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This article is a survey of methods for measuring agreement among corpus annotators. It exposes
the mathematics and underlying assumptions of agreement coefficients, covering Krippendorff’s
alpha as well as Scott’s pi and Cohen’s kappa; discusses the use of coefficients in several annota-
tion tasks; and argues that weighted, alpha-like coefficients, traditionally less used than kappa-
like measures in computational linguistics, may be more appropriate for many corpus annotation
tasks—but that their use makes the interpretation of the value of the coefficient even harder.

1. Introduction and Motivations

Since the mid 1990s, increasing effort has gone into putting semantics and discourse
research on the same empirical footing as other areas of computational linguistics (CL).
This soon led to worries about the subjectivity of the judgments required to create
annotated resources, much greater for semantics and pragmatics than for the aspects of
language interpretation of concern in the creation of early resources such as the Brown
corpus (Francis and Kucera 1982), the British National Corpus (Leech, Garside, and
Bryant 1994), or the Penn Treebank (Marcus, Marcinkiewicz, and Santorini 1993). Prob-
lems with early proposals for assessing coders’ agreement on discourse segmentation
tasks (such as Passonneau and Litman 1993) led Carletta (1996) to suggest the adoption
of the K coefficient of agreement, a variant of Cohen’s κ (Cohen 1960), as this had already
been used for similar purposes in content analysis for a long time.1 Carletta’s proposals
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were enormously influential, and K quickly became the de facto standard for measuring
agreement in computational linguistics not only in work on discourse (Carletta et al.
1997; Core and Allen 1997; Hearst 1997; Poesio and Vieira 1998; Di Eugenio 2000; Stolcke
et al. 2000; Carlson, Marcu, and Okurowski 2003) but also for other annotation tasks
(e.g., Véronis 1998; Bruce and Wiebe 1998; Stevenson and Gaizauskas 2000; Craggs and
McGee Wood 2004; Mieskes and Strube 2006). During this period, however, a number
of questions have also been raised about K and similar coefficients—some already in
Carletta’s own work (Carletta et al. 1997)—ranging from simple questions about the
way the coefficient is computed (e.g., whether it is really applicable when more than
two coders are used), to debates about which levels of agreement can be considered
‘acceptable’ (Di Eugenio 2000; Craggs and McGee Wood 2005), to the realization that K
is not appropriate for all types of agreement (Poesio and Vieira 1998; Marcu, Romera,
and Amorrortu 1999; Di Eugenio 2000; Stevenson and Gaizauskas 2000). Di Eugenio
raised the issue of the effect of skewed distributions on the value of K and pointed out
that the original κ developed by Cohen is based on very different assumptions about
coder bias from the K of Siegel and Castellan (1988), which is typically used in CL. This
issue of annotator bias was further debated in Di Eugenio and Glass (2004) and Craggs
andMcGeeWood (2005). Di Eugenio andGlass pointed out that the choice of calculating
chance agreement by using individual coder marginals (κ) or pooled distributions (K)
can lead to reliability values falling on different sides of the accepted 0.67 threshold,
and recommended reporting both values. Craggs and McGee Wood argued, following
Krippendorff (2004a,b), that measures like Cohen’s κ are inappropriate for measur-
ing agreement. Finally, Passonneau has been advocating the use of Krippendorff’s α
(Krippendorff 1980, 2004a) for coding tasks in CL which do not involve nominal and
disjoint categories, including anaphoric annotation, wordsense tagging, and summa-
rization (Passonneau 2004, 2006; Nenkova and Passonneau 2004; Passonneau, Habash,
and Rambow 2006).

Now that more than ten years have passed since Carletta’s original presentation
at the workshop on Empirical Methods in Discourse, it is time to reconsider the use
of coefficients of agreement in CL in a systematic way. In this article, a survey of
coefficients of agreement and their use in CL, we have threemain goals. First, we discuss
in some detail the mathematics and underlying assumptions of the coefficients used or
mentioned in the CL and content analysis literatures. Second, we also cover in some
detail Krippendorff’s α, often mentioned but never really discussed in detail in previous
CL literature other than in the papers by Passonneau just mentioned. Third, we review
the past ten years of experience with coefficients of agreement in CL, reconsidering the
issues that have been raised also from a mathematical perspective.2

2. Coefficients of Agreement

2.1 Agreement, Reliability, and Validity

We begin with a quick recap of the goals of agreement studies, inspired by Krippendorff
(2004a, Section 11.1). Researchers who wish to use hand-coded data—that is, data in
which items are labeled with categories, whether to support an empirical claim or to
develop and test a computational model—need to show that such data are reliable.

2 Only part of our material could fit in this article. An extended version of the survey is available from
http://cswww.essex.ac.uk/Research/nle/arrau/.

556



Artstein and Poesio Inter-Coder Agreement for CL

The fundamental assumption behind the methodologies discussed in this article is that
data are reliable if coders can be shown to agree on the categories assigned to units to
an extent determined by the purposes of the study (Krippendorff 2004a; Craggs and
McGeeWood 2005). If different coders produce consistently similar results, then we can
infer that they have internalized a similar understanding of the annotation guidelines,
and we can expect them to perform consistently under this understanding.

Reliability is thus a prerequisite for demonstrating the validity of the coding
scheme—that is, to show that the coding scheme captures the “truth” of the phenom-
enon being studied, in case this matters: If the annotators are not consistent then either
some of them are wrong or else the annotation scheme is inappropriate for the data.
(Just as in real life, the fact that witnesses to an event disagree with each other makes it
difficult for third parties to know what actually happened.) However, it is important to
keep in mind that achieving good agreement cannot ensure validity: Two observers of
the same event may well share the same prejudice while still being objectively wrong.

2.2 A Common Notation

It is useful to think of a reliability study as involving a set of items (markables), a
set of categories, and a set of coders (annotators) who assign to each item a unique
category label. The discussions of reliability in the literature often use different notations
to express these concepts. We introduce a uniform notation, which we hope will make
the relations between the different coefficients of agreement clearer.

• The set of items is { i | i ∈ I } and is of cardinality i.

• The set of categories is { k | k ∈ K } and is of cardinality k.

• The set of coders is { c | c ∈ C } and is of cardinality c.

Confusion also arises from the use of the letter P, which is used in the literature with at
least three distinct interpretations, namely “proportion,” “percent,” and “probability.”
We will use the following notation uniformly throughout the article.

• Ao is observed agreement and Do is observed disagreement.

• Ae and De are expected agreement and expected disagreement,
respectively. The relevant coefficient will be indicated with a superscript
when an ambiguity may arise (for example, Aπ

e is the expected agreement
used for calculating π, and Aκ

e is the expected agreement used for
calculating κ).

• P(·) is reserved for the probability of a variable, and P̂(·) is an estimate of
such probability from observed data.

Finally, we use n with a subscript to indicate the number of judgments of a given type:

• nik is the number of coders who assigned item i to category k;

• nck is the number of items assigned by coder c to category k;

• nk is the total number of items assigned by all coders to category k.
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2.3 Agreement Without Chance Correction

The simplest measure of agreement between two coders is percentage of agreement or
observed agreement, defined for example by Scott (1955, page 323) as “the percentage of
judgments on which the two analysts agree when coding the same data independently.”
This is the number of items on which the coders agree divided by the total number
of items. More precisely, and looking ahead to the following discussion, observed
agreement is the arithmetic mean of the agreement value agri for all items i ∈ I, defined
as follows:

agri =
{
1 if the two coders assign i to the same category
0 if the two coders assign i to different categories

Observed agreement over the values agri for all items i ∈ I is then:

Ao =
1
i ∑

i∈I

agri

For example, let us assume a very simple annotation scheme for dialogue acts in
information-seeking dialogues which makes a binary distinction between the categories
statement and info-request, as in the DAMSL dialogue act scheme (Allen and Core
1997). Two coders classify 100 utterances according to this scheme as shown in Table 1.
Percentage agreement for this data set is obtained by summing up the cells on the
diagonal and dividing by the total number of items: Ao = (20+ 50)/100 = 0.7.

Observed agreement enters in the computation of all the measures of agreement we
consider, but on its own it does not yield values that can be compared across studies,
because some agreement is due to chance, and the amount of chance agreement is
affected by two factors that vary from one study to the other. First of all, as Scott (1955,
page 322) points out, “[percentage agreement] is biased in favor of dimensions with a
small number of categories.” In other words, given two coding schemes for the same
phenomenon, the one with fewer categories will result in higher percentage agreement
just by chance. If two coders randomly classify utterances in a uniform manner using
the scheme of Table 1, we would expect an equal number of items to fall in each of the
four cells in the table, and therefore pure chance will cause the coders to agree on half of
the items (the two cells on the diagonal: 14 + 1

4 ). But suppose wewant to refine the simple
binary coding scheme by introducing a new category, check, as in the MapTask coding
scheme (Carletta et al. 1997). If two coders randomly classify utterances in a uniform
manner using the three categories in the second scheme, they would only agree on a
third of the items (19 + 1

9 + 1
9 ).

Table 1
A simple example of agreement on dialogue act tagging.

CODER A

STAT IREQ TOTAL

STAT 20 20 40
CODER B IREQ 10 50 60

TOTAL 30 70 100

558



Artstein and Poesio Inter-Coder Agreement for CL

The second reason percentage agreement cannot be trusted is that it does not
correct for the distribution of items among categories: We expect a higher percentage
agreement when one category is much more common than the other. This problem,
already raised by Hsu and Field (2003, page 207) among others, can be illustrated
using the following example (Di Eugenio and Glass 2004, example 3, pages 98–99).
Suppose 95% of utterances in a particular domain are statement, and only 5% are info-
request. We would then expect by chance that 0.95× 0.95 = 0.9025 of the utterances
would be classified as statement by both coders, and 0.05 × 0.05 = 0.0025 as info-
request, so the coders would agree on 90.5% of the utterances. Under such circum-
stances, a seemingly high observed agreement of 90% is actually worse than expected by
chance.

The conclusion reached in the literature is that in order to get figures that are compa-
rable across studies, observed agreement has to be adjusted for chance agreement. These
are the measures we will review in the remainder of this article. We will not look at the
variants of percentage agreement used in CL work on discourse before the introduction
of kappa, such as percentage agreement with an expert and percentage agreement with
the majority; see Carletta (1996) for discussion and criticism.3

2.4 Chance-Corrected Coefficients for Measuring Agreement between Two Coders

All of the coefficients of agreement discussed in this article correct for chance on the
basis of the same idea. First we find how much agreement is expected by chance: Let us
call this value Ae. The value 1−Ae will then measure how much agreement over and
above chance is attainable; the value Ao −Ae will tell us how much agreement beyond
chance was actually found. The ratio between Ao−Ae and 1−Ae will then tell us which
proportion of the possible agreement beyond chance was actually observed. This idea
is expressed by the following formula.

S,π, κ =
Ao −Ae

1−Ae

The three best-known coefficients, S (Bennett, Alpert, and Goldstein 1954), π (Scott
1955), and κ (Cohen 1960), and their generalizations, all use this formula; whereas
Krippendorff’s α is based on a related formula expressed in terms of disagreement
(see Section 2.6). All three coefficients therefore yield values of agreement between
−Ae/1−Ae (no observed agreement) and 1 (observed agreement = 1), with the value 0
signifying chance agreement (observed agreement = expected agreement). Note also
that whenever agreement is less than perfect (Ao < 1), chance-corrected agreement
will be strictly lower than observed agreement, because some amount of agreement
is always expected by chance.

Observed agreement Ao is easy to compute, and is the same for all three
coefficients—the proportion of items on which the two coders agree. But the notion
of chance agreement, or the probability that two coders will classify an arbitrary item
as belonging to the same category by chance, requires a model of what would happen
if coders’ behavior was only by chance. All three coefficients assume independence of
the two coders—that is, that the chance of c1 and c2 agreeing on any given category k

3 The extended version of the article also includes a discussion of why χ2 and correlation coefficients are
not appropriate for this task.
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Table 2
The value of different coefficients applied to the data from Table 1.

Coefficient Expected agreement Chance-corrected agreement

S 2× ( 12 )
2 = 0.5 (0.7− 0.5)/(1− 0.5) = 0.4

π 0.352 + 0.652 = 0.545 (0.7− 0.545)/(1− 0.545) ≈ 0.341
κ 0.3× 0.4+ 0.6× 0.7 = 0.54 (0.7− 0.54)/(1− 0.54) ≈ 0.348

Observed agreement for all the coefficients is 0.7.

is the product of the chance of each of them assigning an item to that category:
P(k|c1) · P(k|c2).4 Expected agreement is then the probability of c1 and c2 agreeing on
any category, that is, the sum of the product over all categories:

AS
e = Aπ

e = Aκ
e = ∑

k∈K

P(k|c1) · P(k|c2)

The difference between S, π, and κ lies in the assumptions leading to the calculation of
P(k|ci), the chance that coder ci will assign an arbitrary item to category k (Zwick 1988;
Hsu and Field 2003).

