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Abstract
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in rational expectations equilibrium. This inefficiency implies lower asset prices as
uninformed traders require a premium to hold assets. This premium is increasing in the
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1 Introduction

Along with their role in rationing assets, market prices aggregate and convey information. In

traditional models where asset prices convey information in equilibrium, prices always react

to and reveal information.1 However, growing empirical research indicates that prices react

to news in differing ways depending on the state of the economy which may make information

transmission difficult.2 This is not surprising given that the information received by traders

and potentially transmitted through market prices can vary widely across sources, asset

classes, and time. This paper investigates the ability of market prices to transmit information

that is perceived to be ambiguous and shows that the reaction of market prices to news can

be very different than in traditional asset market models.

Unlike unambiguous information, market prices will not reveal a range of ambiguous

private information in REE. This leads to (i) lower asset prices due to an unrevealed infor-

mation premium which increases with fundamental risk and (ii) excess volatility and high

illiquidity as prices change discontinuously relative to fundamentals across informational ef-

ficiency regimes. Moreover, price volatility varies across informational efficiency regimes and

the arrival of public information can lead to excess volatility and high illiquidity by affecting

the informational efficiency of prices.3

These results stem from two facts. The first is that informed traders who receive am-

biguous private information about an asset will trade off their asset holdings unless they

are compensated by an ambiguity premium. Moreover, they will do so at the same price

for a range of information, a property we term portfolio inertia in information. Uninformed

traders who take positive positions in the asset will then require an unrevealed information

premium in addition to a market risk premium which compensates them for fundamental

risk and reduction in asset holders. The information premium is higher for riskier assets.

Information is not revealed in REE when the latter premia are lower in aggregate than the

ambiguity premium.

The second fact is that price changes discontinuously relative to fundamentals across in-

formational efficiency regimes. Informational inefficiency implies uninformed traders’ beliefs

are based on a set of possible information compared to exact information under informa-

1For instance, Grossman (1981), Radner (1979) inter alia.
2See Andersen, Bollerslev, Diebold, and Vega (2005), Faust, Rogers, Wang, and Wright (2007), and

others.
3Differing volatility across regimes is suggestive of time-varying volatility in dynamic models, see Ander-

sen, Bollerslev, and Diebold (2009) for an introduction to the extensive literature on time-varying volatility.
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tional efficiency and so beliefs will differ discontinuously across regimes. Since these beliefs

drive asset prices in equilibrium, the latter are discontinuous relative to fundamentals across

regimes. This discontinuity implies excess volatility and high illiquidity measured by price

impact across regimes. Moreover public information affects the range of unrevealed infor-

mation and can yield discontinuous price changes and anomalous price behavior such as a

price fall under good public news.

We extend the standard REE model where market prices aggregate and communicate

information (see Radner (1979) and Grossman (1976) among others). Informed traders re-

ceive ambiguous private information, i.e. they perceive a set of probability distributions

over the underlying fundamentals rather than a single distribution. These traders are ambi-

guity averse as per the Gilboa and Schmeidler (1989) multiple priors representation, which

captures the degree of confidence decision-makers have in probabilistic assessments based

on the quality of information, unlike the Savage (1954) decision-making model (Gilboa and

Marinacci (2012)).4 Uninformed traders can be ambiguity-neutral or averse.

The key portfolio inertia in information property is a consequence of the non-smooth mul-

tiple priors representation. It is distinct from the portfolio inertia in prices property identified

by Dow and da Costa Werlang (1992b), but related since both follow from non-smoothness

of the representation. Incorporating this non-smooth decision-making model has provided

a number of insights in studying financial markets (Epstein and Schneider 2010).5 Smooth

preference representations such as Klibanoff, Marinacci, and Mukerji (2005), Maccheroni,

Marinacci, and Rustichini (2006), and Hansen and Sargent (2007) do not yield inertia in

information and so will not generate the informational inefficiency we study here. Experi-

mental evidence in Ahn, Choi, Kariv, and Gale (2011), Asparouhova, Bossaerts, Eguia, and

Zame (2012), and Bossaerts, Ghirardato, Guarneschelli, and Zame (2010) provides persua-

sive support of non-smooth models of ambiguity aversion in financial markets.

Information non-revelation under ambiguity differs from informational inefficiency due

to noise-, endowment-, or taste-shock mechanisms which introduce additional exogenous

randomness in price to impede information revelation.6 Our analysis suggests that the

ambiguity-based and noise-based mechanisms provide differing, but complementary means

of studying financial markets. There is a growing literature studying informational efficiency

4See also Ellsberg (1961), Keynes (1921) and Knight (1921).
5Much of these are developed with representative agent or homogeneous information frameworks. Chap-

man and Polkovnichenko (2009) show that ignoring underlying heterogeneity can significantly change esti-
mates for the equity premium and risk free rate.

