and thus the effective

volume of data from which RO is being estimated is much less. An

interesting question is whether inter-subject variability in these

quantities may have clinical significance, a question which can

only be answered in the context of applying the same method-

ologies to pathophysiological data.

Final Comments
The results suggest we can draw conclusions about the

methodology which go beyond the BrainSignals model. We have

shown that attempting to simultaneously interpret a number of

signals with the aid of a physiological model is a challenging task,

but with considerable potential reward, particularly in providing

clinically relevant information at the bedside to aid patient

management. Despite a variety of limitations and difficulties, we

can conclude that tackling a large problem (here, optimising seven

free parameters using data from five measured signals) is not

unfeasibly ambitious. At the very least, via this process, it is

possible to increase the predictive capabilities of a model for an

individual. Perhaps more importantly, the optimal parameter

values may themselves provide clinically useful information.

Regarded collectively, exploration of this kind can provide a

handle on the range of variability in model parameters consistent

with data from healthy volunteers, a crucial precondition for

further study in pathophysiological situations.

Several natural next steps exist, building on this work. One

question is whether applying the same methodologies to data

obtained from other challenges, for example during hypercapnia,

or during blood pressure manipulation, gives conclusions consis-

tent with those from this study. Another question is what we

discover if the same techniques are applied to pathophysiological

data.
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