S: This coefficient is based on the assumption that if coders were operating
by chance alone, we would get a uniform distribution: That is, for any two
coders cm, cn and any two categories kj, kl , P(kj|cm) = P(kl |cn).

π: If coders were operating by chance alone, we would get the same
distribution for each coder: For any two coders cm, cn and any category k,
P(k|cm) = P(k|cn).

κ: If coders were operating by chance alone, we would get a separate
distribution for each coder.

Additionally, the lack of independent prior knowledge of the distribution of items
among categories means that the distribution of categories (for π) and the priors for the
individual coders (for κ) have to be estimated from the observed data. Table 2 demon-
strates the effect of the different chance models on the coefficient values. The remainder
of this section explains how the three coefficients are calculated when the reliability data
come from two coders; we will discuss a variety of proposed generalizations starting in
Section 2.5.

2.4.1 All Categories Are Equally Likely: S. The simplest way of discounting for chance
is the one adopted to compute the coefficient S (Bennett, Alpert, and Goldstein 1954),
also known in the literature as C, κn, G, and RE (see Zwick 1988; Hsu and Field 2003).
As noted previously, the computation of S is based on an interpretation of chance as
a random choice of category from a uniform distribution—that is, all categories are
equally likely. If coders classify the items into k categories, then the chance P(k|ci) of

4 The independence assumption has been the subject of much criticism, for example by John S. Uebersax.
http://ourworld.compuserve.com/homepages/jsuebersax/agree.htm.
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any coder assigning an item to category k under the uniformity assumption is 1
k ; hence

the total agreement expected by chance is

AS
e = ∑

k∈K

1
k
·
1
k

= k ·
(
1
k

)2

=
1
k

The calculation of the value of S for the figures in Table 1 is shown in Table 2.
The coefficient S is problematic in many respects. The value of the coefficient can

be artificially increased simply by adding spurious categories which the coders would
never use (Scott 1955, pages 322–323). In the case of CL, for example, S would reward
designing extremely fine-grained tagsets, provided that most tags are never actually
encountered in real data. Additional limitations are noted byHsu and Field (2003). It has
been argued that uniformity is the best model for a chance distribution of items among
categories if we have no independent prior knowledge of the distribution (Brennan and
Prediger 1981). However, a lack of prior knowledge does not mean that the distribution
cannot be estimated post hoc, and this is what the other coefficients do.

2.4.2 A Single Distribution: π. All of the other methods for discounting chance agreement
we discuss in this article attempt to overcome the limitations of S’s strong uniformity
assumption using an idea first proposed by Scott (1955): Use the actual behavior of the
coders to estimate the prior distribution of the categories. As noted earlier, Scott based
his characterization of π on the assumption that random assignment of categories to
items, by any coder, is governed by the distribution of items among categories in the
actual world. The best estimate of this distribution is P̂(k), the observed proportion of
items assigned to category k by both coders.

P(k|c1) = P(k|c2) = P̂(k)

P̂(k), the observed proportion of items assigned to category k by both coders, is the
total number of assignments to k by both coders nk, divided by the overall number of
assignments, which for the two-coder case is twice the number of items i:

P̂(k) =
nk

2i

Given the assumption that coders act independently, expected agreement is computed
as follows.

Aπ
e = ∑

k∈K

P̂(k) · P̂(k) = ∑
k∈K

(nk

2i

)2
=

1
4i2 ∑

k∈K

n2k

It is easy to show that for any set of coding data, Aπ
e ≥ AS

e and therefore π ≤ S, with
the limiting case (equality) obtaining when the observed distribution of items among
categories is uniform.

2.4.3 Individual Coder Distributions: κ. The method proposed by Cohen (1960) to calcu-
late expected agreement Ae in his κ coefficient assumes that random assignment of
categories to items is governed by prior distributions that are unique to each coder,
and which reflect individual annotator bias. An individual coder’s prior distribution is
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estimated by looking at her actual distribution: P(k|ci), the probability that coder ci will
classify an arbitrary item into category k, is estimated by using P̂(k|ci), the proportion
of items actually assigned by coder ci to category k; this is the number of assignments
to k by ci, ncik, divided by the number of items i.

P(k|ci) = P̂(k|ci) =
ncik

i

As in the case of S and π, the probability that the two coders c1 and c2 assign an item to
a particular category k ∈ K is the joint probability of each coder making this assignment
independently. For κ this joint probability is P̂(k|c1) · P̂(k|c2); expected agreement is then
the sum of this joint probability over all the categories k ∈ K.

Aκ
e = ∑

k∈K

P̂(k|c1) · P̂(k|c2) = ∑
k∈K

nc1k

i
·
nc2k

i
=

1
i2 ∑

k∈K

nc1knc2k

It is easy to show that for any set of coding data, Aπ
e ≥ Aκ

e and therefore π ≤ κ, with the
limiting case (equality) obtaining when the observed distributions of the two coders are
identical. The relationship between κ and S is not fixed.

2.5 More Than Two Coders

In corpus annotation practice, measuring reliability with only two coders is seldom
considered enough, except for small-scale studies. Sometimes researchers run reliability
studies with more than two coders, measure agreement separately for each pair of
coders, and report the average. However, a better practice is to use generalized versions
of the coefficients. A generalization of Scott’s π is proposed in Fleiss (1971), and a
generalization of Cohen’s κ is given in Davies and Fleiss (1982). We will call these
coefficients multi-π and multi-κ, respectively, dropping the multi-prefixes when no
confusion is expected to arise.5

2.5.1 Fleiss’s Multi-π. With more than two coders, the observed agreement Ao can no
longer be defined as the percentage of items on which there is agreement, because
inevitably there will be items on which some coders agree and others disagree. The
solution proposed in the literature is to measure pairwise agreement (Fleiss 1971):
Define the amount of agreement on a particular item as the proportion of agreeing
judgment pairs out of the total number of judgment pairs for that item.

Multiple coders also pose a problem for the visualization of the data. When the
number of coders c is greater than two, judgments cannot be shown in a contingency
table like Table 1, because each coder has to be represented in a separate dimension.

5 Due to historical accident, the terminology in the literature is confusing. Fleiss (1971) proposed a
coefficient of agreement for multiple coders and called it κ, even though it calculates expected agreement
based on the cumulative distribution of judgments by all coders and is thus better thought of as a
generalization of Scott’s π. This unfortunate choice of name was the cause of much confusion in
subsequent literature: Often, studies which claim to give a generalization of κ to more than two coders
actually report Fleiss’s coefficient (e.g., Bartko and Carpenter 1976; Siegel and Castellan 1988; Di Eugenio
and Glass 2004). Since Carletta (1996) introduced reliability to the CL community based on the definitions
of Siegel and Castellan (1988), the term “kappa” has been usually associated in this community with
Siegel and Castellan’s K, which is in effect Fleiss’s coefficient, that is, a generalization of Scott’s π.
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Fleiss (1971) therefore uses a different type of table which lists each item with the num-
ber of judgments it received for each category; Siegel and Castellan (1988) use a similar
table, which Di Eugenio and Glass (2004) call an agreement table. Table 3 is an example
of an agreement table, in which the same 100 utterances from Table 1 are labeled by
three coders instead of two. Di Eugenio and Glass (page 97) note that compared to
contingency tables like Table 1, agreement tables like Table 3 lose information because
they do not say which coder gave each judgment. This information is not used in the
calculation of π, but is necessary for determining the individual coders’ distributions in
the calculation of κ. (Agreement tables also add information compared to contingency
tables, namely, the identity of the items that make up each contingency class, but this
information is not used in the calculation of either κ or π.)

Let nik stand for the number of times an item i is classified in category k (i.e., the
number of coders that make such a judgment): For example, given the distribution in
Table 3, nUtt1Stat = 2 and nUtt1IReq = 1. Each category k contributes (nik

2 ) pairs of agreeing
judgments for item i; the amount of agreement agri for item i is the sum of (nik

2 ) over all
categories k ∈ K, divided by (c2), the total number of judgment pairs per item.

agri =
1

(c2)
∑
k∈K

(
nik

2

)
=

1
c(c− 1) ∑

k∈K

nik(nik − 1)

For example, given the results in Table 3, we find the agreement value for Utterance 1
as follows.

agr1 =
1

(32)

((
nUtt1Stat

2

)
+

(
nUtt1IReq

2

))
=

1
3

(1+ 0) ≈ 0.33

The overall observed agreement is the mean of agri for all items i ∈ I.

Ao =
1
i ∑

i∈I

agri =
1

ic(c− 1) ∑
i∈I

∑
k∈K

nik(nik − 1)

(Notice that this definition of observed agreement is equivalent to the mean of the
two-coder observed agreement values from Section 2.4 for all coder pairs.)

If observed agreement is measured on the basis of pairwise agreement (the pro-
portion of agreeing judgment pairs), it makes sense to measure expected agreement in
terms of pairwise comparisons as well, that is, as the probability that any pair of judg-
ments for an item would be in agreement—or, said otherwise, the probability that two

Table 3
Agreement table with three coders.

STAT IREQ

Utt1 2 1
Utt2 0 3
...

Utt100 1 2

TOTAL 90 (0.3) 210 (0.7)
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arbitrary coders would make the same judgment for a particular item by chance. This is
the approach taken by Fleiss (1971). Like Scott, Fleiss interprets “chance agreement” as
the agreement expected on the basis of a single distribution which reflects the combined
judgments of all coders, meaning that expected agreement is calculated using P̂(k), the
overall proportion of items assigned to category k, which is the total number of such
assignments by all coders nk divided by the overall number of assignments. The latter,
in turn, is the number of items imultiplied by the number of coders c.

P̂(k) =
1
ic
nk

As in the two-coder case, the probability that two arbitrary coders assign an item to a
particular category k ∈ K is assumed to be the joint probability of each coder making
this assignment independently, that is (P̂(k))2. The expected agreement is the sum of
this joint probability over all the categories k ∈ K.

Aπ
e = ∑

k∈K

(
P̂(k)

)2
= ∑

k∈K

(
1
ic
nk

)2

=
1

(ic)2 ∑
k∈K

n2k

Multi-π is the coefficient that Siegel and Castellan (1988) call K.

2.5.2 Multi-κ. It is fairly straightforward to adapt Fleiss’s proposal to generalize
Cohen’s κ proper to more than two coders, calculating expected agreement based on
individual coder marginals. A detailed proposal can be found in Davies and Fleiss
(1982), or in the extended version of this article.

2.6 Krippendorff’s α and Other Weighted Agreement Coefficients

A serious limitation of both π and κ is that all disagreements are treated equally. But
especially for semantic and pragmatic features, disagreements are not all alike. Even for
the relatively simple case of dialogue act tagging, a disagreement between an accept
and a reject interpretation of an utterance is clearly more serious than a disagreement
between an info-request and a check. For tasks such as anaphora resolution, where
reliability is determined by measuring agreement on sets (coreference chains), allowing
for degrees of disagreement becomes essential (see Section 4.4). Under such circum-
stances, π and κ are not very useful.

In this section we discuss two coefficients that make it possible to differentiate
between types of disagreements: α (Krippendorff 1980, 2004a), which is a coefficient
defined in a general way that is appropriate for use with multiple coders, different
magnitudes of disagreement, and missing values, and is based on assumptions similar
to those of π; and weighted kappa κw (Cohen 1968), a generalization of κ.

2.6.1 Krippendorff’s α. The coefficient α (Krippendorff 1980, 2004a) is an extremely ver-
satile agreement coefficient based on assumptions similar to π, namely, that expected
agreement is calculated by looking at the overall distribution of judgments without
regard to which coders produced these judgments. It applies to multiple coders, and
it allows for different magnitudes of disagreement. When all disagreements are con-
sidered equal it is nearly identical to multi-π, correcting for small sample sizes by
using an unbiased estimator for expected agreement. In this section we will present
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Krippendorff’s α and relate it to the other coefficients discussed in this article, but we
will start with α’s origins as a measure of variance, following a long tradition of using
variance to measure reliability (see citations in Rajaratnam 1960; Krippendorff 1970).