6See Dow and Gorton (2008) for a recent discussion of these
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and ambiguity averse traders including Tallon (1998), Caskey (2008), Ozsoylev and Werner

(2011), and Mele and Sangiorgi (2011) which use the noise trader mechanism for informa-

tional inefficiency and Easley, O’Hara, and Yang (2011) and Condie and Ganguli (2011a)

which don’t.7 The latter demonstrates that the informational inefficiency studied here has

the desirable property of being robust in the context of general financial market economies.

The paper proceeds as follows. We first develop the financial market model in section

2. Section 3 describes the conditions for and nature of non revelation of information. Sec-

tion 4 elaborates the pricing implications of partial revelation. Section 5 discusses and

extends the model, including comparison to noise-based partial revelation and incorporating

non-tradeable labor income, multiple ambiguous signals, and ambiguity averse uninformed

traders. Section 6 concludes.

2 A model of ambiguous private information

The model is populated by two types of investors, denoted by n ∈ {I, U}. I-investors

receive a private signal and are referred to as informed investors whereas U-investors are

uninformed. All investors live for 3 periods and trade assets in the market. Time is indexed

by t = 0, 1, 2. Investors observe information and trade at t = 1. All uncertainty is resolved

and consumption occurs at t = 2.

Two assets are traded in the market. The first asset is a risk-free bond whose payoff is

denoted Vf .
8 This asset is in perfectly elastic supply. The second asset, called the stock,

has an uncertain terminal value denoted by V . It is assumed to be in unit net supply. At

time 0, type n-investors are endowed in aggregate with a fraction xn0 > 0 of the uncertain

asset and 0 units of the bond. Trade occurs in period 1 with the resolution of uncertainty

occurring in period 2.

We assume that the log stock payoff lnV , denoted v henceforth, is normally distributed

with mean µ and variance σ2. In period 0, all investors have identical information about the

expected payoff of the uncertain asset. Both types of investors believe that v is normally

distributed with variance σ2. Both types are uncertain about the mean of v and their beliefs

over µ are given by a normal distribution that has mean µ0 and precision ρ0. However, the

two types of traders differ in their reciept and perception of information.

7de Castro, Pesce, and Yannelis (2010) introduce and prove existence, incentive compatibility, and Pareto
efficiency of a separate equilibrium concept they call ‘maximin rational expectations equilibrium’.

8It would perhaps be more appropriate to use the term ‘uncertainty-free’ to describe this asset in our
setting, but we stay with the usual terminology.
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At t = 1, I-investors receive a private signal

s = µ+ ε (1)

that conveys information about µ, where ε is a stochastic error term.9 The signal is inter-

preted differently by the informed I-investors and the uninformed U-investors, if the latter

observe it. This differential interpretation is related to the signal error term ε.

Both types of investor agree that the signal error ε is distributed normally with precision

ρε but have differing assessments of the mean µε of the error term. I-investors believe the

information may be biased but are unsure about the direction of this bias. I-investors’ lack of

confidence about the signal bias is modeled as ambiguity in the signal in the sense that they

know only that µε ∈ [−δ, δ] where δ > 0. The size of this interval captures the I-investors

degree of confidence in the information. We denote I-investors’ assessment of the mean by

µIε . In this structure I-investors use a set of likelihoods, indexed by µIε ∈ [−δ, δ], in updating

their beliefs, which we discuss in section 2.1.

I-investors may doubt the unbiasedness of a signal because of concerns about the signal

source, because the information is intangible in the sense of Daniel and Titman (2006),

or because the relationship between the signal and the stock is ambiguous, for example,

receiving ambiguous private information about a non-traded asset like labor income, whose

payoff is correlated with that of the stock (see section 5.2) among other possibilities. See

also the discussions in Epstein and Schneider (2008) and Illeditsch (2011).10

On the other hand, for simplicity, we assume U-investors believe the signal is unbiased,

i.e. their assessment of the mean µUε = 0.11 This structure implies that the informational

inefficiency derives from the ambiguity in information perceived by the ambiguity-averse

recipients and not the uninformed investors. That is, it is not the uninformed investors’

inability to interpret information which drives informational inefficiency. This model can be

extended easily to allow for other investors who receive private signals that are not perceived

to be ambiguous. However, such signals will be revealed in equilibrium and as such, the

results of the model would not change. We choose to interpret the priors of traders in this

model as having already incorporated all private signals that have been revealed.

9A similar signal structure without ambiguity appears in Peress (2009) relating to the analysis of Peress
(2004).