A sample’s variance s2 is defined as the sum of square differences from the mean
SS = ∑(x − x̄)2 divided by the degrees of freedom df . Variance is a useful way of
looking at agreement if coders assign numerical values to the items, as in magnitude
estimation tasks. Each item in a reliability study can be considered a separate level
in a single-factor analysis of variance: The smaller the variance around each level, the
higher the reliability. When agreement is perfect, the variance within the levels (s2within)
is zero; when agreement is at chance, the variance within the levels is equal to the
variance between the levels, in which case it is also equal to the overall variance of the
data: s2within = s2between = s2total. The ratios s2within/s2between (that is, 1/F) and s2within/s2total are
therefore 0 when agreement is perfect and 1 when agreement is at chance. Additionally,
the latter ratio is bounded at 2: SSwithin ≤ SStotal by definition, and df total < 2 df within
because each item has at least two judgments. Subtracting the ratio s2within/s2total from 1
yields a coefficient which ranges between−1 and 1, where 1 signifies perfect agreement
and 0 signifies chance agreement.

α = 1−
s2within

s2total

= 1−
SSwithin/df within

SStotal/df total

We can unpack the formula for α to bring it to a form which is similar to the other
coefficients we have looked at, and which will allow generalizing α beyond simple
numerical values. The first step is to get rid of the notion of arithmetic meanwhich lies at
the heart of the measure of variance. We observe that for any set of numbers x1, . . . , xN
with a mean x̄ = 1

N ∑N
n=1 xn, the sum of square differences from the mean SS can be

expressed as the sum of square of differences between all the (ordered) pairs of numbers,
scaled by a factor of 1/2N.

SS =
N

∑
n=1

(xn − x̄)2 =
1
2N

N

∑
n=1

N

∑
m=1

(xn − xm)2

For calculating α we considered each item to be a separate level in an analysis of
variance; the number of levels is thus the number of items i, and because each coder
marks each item, the number of observations for each item is the number of coders c.
Within-level variance is the sum of the square differences from the mean of each item,
SSwithin = ∑i ∑c(xic − x̄i)2, divided by the degrees of freedom df within = i(c − 1). We
can express this as the sum of the squares of the differences between all of the judgment
pairs for each item, summed over all items and scaled by the appropriate factor. We use
the notation xic for the value given by coder c to item i, and x̄i for the mean of all the
values given to item i.

s2within =
SSwithin

df within
=

1
i(c− 1) ∑

i∈I
∑
c∈C

(xic − x̄i)
2 =

1
2ic(c− 1) ∑

i∈I

c

∑
m=1

c

∑
n=1

(xicm − xicn)
2

The total variance is the sum of the square differences of all judgments from the grand
mean, SStotal = ∑i ∑c(xic − x̄)2, divided by the degrees of freedom df total = ic− 1. This
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can be expressed as the sum of the squares of the differences between all of the judg-
ments pairs without regard to items, again scaled by the appropriate factor. The notation
x̄ is the overall mean of all the judgments in the data.

s2total =
SStotal

df total
=

1
ic− 1 ∑

i∈I
∑
c∈C

(xic − x̄)2 =
1

2ic(ic− 1)

i

∑
j=1

c

∑
m=1

i

∑
l=1

c

∑
n=1

(xijcm − xil cn)
2

Now that we have removed references tomeans from our formulas, we can abstract over
the measure of variance. We define a distance function d which takes two numbers and
returns the square of their difference.

dab = (a − b)2

We also simplify the computation by counting all the identical value assignments
together. Each unique value used by the coders will be considered a category k ∈ K.
We use nik for the number of times item i is given the value k, that is, the number of
coders that make such a judgment. For every (ordered) pair of distinct values ka, kb ∈ K
there are nikanikb

pairs of judgments of item i, whereas for non-distinct values there
are nika(nika − 1) pairs. We use this notation to rewrite the formula for the within-level
variance. Dα

o, the observed disagreement for α, is defined as twice the variance within
the levels in order to get rid of the factor 2 in the denominator; we also simplify the
formula by using the multiplier nikanika for identical categories—this is allowed because
dkk = 0 for all k.

Dα
o = 2 s2within =

1
ic(c− 1) ∑

i∈I

k

∑
j=1

k

∑
l=1

nikj
nikl

dkjkl

We perform the same simplification for the total variance, where nk stands for the
total number of times the value k is assigned to any item by any coder. The expected
disagreement for α, Dα

e , is twice the total variance.

Dα
e = 2 s2total =

1
ic(ic− 1)

k

∑
j=1

k

∑
l=1

nkj
nkl

dkjkl

Because both expected and observed disagreement are twice the respective vari-
ances, the coefficient α retains the same form when expressed with the disagreement
values.

α = 1−
Do

De

Now that α has been expressed without explicit reference to means, differences, and
squares, it can be generalized to a variety of coding schemes in which the labels cannot
be interpreted as numerical values: All one has to do is to replace the square difference
function d with a different distance function. Krippendorff (1980, 2004a) offers distance
metrics suitable for nominal, interval, ordinal, and ratio scales. Of particular interest is
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the function for nominal categories, that is, a function which considers all distinct labels
equally distant from one another.

dab =
{
0 if a = b
1 if a �= b

It turns out that with this distance function, the observed disagreement Dα
o is exactly the

complement of the observed agreement of Fleiss’s multi-π, 1− Aπ
o , and the expected

disagreement Dα
e differs from 1 − Aπ

e by a factor of (ic − 1)/ic; the difference is due
to the fact that π uses a biased estimator of the expected agreement in the population
whereas α uses an unbiased estimator. The following equation shows that given the
correspondence between observed and expected agreement and disagreement, the co-
efficients themselves are nearly equivalent.

α = 1−
Dα
o

Dα
e
≈ 1−

1−Aπ
o

1−Aπ
e

=
1−Aπ

e − (1−Aπ
o )

1−Aπ
e

=
Aπ
o −Aπ

e

1−Aπ
e

= π

For nominal data, the coefficients π and α approach each other as either the number of
items or the number of coders approaches infinity.

Krippendorff’s α will work with any distance metric, provided that identical cat-
egories always have a distance of zero (dkk = 0 for all k). Another useful constraint is
symmetry (dab = dba for all a, b). This flexibility affords new possibilities for analysis,
which we will illustrate in Section 4. We should also note, however, that the flexibility
also creates new pitfalls, especially in cases where it is not clear what the natural dis-
tance metric is. For example, there are different ways to measure dissimilarity between
sets, and any of these measures can be justifiably used when the category labels are
sets of items (as in the annotation of anaphoric relations). The different distance metrics
yield different values of α for the same annotation data, making it difficult to interpret
the resulting values. We will return to this problem in Section 4.4.

2.6.2 Cohen’s κw. A weighted variant of Cohen’s κ is presented in Cohen (1968). The
implementation of weights is similar to that of Krippendorff’s α—each pair of cate-
gories ka, kb ∈ K is associated with a weight dkakb

, where a larger weight indicates more
disagreement (Cohen uses the notation v; he does not place any general constraints on
the weights—not even a requirement that a pair of identical categories have a weight of
zero, or that the weights be symmetric across the diagonal). The coefficient is defined
for two coders: The disagreement for a particular item i is the weight of the pair of
categories assigned to it by the two coders, and the overall observed disagreement is
the (normalized) mean disagreement of all the items. Let k(cn, i) denote the category
assigned by coder cn to item i; then the disagreement for item i is disagri = dk(c1,i)k(c2,i).
The observed disagreement Do is the mean of disagri for all items i, normalized to the
interval [0, 1] through division by the maximal weight dmax.

Dκw
o =

1
dmax

1
i ∑

i∈I

disagri =
1

dmax

1
i ∑

i∈I

dk(c1,i)k(c2,i)

If we take all disagreements to be of equal weight, that is dkaka = 0 for all categories ka
and dkakb

= 1 for all ka �= kb, then the observed disagreement is exactly the complement
of the observed agreement as calculated in Section 2.4: Dκw

o = 1−Aκ
o.
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Like κ, the coefficient κw interprets expected disagreement as the amount expected
by chance from a distinct probability distribution for each coder. These individual
distributions are estimated by P̂(k|c), the proportion of items assigned by coder c to
category k, that is the number of such assignments nck divided by the number of items i.

P̂(k|c) =
1
i
nck

The probability that coder c1 assigns an item to category ka and coder c2 assigns it to
category kb is the joint probability of each coder making this assignment independently,
namely, P̂(ka|c1)P̂(kb|c2). The expected disagreement is the mean of the weights for
all (ordered) category pairs, weighted by the probabilities of the category pairs and
normalized to the interval [0, 1] through division by the maximal weight.

Dκw
e =

1
dmax

k

∑
j=1

k

∑
l=1

P̂(kj|c1)P̂(kl |c2)dkjkl
=

1
dmax

1
i2

k

∑
j=1

k

∑
l=1

nc1kj
nc2kl

dkjkl

If we take all disagreements to be of equal weight then the expected disagreement is
exactly the complement of the expected agreement for κ as calculated in Section 2.4:
Dκw
e = 1−Aκ

e.
Finally, the coefficient κw itself is the ratio of observed disagreement to expected

disagreement, subtracted from 1 in order to yield a final value in terms of agreement.

κw = 1−
Do

De

2.7 An Integrated Example

We end this section with an example illustrating how all of the agreement coefficients
just discussed are computed. To facilitate comparisons, all computations will be based
on the annotation statistics in Table 4. This confusion matrix reports the results of an
experiment where two coders classify a set of utterances into three categories.

2.7.1 The Unweighted Coefficients. Observed agreement for all of the unweighted coeffi-
cients (S, κ, and π) is calculated by counting the items on which the coders agree (the

Table 4
An integrated coding example.

CODER A

STAT IREQ CHCK TOTAL

STAT 46 6 0 52
IREQ 0 32 0 32

CODER B CHCK 0 6 10 16

TOTAL 46 44 10 100
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figures on the diagonal of the confusion matrix in Table 4) and dividing by the total
number of items.

Ao =
46+ 32+ 10

100
= 0.88

The expected agreement values and the resulting values for the coefficients are shown in
Table 5. The values of π and κ are very similar, which is to be expected when agreement
is high, because this implies similar marginals. Notice that Aκ

e < Aπ
e , hence κ > π; this

reflects a general property of κ and π, already mentioned in Section 2.4, which will be
elaborated in Section 3.1.

2.7.2 Weighted Coefficients. Suppose we notice that whereas Statement and Info-
Request are clearly distinct classifications, Check is somewhere between the two. We
therefore opt to weigh the distances between the categories as follows (recall that
1 denotes maximal disagreement, and identical categories are in full agreement and
thus have a distance of 0).

Statement Info-Request Check
Statement 0 1 0.5
Info-Request 1 0 0.5
Check 0.5 0.5 0

The observed disagreement is calculated by summing up all the cells in the contingency
table, multiplying each cell by its respective weight, and dividing the total by the
number of items (in the following calculation we ignore cells with zero items).

Do =
46× 0+ 6× 1+ 32× 0+ 6× 0.5+ 10× 0

100
=

6+ 3
100

= 0.09

The only sources of disagreement in the coding example of Table 4 are the six utterances
marked as Info-Requests by coder A and Statements by coder B, which receive the
maximal weight of 1, and the six utterances marked as Info-Requests by coder A and
Checks by coder B, which are given a weight of 0.5.

The calculation of expected disagreement for the weighted coefficients is shown in
Table 6, and is the sum of the expected disagreement for each category pair multiplied

Table 5
Unweighted coefficients for the data from Table 4.

Expected agreement Chance-corrected agreement

S 3× ( 13 )
2 = 1

3 (0.88− 1
3 )/(1− 1

3 ) = 0.82

π 0.46+0.52
2 + 0.44+0.32

2 + 0.10+0.16
2 = 0.4014 (0.88− 0.4014)/(1− 0.4014) ≈ 0.7995

κ .46× .52+ .44× .32+ .1× .16 = 0.396 (0.88− 0.396)/(1− 0.396) ≈ 0.8013
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Table 6
Expected disagreement of the weighted coefficients for the data from Table 4.

Dα
e

(46+52)×(46+52)
2×100×(2×100−1) × 0+ (44+32)×(46+52)

2×100×(2×100−1) × 1 + (10+16)×(46+52)
2×100×(2×100−1) ×

1
2

+ (46+52)×(44+32)
2×100×(2×100−1) × 1 + (44+32)×(44+32)

2×100×(2×100−1) × 0 + (10+16)×(44+32)
2×100×(2×100−1) ×

1
2

+ (46+52)×(10+16)
2×100×(2×100−1) ×

1
2 + (44+32)×(10+16)

2×100×(2×100−1) ×
1
2 + (10+16)×(10+16)

2×100×(2×100−1) × 0

0.4879

Dκw
e

46×52
100×100 × 0+ 44×52

100×100 × 1 + 10×52
100×100 ×

1
2

+ 46×32
100×100 × 1 + 44×32

100×100 × 0 + 10×32
100×100 ×

1
2

+ 46×16
100×100 ×

1
2 + 44×16

100×100 ×
1
2 + 10×16

100×100 × 0

0.49

by its weight. The value of the weighted coefficients is given by the formula 1− Do
De
, so

α ≈ 1− 0.09
0.4879 ≈ 0.8156, and κw = 1− 0.09

0.49 ≈ 0.8163.

3. Bias and Prevalence

Two issues recently raised by Di Eugenio and Glass (2004) concern the behavior of
agreement coefficients when the annotation data are severely skewed. One issue, which
Di Eugenio and Glass call the bias problem, is that π and κ yield quite different
numerical values when the annotators’ marginal distributions are widely divergent;
the other issue, the prevalence problem, is the exceeding difficulty in getting high
agreement values when most of the items fall under one category. Looking at these two
problems in detail is useful for understanding the differences between the coefficients.

3.1 Annotator Bias

The difference between π and α on the one hand and κ on the other hand lies in the
interpretation of the notion of chance agreement, whether it is the amount expected
from the the actual distribution of items among categories (π) or from individual coder
priors (κ). As mentioned in Section 2.4, this difference has been the subject of much
debate (Fleiss 1975; Krippendorff 1978, 2004b; Byrt, Bishop, andCarlin 1993; Zwick 1988;
Hsu and Field 2003; Di Eugenio and Glass 2004; Craggs and McGee Wood 2005).

A claim often repeated in the literature is that single-distribution coefficients like
π and α assume that different coders produce similar distributions of items among
categories, with the implication that these coefficients are inapplicable when the anno-
tators show substantially different distributions. Recommendations vary: Zwick (1988)
suggests testing the individual coders’ distributions using the modified χ2 test of Stuart
(1955), and discarding the annotation as unreliable if significant systematic discrepan-
cies are observed. In contrast, Hsu and Field (2003, page 214) recommend reporting
the value of κ even when the coders produce different distributions, because it is “the
only [index] . . . that could legitimately be applied in the presence of marginal hetero-
geneity”; likewise, Di Eugenio andGlass (2004, page 96) recommend using κ in “the vast
majority . . . of discourse- and dialogue-tagging efforts” where the individual coders’
distributions tend to vary. All of these proposals are based on a misconception: that

570



Artstein and Poesio Inter-Coder Agreement for CL

single-distribution coefficients require similar distributions by the individual annota-
tors in order to work properly. This is not the case. The difference between the coeffi-
cients is only in the interpretation of “chance agreement”: π-style coefficients calculate
the chance of agreement among arbitrary coders, whereas κ-style coefficients calcu-
late the chance of agreement among the coders who produced the reliability data. There-
fore, the choice of coefficient should not depend on the magnitude of the divergence
between the coders, but rather on the desired interpretation of chance agreement.

Another common claim is that individual-distribution coefficients like κ “reward”
annotators for disagreeing on the marginal distributions. For example, Di Eugenio and
Glass (2004, page 99) say that κ suffers from what they call the bias problem, described
as “the paradox that κCo [our κ] increases as the coders become less similar.” Similar
reservations about the use of κ have been noted by Brennan and Prediger (1981) and
Zwick (1988). However, the bias problem is less paradoxical than it sounds. Although
it is true that for a fixed observed agreement, a higher difference in coder marginals
implies a lower expected agreement and therefore a higher κ value, the conclusion that
κ penalizes coders for having similar distributions is unwarranted. This is because Ao
and Ae are not independent: Both are drawn from the same set of observations. What
κ does is discount some of the disagreement resulting from different coder marginals by
incorporating it into Ae. Whether this is desirable depends on the application for which
the coefficient is used.

Themost common application of agreement measures in CL is to infer the reliability
of a large-scale annotation, where typically each piece of data will be marked by just
one coder, by measuring agreement on a small subset of the data which is annotated
by multiple coders. In order to make this generalization, the measure must reflect the
reliability of the annotation procedure, which is independent of the actual annotators
used. Reliability, or reproducibility of the coding, is reduced by all disagreements—both
random and systematic. The most appropriate measures of reliability for this purpose
are therefore single-distribution coefficients like π and α, which generalize over the
individual coders and exclude marginal disagreements from the expected agreement.
This argument has been presented recently in much detail by Krippendorff (2004b) and
reiterated by Craggs and McGee Wood (2005).

At the same time, individual-distribution coefficients like κ provide important in-
formation regarding the trustworthiness (validity) of the data on which the annotators
agree. As an intuitive example, think of a person who consults two analysts when
deciding whether to buy or sell certain stocks. If one analyst is an optimist and tends to
recommend buying whereas the other is a pessimist and tends to recommend selling,
they are likely to agree with each other less than two more neutral analysts, so overall
their recommendations are likely to be less reliable—less reproducible—than those that
come from a population of like-minded analysts. This reproducibility is measured by π.
But whenever the optimistic and pessimistic analysts agree on a recommendation for
a particular stock, whether it is “buy” or “sell,” the confidence that this is indeed the
right decision is higher than the same advice from two like-minded analysts. This is
why κ “rewards” biased annotators: it is not a matter of reproducibility (reliability) but
rather of trustworthiness (validity).

Having said this, we should point out that, first, in practice the difference between
π and κ doesn’t often amount to much (see discussion in Section 4). Moreover, the
difference becomes smaller as agreement increases, because all the points of agreement
contribute toward making the coder marginals similar (it took a lot of experimentation
to create data for Table 4 so that the values of π and κ would straddle the conventional
cutoff point of 0.80, and even so the difference is very small). Finally, one would expect
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the difference between π and κ to diminish as the number of coders grows; this is shown
subsequently.6

We define B, the overall annotator bias in a particular set of coding data, as the
difference between the expected agreement according to (multi)-π and the expected
agreement according to (multi)-κ. Annotator bias is a measure of variance: If we take c to
be a random variable with equal probabilities for all coders, then the annotator bias B
is the sum of the variances of P(k|c) for all categories k ∈ K, divided by the number of
coders c less one (see Artstein and Poesio [2005] for a proof).

B = Aπ
e −Aκ

e =
1

c− 1 ∑
k∈K

σ2
P̂(k|c)

Annotator bias can be used to express the difference between κ and π.

κ − π =
Ao − (Aπ

e − B)
1− (Aπ

e − B)
−
Ao −Aπ

e

1−Aπ
e

= B ·
(1−Ao)

(1−Aκ
e)(1−Aπ

e )

This allows us to make the following observations about the relationship between
π and κ.

Observation 1. The difference between κ and π grows as the annotator bias grows: For a
constant Ao and Aπ

e , a greater B implies a greater value for κ − π.

Observation 2. The greater the number of coders, the lower the annotator bias B, and hence
the lower the difference between κ and π, because the variance of P̂(k|c) does not increase in
proportion to the number of coders.

In other words, provided enough coders are used, it should not matter whether a
single-distribution or individual-distribution coefficient is used. This is not to imply that
multiple coders increase reliability: The variance of the individual coders’ distributions
can be just as large with many coders as with few coders, but its effect on the value
of κ decreases as the number of coders grows, and becomes more similar to random
noise.

The same holds for weighted measures too; see the extended version of this article
for definitions and proof. In an annotation study with 18 subjects, we compared α with
a variant which uses individual coder distributions to calculate expected agreement,
and found that the values never differed beyond the third decimal point (Poesio and
Artstein 2005).

We conclude with a summary of our views concerning the difference between π-
style and κ-style coefficients. First of all, keep in mind that empirically the difference
is small, and gets smaller as the number of annotators increases. Then instead of
reporting two coefficients, as suggested by Di Eugenio and Glass (2004), the appropriate
coefficient should be chosen based on the task (not on the observed differences between
coder marginals). When the coefficient is used to assess reliability, a single-distribution
coefficient like π or α should be used; this is indeed already the practice in CL, because
Siegel and Castellan’s K is identical with (multi-)π. It is also good practice to test

6 Craggs and McGee Wood (2005) also suggest increasing the number of coders in order to overcome
individual annotator bias, but do not provide a mathematical justification.
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reliability withmore than two coders, in order to reduce the likelihood of coders sharing
a deviant reading of the annotation guidelines.

3.2 Prevalence

We touched upon the matter of skewed data in Section 2.3 when we motivated the need
for chance correction: If a disproportionate amount of the data falls under one category,
then the expected agreement is very high, so in order to demonstrate high reliability
an even higher observed agreement is needed. This leads to the so-called paradox that
chance-corrected agreement may be low even though Ao is high (Cicchetti and Feinstein
1990; Feinstein and Cicchetti 1990; Di Eugenio and Glass 2004). Moreover, when the
data are highly skewed in favor of one category, the high agreement also corresponds
to high accuracy: If, say, 95% of the data fall under one category label, then random
coding would cause two coders to jointly assign this category label to 90.25% of the
items, and on average 95% of these labels would be correct, for an overall accuracy of at
least 85.7%. This leads to the surprising result that when data are highly skewed, coders
may agree on a high proportion of items while producing annotations that are indeed
correct to a high degree, yet the reliability coefficients remain low. (For an illustration,
see the discussion of agreement results on coding discourse segments in Section 4.3.1.)

This surprising result is, however, justified. Reliability implies the ability to dis-
tinguish between categories, but when one category is very common, high accuracy
and high agreement can also result from indiscriminate coding. The test for reliabil-
ity in such cases is the ability to agree on the rare categories (regardless of whether
these are the categories of interest). Indeed, chance-corrected coefficients are sensitive
to agreement on rare categories. This is easiest to see with a simple example of two
coders and two categories, one common and the other one rare; to further simplify the
calculation we also assume that the coder marginals are identical, so that π and κ yield
the same values. We can thus represent the judgments in a contingency table with just
two parameters: ε is half the proportion of items on which there is disagreement, and
δ is the proportion of agreement on the Rare category. Both of these proportions are
assumed to be small, so the bulk of the items (a proportion of 1− (δ + 2ε)) are labeled
with the Common category by both coders (Table 7). From this table we can calculate
Ao = 1− 2ε and Ae = 1− 2(δ + ε) + 2(δ + ε)2, as well as π and κ.

π, κ =
1− 2ε − (1− 2(δ + ε) + 2(δ + ε)2)
1− (1− 2(δ + ε) + 2(δ + ε)2)

=
δ

δ + ε
−

ε

1− (δ + ε)

When ε and δ are both small, the fraction after the minus sign is small as well, so π and κ
are approximately δ/(δ + ε): the value we get if we take all the items marked by one

Table 7
A simple example of agreement on dialogue act tagging.

CODER A

COMMON RARE TOTAL

COMMON 1− (δ + 2ε) ε 1− (δ + ε)

CODER B RARE ε δ δ + ε
TOTAL 1− (δ + ε) δ + ε 1
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particular coder asRare, and calculate what proportion of those itemswere labeledRare
by the other coder. This is a measure of the coders’ ability to agree on the rare category.

4. Using Agreement Measures for CL Annotation Tasks

In this section we review the use of intercoder agreement measures in CL since
Carletta’s original paper in light of the discussion in the previous sections. We begin
with a summary of Krippendorff’s recommendations about measuring reliability
(Krippendorff 2004a, Chapter 11), then discuss how coefficients of agreement have
been used in CL to measure the reliability of annotation schemes, focusing in particular
on the types of annotation where there has been some debate concerning the most
appropriate measures of agreement.

4.1 Methodology and Interpretation of the Results: General Issues

Krippendorff (2004a, Chapter 11) notes with regret the fact that reliability is discussed in
only around 69% of studies in content analysis. In CL as well, not all annotation projects
include a formal test of intercoder agreement. Some of the best known annotation
efforts, such as the creation of the Penn Treebank (Marcus, Marcinkiewicz, and Santorini
1993) and the British National Corpus (Leech, Garside, and Bryant 1994), do not report
reliability results as they predate the Carletta paper; but even among the more recent
efforts, many only report percentage agreement, as for the creation of the PropBank
(Palmer, Dang, and Fellbaum 2007) or the ongoing OntoNotes annotation (Hovy et al.
2006). Even more importantly, very few studies apply a methodology as rigorous as
that envisaged by Krippendorff and other content analysts. We therefore begin this
discussion of CL practice with a summary of the main recommendations found in
Chapter 11 of Krippendorff (2004a), even though, as we will see, we think that some
of these recommendations may not be appropriate for CL.

4.1.1 Generating Data to Measure Reproducibility. Krippendorff’s recommendations were
developed for the field of content analysis, where coding is used to draw conclusions
from the texts. A coded corpus is thus akin to the result of a scientific experiment, and
it can only be considered valid if it is reproducible—that is, if the same coded results
can be replicated in an independent coding exercise. Krippendorff therefore argues that
any study using observed agreement as a measure of reproducibility must satisfy the
following requirements:

• It must employ an exhaustively formulated, clear, and usable coding
scheme together with step-by-step instructions on how to use it.