10These papers model ambiguity through an interval of signal variances.
11This assumption is relaxed in section 5.4 at the cost of some notational simplicity, but without much

additional insight into partial revelation.
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2.1 Decision making

Ambiguous information is processed and incorporated using an updating rule developed in

Epstein and Schneider (2007) and Epstein and Schneider (2008). This rule reduces to Bayes’

rule when the infomation is unambiguous.12

Investors’ prior over µ has mean µ0 and precision ρ0. Bayesian updating implies that

given µ0 and µε ∈ [−δ, δ], µ conditional on the signal s is normally distributed with mean

µ|s =
ρ0µ0 + ρε (s+ µε)

ρ0 + ρε
(3)

and precision ρ0 + ρε. Therefore, the set of updated beliefs of an I-investor about µ is the

set of normal distributions with precision ρ0 + ρε and means

[µI |s, µI |s] =

[
ρ0µ0 + ρε(s− δ)

ρ0 + ρε
,
ρ0µ0 + ρε(s+ δ)

ρ0 + ρε

]
. (4)

Investors’ von Neumann-Morgenstern utility u is in the constant relative risk aversion

(CRRA) class with common CRRA coefficient γ, i.e.

u(W2) =
W 1−γ

2

1− γ (5)

for γ 6= 1, where terminal wealth W2 = θnR+ (1− θn)Rf , R and Rf are the gross returns on

the stock and bond respectively and θn is the fraction of wealth invested in the stock. For

γ = 1, u(W2) = lnW2.13

Ambiguity averse investors make decisions using the Gilboa and Schmeidler (1989) rep-

resentation.14 Denoting by Mn the set of distributions representing investor n’s beliefs given

12Epstein and Schneider (2007) consider the set of possible Bayes updates that arise from a set of likelihoods
and a prior. If a decision maker has a prior and the set of likelihoods is {L(s|·)}L∈L for some index set L,
then the set of updated beliefs about event B is given by

{Pr(B|s)} =

{
Pr(B)L(s|B)∫
L(s|B)dB

∣∣∣∣L ∈ L} . (2)

Investors make decisions only once after receiving information, so issues of dynamic inconsistency do not
arise, but intertemporal decision making would be dynamically consistent with this updating rule and our
assumptions.

13For expositional purposes, we will generally use (5) for risk preferences of investors and explicitly indicate
when log utility is used.

14The ambiguity aversion of investors in this representation can be formalised using the analysis of Gajdos,
Hayashi, Tallon, and Vergnaud (2008).
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his information, the utility from portfolio θn is

Un(θn) = min
m∈Mn

Em[u(W2(θn))] = min
m∈Mn

Em

(
W2(θn)1−γ

1− γ

)
, (6)

This includes the case of Savage (1954) expected utility U-investors who do not perceive

any ambiguity and so MU is a single probability distribution.

Utility Un is everywhere differentiable except when the terminal wealth from portfolio

holdings is not uncertain, i.e. when the investor trades away his holdings of the stock and

holds only the risk-free asset. This non-differentiability is key for the partial revelation

equilibria.15

2.2 Market prices and rational expectations equilibria

Trade in the assets occurs in period 1. A price function P maps signal values s to prices,

i.e. P(s) = (P (s), Rf (s)), where P (·) denotes the stock price and R = V/P . Information is

revealed through prices when the function P is invertible. When this occurs for all signals,

U-investors correctly infer each signal by observing the market prices and the price function

P is said to be fully-revealing.

When the function is not invertible, the market prices will not reveal all information and

the function is said to be partially revealing. When prices are partially revealing, multiple

signal values may be consistent with the observed market prices (P,Rf ) and U-investors

know only that some signal from the set P−1(P,Rf ) was observed by I-investors.

Initial wealth for n-investors at price P isW n
0 = xn0P . Thus, the market clearing condition

for the stock is
θI

P
W I

0 +
θU

P
W u

0 = 1 (7)

The rational expectations equilibrium (REE) concept requires that individuals behave

optimally given the information that they have and that they make use of all available

information.

Definition 1. A rational expectations equilibrium is a set of portfolio weights {θI(s), θU(s)}
and a price function P, which specifies prices P (s) and Rf (s) for each signal s, such that

the following hold almost surely.

15Though we will not explore this here, other portfolio positions where utility is non-differentiable could
be used for studying the kind of partial revelation we present here.
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1. Each I-investor has information s and chooses a portfolio θI(s) that satisfies

θI(s) ∈ arg maxUI(θ|s) (8)

2. Each U-investor has information P−1(P (s), Rf (s)) and chooses a portfolio θU(s) that

satisfies

θU(s) ∈ arg maxUU(θ|P−1(P (s), Rf (s))) (9)

3. The market clearing condition (7) holds.

Given this definition, an REE is said to be fully revealing when the equilibrium price

function is fully revealing and it is said to be partially revealing otherwise. In the above

definition, we specify I-investors’ information as the private signal s since the price does not

convey any additional information to them.