• It must use clearly specified criteria concerning the choice of coders
(so that others may use such criteria to reproduce the data).

• It must ensure that the coders that generate the data used to measure
reproducibility work independently of each other.

Some practices that are common in CL do not satisfy these requirements. The first
requirement is violated by the practice of expanding the written coding instructions
and including new rules as the data are generated. The second requirement is often
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violated by using experts as coders, particularly long-term collaborators, as such coders
may agree not because they are carefully following written instructions, but because
they know the purpose of the research very well—which makes it virtually impossible
for others to reproduce the results on the basis of the same coding scheme (the prob-
lems arising when using experts were already discussed at length in Carletta [1996]).
Practices which violate the third requirement (independence) include asking coders to
discuss their judgments with each other and reach their decisions by majority vote, or
to consult with each other when problems not foreseen in the coding instructions arise.
Any of these practices make the resulting data unusable for measuring reproducibility.

Krippendorff’s own summary of his recommendations is that to obtain usable
data for measuring reproducibility a researcher must use data generated by three or
more coders, chosen according to some clearly specified criteria, and working indepen-
dently according to a written coding scheme and coding instructions fixed in advance.
Krippendorff also discusses the criteria to be used in the selection of the sample, from
the minimum number of units (obtained using a formula from Bloch and Kraemer
[1989], reported in Krippendorff [2004a, page 239]), to how to make the sample rep-
resentative of the data population (each category should occur in the sample often
enough to yield at least five chance agreements), to how to ensure the reliability of the
instructions (the sample should contain examples of all the values for the categories).
These recommendations are particularly relevant in light of the comments of Craggs
and McGee Wood (2005, page 290), which discourage researchers from testing their
coding instructions on data from more than one domain. Given that the reliability of
the coding instructions depends to a great extent on how complications are dealt with,
and that every domain displays different complications, the sample should contain
sufficient examples from all domains which have to be annotated according to the
instructions.

4.1.2 Establishing Significance. In hypothesis testing, it is common to test for the sig-
nificance of a result against a null hypothesis of chance behavior; for an agreement
coefficient this would mean rejecting the possibility that a positive value of agreement
is nevertheless due to random coding. We can rely on the statement by Siegel and
Castellan (1988, Section 9.8.2) that when sample sizes are large, the sampling distribu-
tion of K (Fleiss’s multi-π) is approximately normal and centered around zero—this
allows testing the obtained value of K against the null hypothesis of chance agreement
by using the z statistic. It is also easy to test Krippendorff’s α with the interval distance
metric against the null hypothesis of chance agreement, because the hypothesis α = 0 is
identical to the hypothesis F = 1 in an analysis of variance.

However, a null hypothesis of chance agreement is not very interesting, and demon-
strating that agreement is significantly better than chance is not enough to establish
reliability. This has already been pointed out by Cohen (1960, page 44): “to knowmerely
that κ is beyond chance is trivial since one usually expects much more than this in the
way of reliability in psychological measurement.” The same point has been repeated
and stressed in many subsequent works (e.g., Posner et al. 1990; Di Eugenio 2000;
Krippendorff 2004a): The reason for measuring reliability is not to test whether coders
perform better than chance, but to ensure that the coders do not deviate too much from
perfect agreement (Krippendorff 2004a, page 237).

The relevant notion of significance for agreement coefficients is therefore a confi-
dence interval. Cohen (1960, pages 43–44) implies that when sample sizes are large,
the sampling distribution of κ is approximately normal for any true population value
of κ, and therefore confidence intervals for the observed value of κ can be determined
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using the usual multiples of the standard error. Donner and Eliasziw (1987) propose
a more general form of significance test for arbitrary levels of agreement. In contrast,
Krippendorff (2004a, Section 11.4.2) states that the distribution of α is unknown, so
confidence intervals must be obtained by bootstrapping; a software package for doing
this is described in Hayes and Krippendorff (2007).

4.1.3 Interpreting the Value of Kappa-Like Coefficients. Even after testing significance and
establishing confidence intervals for agreement coefficients, we are still faced with the
problem of interpreting the meaning of the resulting values. Suppose, for example, we
establish that for a particular task, K = 0.78± 0.05. Is this good or bad? Unfortunately,
deciding what counts as an adequate level of agreement for a specific purpose is still
little more than a black art: As we will see, different levels of agreement may be
appropriate for resource building and for more linguistic purposes.

The problem is not unlike that of interpreting the values of correlation coefficients,
and in the area of medical diagnosis, the best known conventions concerning the value
of kappa-like coefficients, those proposed by Landis and Koch (1977) and reported in
Figure 1, are indeed similar to those used for correlation coefficients, where values
above 0.4 are also generally considered adequate (Marion 2004). Many medical re-
searchers feel that these conventions are appropriate, and in language studies, a similar
interpretation of the values has been proposed by Rietveld and van Hout (1993). In
CL, however, most researchers follow the more stringent conventions from content
analysis proposed by Krippendorff (1980, page 147), as reported by Carletta (1996,
page 252): “content analysis researchers generally think of K > .8 as good reliability,
with .67 < K < .8 allowing tentative conclusions to be drawn” (Krippendorff was dis-
cussing values of α rather than K, but the coefficients are nearly equivalent for cate-
gorical labels). As a result, ever since Carletta’s influential paper, CL researchers have
attempted to achieve a value of K (more seldom, of α) above the 0.8 threshold, or, failing
that, the 0.67 level allowing for “tentative conclusions.” However, the description of
the 0.67 boundary in Krippendorff (1980) was actually “highly tentative and cautious,”
and in later work Krippendorff clearly considers 0.8 the absolute minimum value of
α to accept for any serious purpose: “Even a cutoff point of α = .800 . . . is a pretty
low standard” (Krippendorff 2004a, page 242). Recent content analysis practice seems
to have settled for even more stringent requirements: A recent textbook, Neuendorf
(2002, page 3), analyzing several proposals concerning “acceptable” reliability, con-
cludes that “reliability coefficients of .90 or greater would be acceptable to all, .80
or greater would be acceptable in most situations, and below that, there exists great
disagreement.”

This is clearly a fundamental issue. Ideally we would want to establish thresholds
which are appropriate for the field of CL, but as we will see in the rest of this section, a
decade of practical experience hasn’t helped in settling the matter. In fact, weighted
coefficients, while arguably more appropriate for many annotation tasks, make the
issue of deciding when the value of a coefficient indicates sufficient agreement even

K = 0.0 0.2 0.4 0.6 0.8 1.0

Poor Slight Fair Moderate Substantial Perfect

Figure 1
Kappa values and strength of agreement according to Landis and Koch (1977).
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more complicated because of the problem of determining appropriate weights (see
Section 4.4). We will return to the issue of interpreting the value of the coefficients at
the end of this article.

4.1.4 Agreement and Machine Learning. In a recent article, Reidsma and Carletta (2008)
point out that the goals of annotation in CL differ from those of content analysis, where
agreement coefficients originate. A common use of an annotated corpus in CL is not
to confirm or reject a hypothesis, but to generalize the patterns using machine-learning
algorithms. Through a series of simulations, Reidsma and Carletta demonstrate that
agreement coefficients are poor predictors of machine-learning success: Even highly
reproducible annotations are difficult to generalize when the disagreements contain pat-
terns that can be learned, whereas highly noisy and unreliable data can be generalized
successfully when the disagreements do not contain learnable patterns. These results
show that agreement coefficients should not be used as indicators of the suitability of
annotated data for machine learning.

However, the purpose of reliability studies is not to find out whether annotations
can be generalized, but whether they capture some kind of observable reality. Even if
the pattern of disagreement allows generalization, we need evidence that this general-
ization would be meaningful. The decision whether a set of annotation guidelines are
appropriate or meaningful is ultimately a qualitative one, but a baseline requirement is
an acceptable level of agreement among the annotators, who serve as the instruments
of measurement. Reliability studies test the soundness of an annotation scheme and
guidelines, which is not to be equated with the machine-learnability of data produced
by such guidelines.

4.2 Labeling Units with a Common and Predefined Set of Categories: The Case
of Dialogue Act Tagging

The simplest and most common coding in CL involves labeling segments of text with
a limited number of linguistic categories: Examples include part-of-speech tagging,
dialogue act tagging, and named entity tagging. The practices used to test reliability
for this type of annotation tend to be based on the assumption that the categories used
in the annotation are mutually exclusive and equally distinct from one another; this
assumption seems to have worked out well in practice, but questions about it have been
raised even for the annotation of parts of speech (Babarczy, Carroll, and Sampson 2006),
let alone for discourse coding tasks such as dialogue act coding. We concentrate here on
this latter type of coding, but a discussion of issues raised for POS, named entity, and
prosodic coding can be found in the extended version of the article.

Dialogue act tagging is a type of linguistic annotation with which by now the CL
community has had extensive experience: Several dialogue-act-annotated spoken lan-
guage corpora now exist, such as MapTask (Carletta et al. 1997), Switchboard (Stolcke
et al. 2000), Verbmobil (Jekat et al. 1995), and Communicator (e.g., Doran et al. 2001),
among others. Historically, dialogue act annotation was also one of the types of annota-
tion that motivated the introduction in CL of chance-corrected coefficients of agreement
(Carletta et al. 1997) and, as we will see, it has been the type of annotation that has
generated the most discussion concerning annotation methodology and measuring
agreement.

A number of coding schemes for dialogue acts have achieved values of K over
0.8 and have therefore been assumed to be reliable: For example, K = 0.83 for the
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13-tagMapTask coding scheme (Carletta et al. 1997), K = 0.8 for the 42-tag Switchboard-
DAMSL scheme (Stolcke et al. 2000), K = 0.90 for the smaller 20-tag subset of the CSTAR
scheme used by Doran et al. (2001). All of these tests were based on the same two
assumptions: that every unit (utterance) is assigned to exactly one category (dialogue
act), and that these categories are distinct. Therefore, again, unweighted measures, and
in particular K, tend to be used for measuring inter-coder agreement.

However, these assumptions have been challenged based on the observation that
utterances tend to have more than one function at the dialogue act level (Traum and
Hinkelman 1992; Allen and Core 1997; Bunt 2000); for a useful survey, see Popescu-Belis
(2005). An assertion performed in answer to a question, for instance, typically performs
at least two functions at different levels: asserting some information—the dialogue act
that we called Statement in Section 2.3, operating at what Traum and Hinkelman called
the “core speech act” level—and confirming that the question has been understood, a di-
alogue act operating at the “grounding” level and usually known as Acknowledgment
(Ack). In older dialogue act tagsets, acknowledgments and statements were treated as
alternative labels at the same “level”, forcing coders to choose one or the other when an
utterance performed a dual function, according to a well-specified set of instructions. By
contrast, in the annotation schemes inspired from these newer theories such as DAMSL
(Allen and Core 1997), coders are allowed to assign tags along distinct “dimensions” or
“levels”.

Two annotation experiments testing this solution to the “multi-tag” problem with
the DAMSL scheme were reported in Core and Allen (1997) and Di Eugenio et al.
(1998). In both studies, coders were allowed to mark each communicative function
independently: That is, they were allowed to choose for each utterance one of the
Statement tags (or possibly none), one of the Influencing-Addressee-Future-Action
tags, and so forth—and agreement was evaluated separately for each dimension using
(unweighted) K. Core and Allen found values of K ranging from 0.76 for answer
to 0.42 for agreement to 0.15 for Committing-Speaker-Future-Action. Using differ-
ent coding instructions and on a different corpus, Di Eugenio et al. observed higher
agreement, ranging from K = 0.93 (for other-forward-function) to 0.54 (for the tag
agreement).

These relatively low levels of agreement led many researchers to return to “flat”
tagsets for dialogue acts, incorporating however in their schemes some of the in-
sights motivating the work on schemes such as DAMSL. The best known example
of this type of approach is the development of the SWITCHBOARD-DAMSL tagset
by Jurafsky, Shriberg, and Biasca (1997), which incorporates many ideas from the
“multi-dimensional” theories of dialogue acts, but does not allow marking an utterance
as both an acknowledgment and a statement; a choice has to be made. This tagset
results in overall agreement of K = 0.80. Interestingly, subsequent developments of
SWITCHBOARD-DAMSL backtracked on some of these decisions. For instance, the
ICSI-MRDA tagset developed for the annotation of the ICSI Meeting Recorder corpus
reintroduces some of the DAMSL ideas, in that annotators are allowed to assign multi-
ple SWITCHBOARD-DAMSL labels to utterances (Shriberg et al. 2004). Shriberg et al.
achieved a comparable reliability to that obtained with SWITCHBOARD-DAMSL, but
only when using a tagset of just five “class-maps”.

Shriberg et al. (2004) also introduced a hierarchical organization of tags to improve
reliability. The dimensions of the DAMSL scheme can be viewed as “superclasses” of
dialogue acts which share some aspect of their meaning. For instance, the dimension
of Influencing-Addressee-Future-Action (IAFA) includes the two dialogue acts
Open-option (used to mark suggestions) and Directive, both of which bring into
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consideration a future action to be performed by the addressee. At least in principle,
an organization of this type opens up the possibility for coders to mark an utterance
with the superclass (IAFA) in case they do not feel confident that the utterance satisfies
the additional requirements for Open-option or Directive. This, in turn, would do
away with the need to make a choice between these two options. This possibility
wasn’t pursued in the studies using the original DAMSL that we are aware of (Core
and Allen 1997; Di Eugenio 2000; Stent 2001), but was tested by Shriberg et al. (2004)
and subsequent work, in particular Geertzen and Bunt (2006), who were specifically
interested in the idea of using hierarchical schemes to measure partial agreement, and
in addition experimented with weighted coefficients of agreement for their hierarchical
tagging scheme, specifically κw.

Geertzen and Bunt tested intercoder agreement with Bunt’s DIT++ (Bunt 2005),
a scheme with 11 dimensions that builds on ideas from DAMSL and from Dynamic
Interpretation Theory (Bunt 2000). In DIT++, tags can be hierarchically related: For
example, the class information-seeking is viewed as consisting of two classes, yes-
no question (ynq) and wh-question (whq). The hierarchy is explicitly introduced in order
to allow coders to leave some aspects of the coding undecided. For example, check is
treated as a subclass of ynq in which, in addition, the speaker has a weak belief that the
proposition that forms the belief is true. A coder who is not certain about the dialogue
act performed using an utterance may simply choose to tag it as ynq.

The distance metric d proposed by Geertzen and Bunt is based on the crite-
rion that two communicative functions are related (d(c1, c2) < 1) if they stand in an
ancestor–offspring relation within a hierarchy. Furthermore, they argue, the magnitude
of d(c1, c2) should be proportional to the distance between the functions in the hierar-
chy. A level-dependent correction factor is also proposed so as to leave open the option
tomake disagreements at higher levels of the hierarchymatter more than disagreements
at the deeper level (for example, the distance between information-seeking and ynq
might be considered greater than the distance between check and positive-check).

The results of an agreement test with two annotators run by Geertzen and Bunt
show that taking into account partial agreement leads to values of κw that are higher
than the values of κ for the same categories, particularly for feedback, a class for which
Core andAllen (1997) got low agreement. Of course, even assuming that the values of κw
and κ were directly comparable—we remark on the difficulty of interpreting the values
of weighted coefficients of agreement in Section 4.4—it remains to be seenwhether these
higher values are a better indication of the extent of agreement between coders than the
values of unweighted κ.

This discussion of coding schemes for dialogue acts introduced issues to which
we will return for other CL annotation tasks as well. There are a number of well-
established schemes for large-scale dialogue act annotation based on the assumption
of mutual exclusivity between dialogue act tags, whose reliability is also well known; if
one of these schemes is appropriate for modeling the communicative intentions found
in a task, we recommend to our readers to use it. They should also realize, however,
that the mutual exclusivity assumption is somewhat dubious. If a multi-dimensional or
hierarchical tagset is used, readers should also be aware that weighted coefficients do
capture partial agreement, and need not automatically result in lower reliability or in
an explosion in the number of labels. However, a hierarchical scheme may not reflect
genuine annotation difficulties: For example, in the case of DIT++, one might argue that
it is more difficult to confuse yes-no questions with wh-questions than with statements.
We will also see in a moment that interpreting the results with weighted coefficients is
difficult. We will return to both of these problems in what follows.
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4.3 Marking Boundaries and Unitizing

Before labeling can take place, the units of annotation, or markables, need to be
identified—a process Krippendorff (1995, 2004a) calls unitizing. The practice in CL for
the forms of annotation discussed in the previous section is to assume that the units are
linguistic constituents which can be easily identified, such as words, utterances, or noun
phrases, and therefore there is no need to check the reliability of this process. We are
aware of few exceptions to this assumption, such as Carletta et al. (1997) on unitization
for move coding and our own work on the GNOME corpus (Poesio 2004b). In cases
such as text segmentation, however, the identification of units is as important as their
labeling, if not more important, and therefore checking agreement on unit identification
is essential. In this section we discuss current CL practice with reliability testing of these
types of annotation, before briefly summarizing Krippendorff’s proposals concerning
measuring reliability for unitizing.

4.3.1 Segmentation and Topic Marking. Discourse segments are portions of text that con-
stitute a unit either because they are about the same “topic” (Hearst 1997; Reynar
1998) or because they have to do with achieving the same intention (Grosz and Sidner
1986) or performing the same “dialogue game” (Carletta et al. 1997).7 The analysis
of discourse structure—and especially the identification of discourse segments—is the
type of annotation that, more than any other, led CL researchers to look for ways of
measuring reliability and agreement, as it made them aware of the extent of disagree-
ment on even quite simple judgments (Kowtko, Isard, and Doherty 1992; Passonneau
and Litman 1993; Carletta et al. 1997; Hearst 1997). Subsequent research identified a
number of issues with discourse structure annotation, above all the fact that segmen-
tation, though problematic, is still much easier than marking more complex aspects of
discourse structure, such as identifying the most important segments or the “rhetorical”
relations between segments of different granularity. As a result, many efforts to annotate
discourse structure concentrate only on segmentation.

The agreement results for segment coding tend to be on the lower end of the
scale proposed by Krippendorff and recommended by Carletta. Hearst (1997), for
instance, found K = 0.647 for the boundary/not boundary distinction; Reynar (1998),
measuring agreement between his own annotation and the TREC segmentation of
broadcast news, reports K = 0.764 for the same task; Ries (2002) reports even lower
agreement of K = 0.36. Teufel, Carletta, and Moens (1999), who studied agreement on
the identification of argumentative zones, found high reliability (K = 0.81) for their
three main zones (own, other, background), although lower for the whole scheme
(K = 0.71). For intention-based segmentation, Passonneau and Litman (1993) in the
pre-K days reported an overall percentage agreement with majority opinion of 89%, but
the agreement on boundaries was only 70%. For conversational games segmentation,
Carletta et al. (1997) reported “promising but not entirely reassuring agreement on
where games began (70%),” whereas the agreement on transaction boundaries was
K = 0.59. Exceptions are two segmentation efforts carried out as part of annotations
of rhetorical structure. Moser, Moore, and Glendening (1996) achieved an agreement

7 The notion of “topic” is notoriously difficult to define and many competing theoretical proposals exist
(Reinhart 1981; Vallduvı́ 1993). As it is often the case with annotation, fairly simple definitions tend to
be used in discourse annotation work: For example, in TDT topic is defined for annotation purposes
as “an event or activity, along with all directly related events and activities” (TDT-2 Annotation Guide,
http://projects.ldc.upenn.edu/TDT2/Guide/label-instr.html).
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of K = 0.9 for the highest level of segmentation of their RDA annotation (Poesio,
Patel, and Di Eugenio 2006). Carlson, Marcu, and Okurowski (2003) reported very
high agreement over the identification of the boundaries of discourse units, the build-
ing blocks of their annotation of rhetorical structure. (Agreement was measured sev-
eral times; initially, they obtained K = 0.87, and in the final analysis K = 0.97.) This,
however, was achieved by employing experienced annotators, and with considerable
training.

One important reason why most agreement results on segmentation are on the
lower end of the reliability scale is the fact, known to researchers in discourse analysis
from as early as Levin and Moore (1978), that although analysts generally agree on the
“bulk” of segments, they tend to disagree on their exact boundaries. This phenomenon
was also observed in more recent studies: See for example the discussion in Passonneau
and Litman (1997), the comparison of the annotations produced by seven coders of
the same text in Figure 5 of Hearst (1997, page 55), or the discussion by Carlson,
Marcu, and Okurowski (2003), who point out that the boundaries between elementary
discourse units tend to be “very blurry.” See also Pevzner and Hearst (2002) for similar
comments made in the context of topic segmentation algorithms, and Klavans, Popper,
and Passonneau (2003) for selecting definition phrases.

This “blurriness” of boundaries, combined with the prevalence effects discussed
in Section 3.2, also explains the fact that topic annotation efforts which were only
concerned with roughly dividing a text into segments (Passonneau and Litman 1993;
Carletta et al. 1997; Hearst 1997; Reynar 1998; Ries 2002) generally report lower agree-
ment than the studies whose goal is to identify smaller discourse units. When disagree-
ment is mostly concentrated in one class (‘boundary’ in this case), if the total number of
units to annotate remains the same, then expected agreement on this class is lower when
a greater proportion of the units to annotate belongs to this class. When in addition this
class is much less numerous than the other classes, overall agreement tends to depend
mostly on agreement on this class.

For instance, suppose we are testing the reliability of two different segmentation
schemes—into broad “discourse segments” and into finer “discourse units”—on a text
of 50 utterances, and that we obtain the results in Table 8. Case 1 would be a situation
in which Coder A and Coder B agree that the text consists of two segments, obviously
agree on its initial and final boundaries, but disagree by one position on the intermediate
boundary—say, one of them places it at utterance 25, the other at utterance 26. Never-
theless, because expected agreement is so high—the coders agree on the classification
of 98% of the utterances—the value of K is fairly low. In case 2, the coders disagree on
three times as many utterances, but K is higher than in the first case because expected
agreement is substantially lower (Ae = 0.53).

The fact that coders mostly agree on the “bulk” of discourse segments, but tend
to disagree on their boundaries, also makes it likely that an all-or-nothing coefficient
like K calculated on individual boundaries would underestimate the degree of agree-
ment, suggesting low agreement even among coders whose segmentations are mostly
similar. A weighted coefficient of agreement like α might produce values more in
keeping with intuition, but we are not aware of any attempts at measuring agreement
on segmentation using weighted coefficients. We see two main options. We suspect that
the methods proposed by Krippendorff (1995) for measuring agreement on unitizing
(see Section 4.3.2, subsequently) may be appropriate for the purpose of measuring
agreement on discourse segmentation. A second optionwould be tomeasure agreement
not on individual boundaries but on windows spanning several units, as done in the
methods proposed to evaluate the performance of topic detection algorithms such as
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Table 8
Fewer boundaries, higher expected agreement.

Case 1: Broad segments
Ao = 0.96,Ae = 0.89, K = 0.65

CODER A

BOUNDARY NO BOUNDARY TOTAL

BOUNDARY 2 1 3
CODER B NO BOUNDARY 1 46 47

TOTAL 3 47 50

Case 2: Fine discourse units
Ao = 0.88,Ae = 0.53, K = 0.75

CODER A

BOUNDARY NO BOUNDARY TOTAL

BOUNDARY 16 3 19
CODER B NO BOUNDARY 3 28 31

TOTAL 19 31 50

Pk (Beeferman, Berger, and Lafferty 1999) or WINDOWDIFF (Pevzner and Hearst 2002)
(which are, however, raw agreement scores not corrected for chance).

4.3.2 Unitizing (Or, Agreement on Markable Identification). It is often assumed in CL anno-
tation practice that the units of analysis are “natural” linguistic objects, and therefore
there is no need to check agreement on their identification. As a result, agreement is
usually measured on the labeling of units rather than on the process of identifying them
(unitizing, Krippendorff 1995). We have just seen, however, two coding tasks for which
the reliability of unit identification is a crucial part of the overall reliability, and the
problem of markable identification is more pervasive than is generally acknowledged.
For example, when the units to be labeled are syntactic constituents, it is common
practice to use a parser or chunker to identify themarkables and then to allow the coders
to correct the parser’s output. In such cases one would want to know how reliable the
coders’ corrections are. We thus need a general method of testing relibility on markable
identification.

The one proposal for measuring agreement onmarkable identification we are aware
of is the αU coefficient, a non-trivial variant of α proposed by Krippendorff (1995). A
full presentation of the proposal would require too much space, so we will just present
the core idea. Unitizing is conceived of as consisting of two separate steps: identifying
boundaries between units, and selecting the units of interest. If a unit identified by one
coder overlaps a unit identified by the other coder, the amount of disagreement is the
square of the lengths of the non-overlapping segments (see Figure 2); if a unit identified
by one coder does not overlap any unit of interest identified by the other coder, the
amount of disagreement is the square of the length of the whole unit. This distance
metric is used in calculating observed and expected disagreement, and αU itself. We
refer the reader to Krippendorff (1995) for details.