2.3 Investor demand and inertia

We solve for investor demand by adapting the standard method for approximating asset re-

turns given the lognormality assumption on the payoff distribution (for example, see Camp-

bell and Viciera (2002)).16 Throughout, lowercase letters represent the natural log of model

variables. Since we can work with relative prices, we normalize Rf = 1, i.e. lnRf ≡ rf = 0

hereafter and work with the log stock price p ≡ lnP , in analysing REE. Investor demand is

given the following result.

Proposition 1. The optimal portfolio under beliefs [µn|s, µn|s] is given by

θn(p) =


1
γσ2

(
µn|s+ 1

2
σ2 − p

)
µn|s+ 1

2
σ2 > p

0 µn|s+ 1
2
σ2 ≤ p ≤ µn|s+ 1

2
σ2

1
γσ2

(
µn|s+ 1

2
σ2 − p

)
µn|s+ 1

2
σ2 < p

(10)

In the above expression, note that the case of µn|s + 1
2
σ2 ≤ p ≤ µn|s + 1

2
σ2 corresponds

to a situation where n-investors trade from their non-zero initial stock position to a zero

position in the stock. Thus, this demand is not a no-trade position.

16The approximation becomes exact as the discrete time interval shrinks to zero. Details are provided in
section A.1.
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I-investors require an ambiguity premium whenever they do not trade away their stock

holding to a zero position. This premium is in addition to the usual risk premium observed

in these models. I-investors require a reduction (respectively, an increase) of δρε/(ρ0 + ρε) in

the stock price when they are long (respectively, short) in the stock given their effective belief

µI |s (respectively, µI |s). Whenever the price does not incorporate this ambiguity premium,

they trade away their stock holding to a zero position.

I-investors’ demand also exhibits two interesting and complementary facts. The first is

that for any given signal value s, there exists a range of prices for which it is optimal for

I-investors to trade away their stock holdings to a zero position (θI = 0). This corresponds to

portfolio inertia in prices at the risk-free portfolio first noted by Dow and da Costa Werlang

(1992b).

The second fact is that for a given price p, I-investors will find it optimal to trade to a

zero position under distinct signals s, s′ when p+ 1
2
σ2 ∈ [µI |s, µI |s]∩ [µI |s′, µI |s′] That is, at

θI = 0, there is portfolio inertia with respect to information. We show below that this inertia

leads to the existence of partially revealing REE.17 Whether or not the price incorporates

the ambiguity premium of δρε/(ρ0 + ρε) plays an important role in informational inefficiency

since it determines whether the inertia position is optimal. Finally, note also that this inertia

does not appear in smooth models of preferences and so these models will not display the

partial revelation property we study here.

3 Equilibrium partial revelation

3.1 The necessity of inertia for partial revelation

Non-revelation of signals s and s′ requires that p(s) = p(s′) = p. If I-investors find it optimal

to not trade away their stock holdings then the equilibrium price will be monotone in the

signal and hence revealing, as the next proposition proves.

Proposition 2. If markets clear with θI(s) 6= 0 then signal s is revealed in any rational

expectations equilibrium price.

Thus, the existence of partial revelation requires that for a given price there is a range

of signals for which I-investors wish to trade to a zero position in the stock. Then the

17Condie and Ganguli (2011a) use this property in the context of general financial market exchange
economies to establish robust existence of partially revealing REE.
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market-clearing price p satisfies

p = µUPR +
1

2
σ2 − γσ2

xU0
. (11)

where µUPR denotes U-investors’ updated beliefs about the mean of µ given the available price

information. We refer to the term γσ2

xU0
as the market risk premium.

3.2 The price function and uninformed investor beliefs

The above requirements of optimality and market-clearing are related and complicated by the

fact that U-investors infer information from the prevailing price. This inference potentially

leads to changes in the beliefs of U-investors which leads to changes in the market prices.

Thus, the equilibrium prices and beliefs of U-investors must be solved for simultaneously.

The solution to this problem is a set of signals that are not revealed in REE and beliefs

for U-investors that are consistent with the knowledge that a signal in the set of unrevealed

signals has been received.

First, we characterise in terms of U-investor and I-investor beliefs, the range of signals

for which I-investors will trade away their stockholding to U-investors at a given price p.

Lemma 1. The range of signals for which markets clear with I-investors trading away their

stockholding when U-investor beliefs are µUPR is expressed implicitly as[
µUPR + δ +

ρ0

ρε
(µUPR − µ0)− ρ0 + ρε

ρε

γσ2

xU0
, µUPR − δ +

ρ0

ρε
(µUPR − µ0)− ρ0 + ρε

ρε

γσ2

xU0

]
(12)

Let a denote the lower bound of this interval and b denote the upper bound. Then when

the signal is not revealed, U-investors know only that the signal observed by I-investors lies

in the interval [a, b]. U-investor beliefs µUPR are constant over the interval [a, b] and denoted

µUPR|[a, b]. For signals s /∈ [a, b], (3) implies beliefs µUPR|s are monotone and linear in s .

The interval bounds a and b are determined endogenously by the implicit expression in

(12) since µUPR|[a, b] depends on the values of these bounds. The next result characterises

updated U-investor beliefs based on the knowledge that the signal lies in [a, b]. φ and Φ

denote the standard normal density and distribution functions respectively.

Lemma 2. U-investors’ updated belief µUPR|[a, b] about the mean log stock payoff conditional
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on knowing that the signal lies in an interval [a, b] is

µUPR|[a, b] = E [µ|a ≤ s ≤ b] = µ0 +
ρε

ρ0 + ρε
∆(a, b). (13)

where

∆(a, b) =
φ
(√

ρ0ρε
ρ0+ρε

(a− µ0)
)
− φ

(√
ρ0ρε
ρ0+ρε

(b− µ0)
)

Φ
(√

ρ0ρε
ρ0+ρε

(b− µ0)
)
− Φ

(√
ρ0ρε
ρ0+ρε

(a− µ0)
)√ ρ0ρε

ρ0 + ρε
(14)

The term
ρε

ρ0 + ρε
∆(a, b) (15)

represents the change in U-investor beliefs when they know only that I-investors received a

signal that is not revealed by price, i.e. s ∈ [a, b].18 The equilibrium price function must

be consistent with this inference by U-investors, which implies that any partially-revealing

price function pPR satisfies

pPR(s) =

µ0 + 1
2
σ2 + ρε

ρ0+ρε
∆(a, b)− γσ2

xU0
if s ∈ [a, b]

µ0 + 1
2
σ2 + ρε

ρ0+ρε
(s− µ0)− γσ2

xU0
if s < a or s > b

(16)

This function is non-linear in signals and exhibits discontinuities at signal values a and b

since U-traders’ updated beliefs, µUPR|[a, b], lie strictly between the updated belief based on

the signal value a, µUPR|a, and the updated belief based on the signal value b, µUPR|b.
Combining (13) and (12) shows that the existence of an interval [a, b] of unrevealed signals

and hence the existence of partially revealing REE follows from the existence of solutions a

and b to

µ0 + ∆(a, b) + δ − ρ0 + ρε
ρε

γσ2

xU0
= b (17)

µ0 + ∆(a, b)− δ − ρ0 + ρε
ρε

γσ2

xU0
= a (18)

Subtracting the left-hand sides of equations (17) and (18) implies that if the interval [a, b]

of unrevealed signals exists then it has length 2δ. Using this information and rearranging

18U-investors are infering all available information from the non-revelation of the signal.
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equation (17) reduces the problem to finding a solution to

ρε
ρ0 + ρε

(b− µ0 −∆(b− 2δ, b)) +

(
γσ2

xU0
− δρε
ρ0 + ρε

)
= 0 (19)

A solution to (19) always exists when the ambiguity premium required by I-investors

is at least as large as the market risk premium required by U-investors as we show next.

Generally, there is not an analytical solution for the interval bounds a and b, though they

can be found numerically.

Proposition 3. 1. An interval [a, b] of unrevealed signals exists if and only if the market

risk premium γσ2

xU0
is less than or equal to the ambiguity premium δρε

ρ0+ρε
.

2. The size of the set of unrevealed signals is 2δ.

3. The unique partially revealing price function takes the form given in equation (16) and

is discontinuous at a and b.

4. Trade volume is xI0 for all s.

4 Pricing implications of partial revelation

4.1 Premia and the informativeness of prices

The partially-revealing price function pPR in (16) can be decomposed into portions deter-

mined by ex-ante beliefs (µ0 + 1
2
σ2) and by two premia. The first premium is the market

risk premium γσ2

xU0
, henceforth market risk, and reflects the premium required by U-investors

in order for them to be willing to hold all of the stock. Market risk comprises compensation

for the fundamental risk γσ2 given investors’ risk aversion and the stock payoff volatility and

compensation 1
xU0

, for the reduction in stockholders that occurs when I-investors trade away

their asset holdings. If xU0 is small, U-investors are required to purchase a large fraction of

the total asset stock from I-investors when the latter wish to trade to a zero position. This is

an increasingly risky portfolio and U-investors require an increasing amount of compensation

to take on this additional risk. However, if xU0 is large, then U-investors own most of the

market and taking on the remainder of the assets does not greatly increase the compensation

required by U-investors.
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The second premium

− ρε
ρ0 + ρε

∆(a, b) (20)

is novel to this paper and arises only when private ambiguous information is not revealed

in market prices. We refer to it as the unrevealed information premium. ∆(a, b) is always

negative and paramaterizes the premium that U-traders require when they know that there

is information in the market that they haven’t observed. The relation between these two

premia is given in the next result.