Krippendorff’s αU is not applicable to all CL tasks. For example, it assumes that
units may not overlap in a single coder’s output, yet in practice there are many
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Coder A

Coder B
s−✛ ✲ s✛ ✲ s+✛ ✲

Figure 2
The difference between overlapping units is d(A, B) = s2− + s2+ (adapted from Krippendorff
1995, Figure 4, page 61).

annotation schemes which require coders to label nested syntactic constituents. For
continuous segmentation tasks, αU may be inappropriate because when a segment
identified by one annotator overlaps with two segments identified by another annotator,
the distance is smallest when the one segment is centered over the two rather than
aligned with one of them. Nevertheless, we feel that when the non-overlap assumption
holds, and the units do not cover the text exhaustively, testing the reliabilty of unit
identification may prove beneficial. To our knowledge, this has never been tested in CL.

4.4 Anaphora

The annotation tasks discussed so far involve assigning a specific label to each category,
which allows the various agreement measures to be applied in a straightforward way.
Anaphoric annotation differs from the previous tasks because annotators do not assign
labels, but rather create links between anaphors and their antecedents. It is therefore
not clear what the “labels” should be for the purpose of calculating agreement. One
possibility would be to consider the intended referent (real-world object) as the label,
as in named entity tagging, but it wouldn’t make sense to predefine a set of “labels”
applicable to all texts, because different objects are mentioned in different texts. An
alternative is to use the marked antecedents as “labels”. However, we do not want to
count as a disagreement every time two coders agree on the discourse entity realized
by a particular noun phrase but just happen to mark different words as antecedents.
Consider the reference of the underlined pronoun it in the following dialogue excerpt
(TRAINS 1991 [Gross, Allen, and Traum 1993], dialogue d91-3.2).8

1.1 M: ....
1.4 first thing I’d like you to do
1.5 is send engine E2 off with a boxcar to Corning to

pick up oranges
1.6 as soon as possible
2.1 S: okay
3.1 M: and while it’s there it should pick up the tanker

Some of the coders in a study we carried out (Poesio and Artstein 2005) indicated the
noun phrase engine E2 as antecedent for the second it in utterance 3.1, whereas others
indicated the immediately preceding pronoun, which they had previously marked as
having engine E2 as antecedent. Clearly, we do not want to consider these coders to be in
disagreement. A solution to this dilemma has been proposed by Passonneau (2004): Use
the emerging coreference sets as the ‘labels’ for the purpose of calculating agreement.
This requires using weighted measures for calculating agreement on such sets, and

8 ftp://ftp.cs.rochester.edu/pub/papers/ai/92.tn1.trains 91 dialogues.txt.
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consequently it raises serious questions about weighted measures—in particular, about
the interpretability of the results, as we will see shortly.

4.4.1 Passonneau’s Proposal. Passonneau (2004) recommends measuring agreement on
anaphoric annotation by using sets of mentions of discourse entities as labels, that is,
the emerging anaphoric/coreference chains. This proposal is in line with the meth-
ods developed to evaluate anaphora resolution systems (Vilain et al. 1995). But using
anaphoric chains as labels would not make unweighted measures such as K a good
measure for agreement. Practical experience suggests that, except when a text is very
short, few annotators will catch all mentions of a discourse entity: Most will forget to
mark a few, with the result that the chains (that is, category labels) differ from coder
to coder and agreement as measured with K is always very low. What is needed is
a coefficient that also allows for partial disagreement between judgments, when two
annotators agree on part of the coreference chain but not on all of it.

Passonneau (2004) suggests solving the problem by using α with a distance metric
that allows for partial agreement among anaphoric chains. Passonneau proposes a dis-
tance metric based on the following rationale: Two sets are minimally distant when they
are identical andmaximally distant when they are disjoint; between these extremes, sets
that stand in a subset relation are closer (less distant) than ones that merely intersect.
This leads to the following distance metric between two sets A and B.

dP =




0 if A = B
1/3 if A ⊂ B or B ⊂ A
2/3 if A ∩ B �= ∅, but A �⊂ B and B �⊂ A
1 if A ∩ B = ∅

Alternative distance metrics take the size of the anaphoric chain into account, based
on measures used to compare sets in Information Retrieval, such as the coefficient of
community of Jaccard (1912) and the coincidence index of Dice (1945) (Manning and
Schütze 1999).

Jaccard: dJ = 1−
|A ∩ B|
|A ∪ B|

Dice: dD = 1−
2 |A ∩ B|
|A| + |B|

In later work, Passonneau (2006) offers a refined distance metric which she called MASI
(Measuring Agreement on Set-valued Items), obtained by multiplying Passonneau’s
original metric dP by the metric derived from Jaccard dJ .

dM = dP × dJ

4.4.2 Experience with α for Anaphoric Annotation. In the experiment mentioned previously
(Poesio and Artstein 2005) we used 18 coders to test α and K under a variety of condi-
tions.We found that even though our coders by and large agreed on the interpretation of
anaphoric expressions, virtually no coder ever identified all the mentions of a discourse
entity. As a result, even though the values of α and K obtained by using the ID of
the antecedent as label were pretty similar, the values obtained when using anaphoric
chains as labels were drastically different. The value of α increased, because examples
where coders linked a markable to different antecedents in the same chain were no
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longer considered as disagreements. However, the value of K was drastically reduced,
because hardly any coder identified all the mentions of discourse entities (Figure 3).

The study also looked at the matter of individual annotator bias, and as mentioned
in Section 3.1, we did not find differences between α and a κ-style version of α beyond
the third decimal point. This similarity is what one would expect, given the result about
annotator bias from Section 3.1 and given that in this experiment we used 18 annotators.
These very small differences should be contrasted with the differences resulting from
the choice of distance metrics, where values for the full-chain condition ranged from
α = 0.642 using Jaccard as distance metric, to α = 0.654 using Passonneau’s metric, to
the value for Dice reported in Figure 3, α = 0.691. These differences raise an important
issue concerning the application of α-like measures for CL tasks: Using α makes it diffi-
cult to compare the results of different annotation experiments, in that a “poor” value or
a “high” valuemight result from “too strict” or “too generous” distancemetrics, making
it even more important to develop a methodology to identify appropriate values for
these coefficients. This issue is further emphasized by the study reported next.

4.4.3 Discourse Deixis. A second annotation study we carried out (Artstein and Poesio
2006) shows even more clearly the possible side effects of using weighted coefficients.
This study was concerned with the annotation of the antecedents of references to
abstract objects, such as the example of the pronoun that in utterance 7.6 (TRAINS 1991,
dialogue d91-2.2).

7.3 : so we ship one
7.4 : boxcar
7.5 : of oranges to Elmira
7.6 : and that takes another 2 hours

Previous studies of discourse deixis annotation showed that these are extremely diffi-
cult judgments to make (Eckert and Strube 2000; Navarretta 2000; Byron 2002), except
perhaps for identifying the type of object (Poesio and Modjeska 2005), so we simplified
the task by only requiring our participants to identify the boundaries of the area of
text in which the antecedent was introduced. Even so, we found a great variety in
how these boundaries were marked: Exactly as in the case of discourse segmentation
discussed earlier, our participants broadly agreed on the area of text, but disagreed on

Chain K α

None 0.628 0.656
Partial 0.563 0.677
Full 0.480 0.691

0.4

0.5

0.6

0.7

α
α

α

K

K

K

no partial full
chain chain chain

Figure 3
A comparison of the values of α and K for anaphoric annotation (Poesio and Artstein 2005).
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its exact boundary. For instance, in this example, nine out of ten annotators marked the
antecedent of that as a text segment ending with the word Elmira, but some started with
the word so, some started with we, some with ship, and some with one.

We tested a number of ways tomeasure partial agreement on this task, and obtained
widely different results. First of all, we tested three set-based distance metrics inspired
by the Passonneau proposals that we just discussed: We considered discourse segments
to be sets of words, and computed the distance between them using Passonneau’s
metric, Jaccard, and Dice. Using these three metrics, we obtained α values of 0.55 (with
Passonneau’s metric), 0.45 (with Jaccard), and 0.55 (with Dice). We should note that
because antecedents of different expressions rarely overlapped, the expected disagree-
ment was close to 1 (maximal), so the value of α turned out to be very close to the com-
plement of the observed disagreement as calculated by the different distance metrics.

Next, we considered methods based on the position of words in the text. The first
method computed differences between absolute boundary positions: Each antecedent
was associated with the position of its first or last word in the dialogue, and agreement
was calculated using α with the interval distance metric. This gave us α values of
0.998 for the beginnings of the antecedent-evoking area and 0.999 for the ends. This is
because expected disagreement is exceptionally low: Coders tend to mark discourse an-
tecedents close to the referring expression, so the average distance between antecedents
of the same expression is smaller than the size of the dialogue by a few orders of
magnitude. The second method associated each antecedent with the position of its
first or last word relative to the beginning of the anaphoric expression. This time we found
extremely low values of α = 0.167 for beginnings of antecedents and 0.122 for ends—
barely in the positive side. This shows that agreement among coders is not dramatically
better than what would be expected if they just marked discourse antecedents at a fixed
distance from the referring expression.

The three ranges of α that we observed (middle, high, and low) show agreement on
the identity of discourse antecedents, their position in the dialogue, and their position
relative to referring expressions, respectively. The middle range shows variability of up
to 10 percentage points, depending on the distance metric chosen. The lesson is that
once we start using weighted measures we cannot anymore interpret the value of α
using traditional rules of thumb such as those proposed by Krippendorff or by Landis
and Koch. This is because depending on the way we measure agreement, we can report
α values ranging from 0.122 to 0.998 for the very same experiment! New interpretation
methods have to be developed, which will be task- and distance-metric specific. We’ll
return to this issue in the conclusions.

4.5 Word Senses

Word sense tagging is one of the hardest annotation tasks. Whereas in the case of part-
of-speech and dialogue act tagging the same categories are used to classify all units, in
the case of word sense tagging different categories must be used for each word, which
makes writing a single codingmanual specifying examples for all categories impossible:
The only option is to rely on a dictionary. Unfortunately, different dictionaries make
different distinctions, and often coders can’t make the fine-grained distinctions that
trained lexicographers can make. The problem is particularly serious for verbs, which
tend to be polysemous rather than homonymous (Palmer, Dang, and Fellbaum 2007).

These difficulties, and in particular the difficulty of tagging senses with a fine-
grained repertoire of senses such as that provided by dictionaries or by WordNet
(Fellbaum 1998), have been highlighted by the three SENSEVAL initiatives. Already
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during the first SENSEVAL, Véronis (1998) carried out two studies of intercoder
agreement on word sense tagging in the so-called ROMANSEVAL task. One study was
concerned with agreement on polysemy—that is, the extent to which coders agreed
that a word was polysemous in a given context. Six naive coders were asked to make
this judgment about 600 French words (200 nouns, 200 verbs, 200 adjectives) using the
repertoire of senses in the Petit Larousse. On this task, a (pairwise) percentage agreement
of 0.68 for nouns, 0.74 for verbs, and 0.78 for adjectives was observed, corresponding
to K values of 0.36, 0.37, and 0.67, respectively. The 20 words from each category
perceived by the coders in this first experiment to be most polysemous were then used
in a second study, of intercoder agreement on the sense tagging task, which involved
six different naive coders. Interestingly, the coders in this second experiment were
allowed to assign multiple tags to words, although they did not make much use of this
possibility; so κw was used to measure agreement. In this experiment, Véronis observed
(weighted) pairwise agreement of 0.63 for verbs, 0.71 for adjectives, and 0.73 for nouns,
corresponding to κw values of 0.41, 0.41, and 0.46, but with a wide variety of values
when measured per word—ranging from 0.007 for the adjective correct to 0.92 for the
noun détention. Similarly mediocre results for intercoder agreement between naive
coders were reported in the subsequent editions of SENSEVAL. Agreement studies
for SENSEVAL-2, where WordNet senses were used as tags, reported a percentage
agreement for verb senses of around 70%, whereas for SENSEVAL-3 (English Lexical
Sample Task), Mihalcea, Chklovski, and Kilgarriff (2004) report a percentage agreement
of 67.3% and average K of 0.58.