Proposition 4. 1. If market risk is zero, b = µ0 + δ and the unrevealed information

premium is zero.

2. The unrevealed information premium is increasing in the market risk premium and is

positive whenever the market risk premium is positive.

3. If the signal is not revealed in equilibrium then the U-investors ascribe it to bad news,

i.e. the expected value of the signal is less than µ0.

When the market risk premium is zero, investors are risk-neutral for instance, then there

is no information available from the fact that the signal has not been revealed in equilibrium.

Since [µ0−δ, µ0 +δ] is centered around µ0, the symmetry of the normal distribution about its

mean implies that the updated beliefs of U-investors will be µ0, i.e. the beliefs of U-investors

don’t change upon learning that the signal has not been revealed in equilibrium.

The unrevealed information premium is increasing in the market risk premium. As

the market risk premium increases, the incentive to hold the risky asset increases ceteris

paribus. Therefore, when market risk is high and I-investors trade away their stockholding,

it is because the signal that they have received is relatively bad. Since market risk is usually

non-zero for traded assets this asymmetry implies that non-revealed information tends to be

interpreted as bad news on average. Thus, the unrevealed information premium will always

be positive.

Figure 1(b) illustrates these features of equilibrium. The set [a, b] of unrevealed signal

values moves to the left and the price in the partial-revelation region declines as market risk

increases due to the increase in the unrevealed information premium. When market risk

is zero or moderate, both moderately good news (s > µ0) and bad news (s < µ0) are not

revealed.

The first statement in Proposition 3 as well as statement 2 in Proposition 4 highlight the

role that the relative market share of those who receive the ambiguous signal plays in the
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revelation of information. From these two results follows the intuitive outcome that if the

market share of those who have received the private signal is large enough, the signal will

be revealed in equilibrium, regardless of its value. That is, if enough traders in the market

know the information, it will be revealed in equilibrium. As the market share of those who

are privately informed increases, so does the market risk premium. U-investors are required

to hold an increasingly large portion of the market and must be compensated to do so. As

this market risk premium increases, the incentives for I-investors to hold the risky asset and

hence reveal their signal increase.

Next we note that the informativeness of prices depends fundamentally on the amount

of ambiguity in the signal.

Proposition 5. The size of the set of signals that are obscured in equilibrium is strictly

increasing in the amount of ambiguity in the signal.

As ambiguity (measured by δ), increases so does the set of signals that don’t get revealed

in equilibrium. Market environments that are characterized by large amounts of ambiguous

information will also tend to have prices that are less informative. Furthermore, in this

model the market mechanism does not impose any additional ambiguity. Thus, the size

of the unrevealed region of prices corresponds exactly to the amount of ambiguity that

I-investors perceive in the signal.

4.2 Price volatility and jumps

The comparitive statics of this model indicate that the revelation and non-revelation of

privately observed signals have implications for the volatility of equilibrium stock prices. The

first implication is that the discontinuous nature of the price function is suggestive of crashes,

jumps, and excess price volatility. Market prices display excess volatility in the neighborhood

of the points of discontinuity of the price function as moving between information regimes

with small changes in the signal leads to a disproportionately large change in prices. For

example, consider an economy for which information is not revealed, but for which the signal

is close to a in figure 1(a). In this case, if the news that arrives becomes just slightly worse,

then it is revealed through a large, discontinuous fall in prices. This is true for all unrevealed

signals that are worse news than the average of the unrevealed signals. On the other hand,

this price swing will be positive if the revealed signal is better than the average unrevealed

signal, and hence is above b. Similarly, a change from revelation to non revelation of signals

is accompanied by a discontinuous move in price as U-investors’ information changes from
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an exact signal value to a set of possible signal values. Figure 2 depicts this excess volatility

for signals close to b.

The second implication centers around the price’s sensitivity to received signals within

the two revelation regimes. Movements in price are the mechanism by which prices convey

information. Since price does not respond to changes in the signal for unrevealed signals

(s ∈ [a, b]), price volatility is lower when information is not revealed. Since price is sensitive

to changes in the signal, volatility is higher for revealed signals (s < a or s > b). This result

suggests caution in the face of financial market policy options that might unduly limit market

volatility, whether this is the goal of the policy or not. Periods of higher price volatility are

not necessarily bad if prices are successfully incorporating new information and transmitting

that information to market participants. Likewise, for these same reasons, periods of lower

market volatility are not necessarily desirable.