Two types of solutions have been proposed for the problem of low agreement on
sense tagging. The solution proposed by Kilgarriff (1999) is to use professional lexicog-
raphers and arbitration. The study carried out by Kilgarriff does not therefore qualify
as a true study of replicability in the sense of the terms used by Krippendorff, but it did
show that this approach makes it possible to achieve percentage agreement of around
95.5%. An alternative approach has been to address the problem of the inability of naive
coders to make fine-grained distinctions by introducing coarser-grained classification
schemes which group together dictionary senses (Bruce and Wiebe, 1998; Buitelaar
1998; Véronis 1998; Palmer, Dang, and Fellbaum 2007). Hierarchical tagsets were also
developed, such as HECTOR (Atkins 1992) or, indeed, WordNet itself (where senses are
related by hyponymy links). In the case of Buitelaar and Palmer, Dang, and Fellbaum,
the “supersenses” were identified by hand, whereas Bruce andWiebe and Véronis used
clustering methods such as those from Bruce and Wiebe (1999) to collapse some of the
initial sense distinctions.9 Palmer, Dang, and Fellbaum (2007) illustrate this practice
with the example of the verb call, which has 28 fine-grained senses in WordNet 1.7:
They conflate these senses into a small number of groups using various criteria—for
example, four senses can be grouped in a group they call Group 1 on the basis of
subcategorization frame similarities (Table 9).

Palmer, Dang, and Fellbaum (2007) achieved for the English Verb Lexical Sense task
of SENSEVAL-2 a percentage agreement among coders of 82% with grouped senses, as
opposed to 71% with the original WordNet senses. Bruce and Wiebe (1998) found that
collapsing the senses of their test word (interest) on the basis of their use by coders and
merging the two classes found to be harder to distinguish resulted in an increase of

9 The methodology proposed in Bruce and Wiebe (1999) is in our view the most advanced technique to
“make sense” of the results of agreement studies available in the literature. The extended version of this
article contains a fuller introduction to these methods.
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Table 9
Group 1 of senses of call in Palmer, Dang, and Fellbaum (2007, page 149).

SENSE DESCRIPTION EXAMPLE HYPERNYM

WN1 name, call “They nameda their son David” LABEL
WN3 call, give a quality “She called her children lazy LABEL

and ungrateful”
WN19 call, consider “I would not call her beautiful” SEE
WN22 address, call “Call me mister” ADDRESS

aThe verb named appears in the original WordNet example for the verb call.

the value of K from 0.874 to 0.898. Using a related technique, Véronis (1998) found that
agreement on noun word sense tagging went up from a K of around 0.45 to a K of 0.86.
We should note, however, that the post hoc merging of categories is not equivalent to
running a study with fewer categories to begin with.

Attempts were also made to develop techniques to measure partial agreement with
hierarchical tagsets. A first proposal in this direction was advanced by Melamed and
Resnik (2000), who developed a coefficient for hierarchical tagsets that could be used
in SENSEVAL for measuring agreement with tagsets such as HECTOR. Melamed and
Resnik proposed to “normalize” the computation of observed and expected agreement
by taking each label which is not a leaf in the tag hierarchy and distributing it down
to the leaves in a uniform way, and then only computing agreement on the leaves. For
example, with a tagset like the one in Table 9, the cases in which the coders used the
label ‘Group 1’ would be uniformly “distributed down” and added in equal measure
to the number of cases in which the coders assigned each of the four WordNet labels.
The method proposed in the paper has, however, problematic properties when used
to measure intercoder agreement. For example, suppose tag A dominates two sub-tags
A1 and A2, and that two coders mark a particular item as A. Intuitively, we would want
to consider this a case of perfect agreement, but this is not what the method proposed
by Melamed and Resnik yields. The annotators’ marks are distributed over the two
sub-tags, each with probability 0.5, and then the agreement is computed by summing
the joint probabilities over the two subtags (Equation (4) of Melamed and Resnik 2000),
with the result that the agreement over the item turns out to be 0.52 + 0.52 = 0.5 instead
of 1. To correct this, Dan Melamed (personal communication) suggested replacing the
product in Equation (4) with a minimum operator. However, the calculation of expected
agreement (Equation (5) of Melamed and Resnik 2000) still gives the amount of agree-
ment which is expected if coders are forced to choose among leaf nodes, which makes
this method inappropriate for coding schemes that do not force coders to do this.

One way to use Melamed and Resnik’s proposal while avoiding the discrepancy
between observed and expected agreement is to treat the proposal not as a new co-
efficient, but rather as a distance metric to be plugged into a weighted coefficient
like α. Let A and B be two nodes in a hierarchical tagset, let L be the set of all leaf
nodes in the tagset, and let P(l|T) be the probability of selecting a leaf node l given
an arbitrary node T when the probability mass of T is distributed uniformly to all the
nodes dominated by T. We can reinterpret Melamed’s modification of Equation (4) in
Melamed and Resnik (2000) as a metric measuring the distance between nodes A and B.

dM+R = 1− ∑
l∈L

min(P(l|A), P(l|B))
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This metric has the desirable properties—it is 0 when tags A and B are identical,
1 when the tags do not overlap, and somewhere in between in all other cases. If we
use this metric for Krippendorff’s α we find that observed agreement is exactly the
same as inMelamed and Resnik (2000) with the product operator replaced byminimum
(Melamed’s modification).

We can also use other distance metrics with α. For example, we could associate
with each sense an extended sense—a set es(s) including the sense itself and its
grouped sense—and then use set-based distance metrics from Section 4.4, for ex-
ample Passonneau’s dP. To illustrate how this approach could be used to measure
(dis)agreement on word sense annotation, suppose that two coders have to annotate the
use of call in the following sentence (from theWSJ part of the Penn Treebank, section 02,
text w0209):

This gene, called “gametocide,” is carried into the plant by a virus that
remains active for a few days.

The standard guidelines (in SENSEVAL, say) require coders to assign a WN sense to
words. Under such guidelines, if coder A classifies the use of called in the above example
as an instance of WN1, whereas coder B annotates it as an instance of WN3, we would
find total disagreement (dkakb

= 1) which seems excessively harsh as the two senses are
clearly related. However, by using the broader senses proposed by Palmer, Dang, and
Fellbaum (2007) in combination with a distance metric such as the one just proposed,
it is possible to get more flexible and, we believe, more realistic assessments of the
degree of agreement in situations such as this. For instance, in case the reliability study
had already been carried out under the standard SENSEVAL guidelines, the distance
metric proposed above could be used to identify post hoc cases of partial agreement
by adding to each WN sense its hypernyms according to the groupings proposed by
Palmer, Dang, and Fellbaum. For example, A’s annotation could be turned into a new
set label {WN1,LABEL} and B’s mark into the set table {WN3,LABEL}, which would
give a distance d = 2/3, indicating a degree of overlap. The method for computing
agreement proposed here could could also be used to allow coders to choose either a
more specific label or one of Palmer, Dang, and Fellbaum’s superlabels. For example,
suppose A sticks to WN1, but B decides to mark the use above using Palmer, Dang, and
Fellbaum’s LABEL category, then we would still find a distance d = 1/3.

An alternative way of using α for word sense annotation was developed and tested
by Passonneau, Habash, and Rambow (2006). Their approach is to allow coders to
assign multiple labels (WordNet synsets) for wordsenses, as done by Véronis (1998) and
more recently by Rosenberg and Binkowski (2004) for text classification labels and by
Poesio and Artstein (2005) for anaphora. These multi-label sets can then be compared
using the MASI distance metric for α (Passonneau 2006).

5. Conclusions

The purpose of this article has been to expose the reader to the mathematics of chance-
corrected coefficients of agreement as well as the current state of the art of using these
coefficients in CL. Our hope is that readers come to view agreement studies not as an
additional chore or hurdle for publication, but as a tool for analysis which offers new
insights into the annotation process. We conclude by summarizing what in our view are
the main recommendations emerging from ten years of experience with coefficients of
agreement. These can be grouped under three main headings: methodology, choice of
coefficients, and interpretation of coefficients.
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5.1 Methodology

Our first recommendation is that annotation efforts should perform and report rigorous
reliability testing. The last decade has already seen considerable improvement, from
the absence of any tests for the Penn Treebank (Marcus, Marcinkiewicz, and Santorini
1993) or the British National Corpus (Leech, Garside, and Bryant 1994) to the central
role played by reliability testing in the Penn Discourse Treebank (Miltsakaki et al. 2004)
and OntoNotes (Hovy et al. 2006). But even the latter efforts only measure and report
percent agreement. We believe that part of the reluctance to report chance-corrected
measures is the difficulty in interpreting them. However, our experience is that chance-
corrected coefficients of agreement do provide a better indication of the quality of the
resulting annotation than simple percent agreement, and moreover, the detailed calcu-
lations leading to the coefficients can be very revealing as to where the disagreements
are located and what their sources may be.

A rigorous methodology for reliability testing does not, in our opinion, exclude the
use of expert coders, and here we feel there may be a motivated difference between the
fields of content analysis and CL. There is a clear tradeoff between the complexity of
the judgments that coders are required to make and the reliability of such judgments,
and we should strive to devise annotation schemes that are not only reliable enough
to be replicated, but also sophisticated enough to be useful (cf. Krippendorff 2004a,
pages 213–214). In content analysis, conclusions are drawn directly from annotated
corpora, so the emphasis is more on replicability; whereas in CL, corpora constitute a
resource which is used by other processes, so the emphasis is more towards usefulness.
There is also a tradeoff between the sophistication of judgments and the availability of
coders who can make such judgments. Consequently, annotation by experts is often
the only practical way to get useful corpora for CL. Current practice achieves high
reliability either by using professionals (Kilgarriff 1999) or through intensive training
(Hovy et al. 2006; Carlson, Marcu, and Okurowski 2003); this means that results are not
replicable across sites, and are therefore less reliable than annotation by naive coders
adhering to written instructions. We feel that inter-annotator agreement studies should
still be carried out, as they serve as an assurance that the results are replicable when
the annotators are chosen from the same population as the original annotators. An
important additional assurance should be provided in the form of an independent
evaluation of the task for which the corpus is used (cf. Passonneau 2006).

5.2 Choosing a Coefficient

One of the goals of this article is to help authors make an informed choice regarding
the coefficients they use for measuring agreement. While coefficients other than K,
specifically Cohen’s κ and Krippendorff’s α, have appeared in the CL literature as early
as Carletta (1996) and Passonneau and Litman (1996), they hadn’t sprung into general
awareness until the publication of Di Eugenio and Glass (2004) and Passonneau (2004).
Regarding the question of annotator bias, there is an overwhelming consensus in CL
practice: K and α are used in the vast majority of the studies we reported. We agree with
the view that K and α are more appropriate, as they abstract away from the bias of spe-
cific coders. But we also believe that ultimately this issue of annotator bias is of little con-
sequence because the differences get smaller and smaller as the number of annotators
grows (Artstein and Poesio 2005). We believe that increasing the number of annotators
is the best strategy, because it reduces the chances of accidental personal biases.
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However, Krippendorff’s α is indispensable when the category labels are not
equally distinct from one another. We think there are at least two types of coding
schemes in which this is the case: (i) hierarchical tagsets and (ii) set-valued interpre-
tations such as those proposed for anaphora. At least in the second case, weighted
coefficients are almost unavoidable. We therefore recommend using α, noting however
that the specific choice of weights will affect the overall numerical result.

5.3 Interpreting the Values

We view the lack of consensus on how to interpret the values of agreement coefficients
as a serious problem with current practice in reliability testing, and as one of the
main reasons for the reluctance of many in CL to embark on reliability studies. Unlike
significance values which report a probability (that an observed effect is due to chance),
agreement coefficients report a magnitude, and it is less clear how to interpret such
magnitudes. Our own experience is consistent with that of Krippendorff: Both in our
earlier work (Poesio and Vieira 1998; Poesio 2004a) and in the more recent efforts
(Poesio and Artstein 2005) we found that only values above 0.8 ensured an annotation
of reasonable quality (Poesio 2004a). We therefore feel that if a threshold needs to be set,
0.8 is a good value.

That said, we doubt that a single cutoff point is appropriate for all purposes.
For some CL studies, particularly on discourse, useful corpora have been obtained
while attaining reliability only at the 0.7 level. We agree therefore with Craggs and
McGee Wood (2005) that setting a specific agreement threshold should not be a pre-
requisite for publication. Instead, as recommended by Di Eugenio and Glass (2004) and
others, researchers should report in detail on the methodology that was followed in
collecting the reliability data (number of coders, whether they coded independently,
whether they relied exclusively on an annotation manual), whether agreement was sta-
tistically significant, and provide a confusion matrix or agreement table so that readers
can find out whether overall figures of agreement hide disagreements on less common
categories. For an example of good practice in this respect, see Teufel and Moens (2002).
The decision whether a corpus is good enough for publication should be based on more
than the agreement score—specifically, an important consideration is an independent
evaluation of the results that are based on the corpus.
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