We can summarize the above analysis as follows.

Proposition 6. 1. Transitions into and out of signal revelation are marked by excess

price volatility.

2. Price volatility conditional on revelation of information is strictly positive and is zero

conditional on non-revelation of signals.

Taken together, these two results on price volatility with ambiguous information imply

that the transition out of periods of low market volatility can be hectic. If the market changes

in such a way that information is revealed, this happens concurrently with a large price swing,

followed by a period of relatively high market volatility. Thus, when information becomes

revealed in market prices an initial increase in market volatility is likely to be followed by

higher expected volatility in the future. On the other hand, when moving into periods of

non-revelation, the initial excess volatility is followed by a period of relative tranquility in

asset prices.

These mechanisms and results are different from those in other papers. Illeditsch (2011)

shows that if traders are risk-averse, there is a discontinuity in price when a public signal

confirms the prior mean, implying excess volatility and volatility variation, while we estab-

lish excess volatility and variation even with risk-neutrality. Dow and da Costa Werlang

(1992a) has an example of excess volatility due to a violation of the standard Bayesian vari-

ance decomposition formula under ambiguity, which is not required here. Mandler (2012)

shows excess volatility relative to a stochastic technology parameter in a sequential produc-

15



tion economy and Mele and Sangiorgi (2011) find price swings under ambiguity with costly

information and noise-based partial revelation.

4.3 Price impact and liquidity

Revelation and non-revelation of information also have implications for the price impact of

trade under asymmetric information. The price impact of trade can be used as a measure of

market illiquidity in the presence of adverse selection due to differentially informed investors,

see for example Brennan and Subrahmanyam (1996) and Vayanos and Wang (2012)).19

Investors are price takers in this model, so price impact measures directly the effect of

asymmetric information and does not include any effect of strategic behavior by investors.

It is closely related to Kyle’s lambda if investors are price takers in Kyle (1985) and there

are no noise traders.20

Under partial revelation, trade volume is xI0 > 0 for all signal values since I-investors

sell their stockholding to U-investors when the ambiguity premium exceeds market risk.

Comparing the partial revelation price for distinct signals s and s′ provides a measure of the

price impact purely due to asymmetric information. This price impact differs depending on

whether signals are revealed or not. For distinct signals s, s′ ∈ [a, b], neither of which are

revealed in equilibrium, price impact is zero since the same price pPR(s) = pPR(s′) prevails

under both signals. Thus, the lack of informational efficiency in price coincides with a very

liquid market.

For revealed signals s /∈ [a, b] or s′ /∈ [a, b], the price impact is non-zero since the price

pPR(·) changes with the signal value. If s, s′ /∈ [a, b] then price impact is positive, but market

illiquidity is relatively low in the sense that the price changes |pPR(s)−pPR(s′)|, as a function

of information changes |s − s′|, are continuous. However, if one signal is revealed and the

other is not, then the price impact is discontinuously large relative to the change |s − s′|,
as U-investors now require the unrevealed information premium for the same trade xI0. So,

a change in the informational efficiency of price coincides with a jump in illiquidity and

discrete fall in price if for instance the information changes from s ∈ [a, b] to s′ < a or from

s > b to s′ ∈ [a, b].

Let λ(s, s′) ≡ |pPR(s)− pPR(s′)| denote the price impact of trade by I-investors due to a

19The notion of illiquidity due to adverse selection can be traced back at least to Bagehot (1971). The
papers above discuss liquidity under noise-based partial revelation.

20Pasquariello (2012) develops a noise-based Kyle (1985) model where price-taking speculators have
prospect theory preferences.
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change in the private signal from s to s′. Then,

λ(s, s′) =


0 if s ∈ [a, b] and s′ ∈ [a, b]

ρε
ρ0+ρε

|s− s′| if s /∈ [a, b] and s′ /∈ [a, b]

ρε
ρ0+ρε

|µ0 + ∆(a, b)− s′| if s ∈ [a, b] and s′ /∈ [a, b].

(21)

This discussion can be summarized as follows.

Proposition 7. The price impact of trade due to a change in information is (i) 0 if neither

signal is revealed, (ii) positive if either of the signals is revealed, and (iii) discontinuously

large if one signal is not revealed while the other is revealed. Discontinuous changes in price

impact can coincide with discontinuous falls in price.

Figure 3 depicts the price impact λ(s, s′) for the case where s ∈ [a, b] and the case that

s /∈ [a, b] as a function of s′. There are discontinuities at s′ = a and s′ = b as indicated by

the discussion above. The price impact is positive, except for s, s′ ∈ [a, b] and for s′ = s, and

continuous otherwise. Pasquariello (2012) documents empirical evidence for variation in price

impact and liquidity measures of stocks, while Vayanos and Wang (2012) also document the

evidence on the positive relation between illiquidity and returns and on large cross-sectional

variation in the Kyle (1985) lambda measure.

The above discussion suggests that liquid markets may be performing poorly in aggregat-

ing and communicating information, with the consequence that uninformed investors do not

obtain compensation for the adverse selection risk they face. On the other hand, a positive

price impact may just reflect the market’s informational efficiency. In particular, a jump in

illiquidity may in fact be a consequence of the market moving into a regime of informational

efficiency from inefficiency.

4.4 Public information

Public information affects both I- and U-investors by reducing the disparity in their beliefs,

which affects prices and informational efficiency. Suppose investors observe a public signal

ζ = µ+ εζ , (22)

where εζ is normally distributed with mean 0 and precision ρζ . Since public information is

observed by all investors we assume for simplicity that it is unambiguous. Let ρ̂0 = ρ0 + ρζ
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and µ̂0 = (ρ0µ0 + ρζζ)/ρ̂0.

I-investors’ beliefs about µ are now given by the set of distributions with precision ρ̂+ ρε

and means [
µI |(s, ζ), µI |(s, ζ)

]
=

[
ρ̂0µ̂0 + ρε (s− δ)

ρ̂0 + ρε
,
ρ̂0µ̂0 + ρε (s+ δ)

ρ̂0 + ρε

]
. (23)

Reasoning similar to that for equation (12) indicates that with public information, a range

of unrevealed information will exist when market risk doesn’t exceed the ambiguity premium,

which is now ρεδ
ρ̂0+ρε

, but the range will be distinct from that without public information.

Denote the range of unrevealed private information by [aζ , bζ ].

Proposition 8. 1. An interval of unrevealed signals [aζ , bζ ] exists if and only if γσ2

xU0
≤

ρεδ
ρ̂0+ρε

.

2. The size of the set of unrevealed signals is 2δ.

3. The partially revealing price function with public information pPR,ζ is given by

pPR,ζ(s) =

µ̂0 + 1
2
σ2 + ρε

ρ̂0+ρε
∆(aζ , bζ)− γσ2

xU0
if s ∈ [aζ , bζ ]

µ̂0 + 1
2
σ2 + ρε

ρ̂0+ρε
(s− µ̂0)− γσ2

xU0
if s < aζ or s > bζ

(24)

and is discontinous at aζ and bζ.

Figure 4 illustrates the effect of public information, even when it does not convey any

news, i.e. simply confirms the prior mean, ζ = µ0. The dotted lines depict the price function

with no public signal, while the dashed lines depict the price function for public signal ζ = µ0.

With the public signal, the set of unrevealed private signals comprises worse signal values

relative to without the public signal, i.e. bζ < b. The stock price corresponding to signal

s < µ0 is higher when s ∈ [a, b] (the flat portion of the dotted line), but s > bζ . Similarly,

the stock price corresponding to signal s < a < µ0 is higher when s ∈ [aζ , bζ ].

The change in the range of unrevealed information implies price-related phenomena that

might otherwise be considered anomalous. Typically, one would expect that the stock price

will rise following a public signal that conveys good news (ζ > µ0). However, the price falls

if previously unrevealed private information is now revealed and swamps the public news.

In the left panel of Figure 5 if there is no public signal (dotted line) private information s1

is not revealed by equilibrium price. However, public good news (ζ > µ0) means signal s1 is

revealed by equilibrium price (chain-dotted line) and the bad news (s1 < µ0) in the private

information then swamps the good news in the public signal meaning a lower stock price.
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Similarly, in the right panel, good news private information (s2 > µ0) is revealed under bad

public news (ζ < µ0) by price (chain-dotted line) and the stock price is higher than without

public information (black solid line).

These examples also demonstrate that the stock price need not move continuously in the

public signal. For any two public signals, there will be a private signal sufficiently close to the

boundary a (or b), for which the market will be in different informational efficiency regimes

under the two public signals. Hence, public information can also cause excess volatility when

the private signal is revealed under one public signal and not revealed under another. Finally,

for similar reasons price impact of trade can differ discontinuously with public information

if the information regimes are different before and after the public signal.

Proposition 9. In an economy with ambiguous private information and public signals

1. the stock price can fall when public information is good and rise when it is bad,

2. the stock price displays excess volatility with public information if s ∈ [a, b] and s /∈
[aζ , bζ ] or s /∈ [a, b] and s ∈ [aζ , bζ ], and

3. price impact λ(s, s′) increases discontinuously if s′ ∈ [a, b] and s′ /∈ [aζ , bζ ] given s ∈
[a, b].

5 Model discussion and extensions

5.1 Noise-based partial revelation and full revelation

The predominant approach to partial revelation introduces an exogenous source of stochastic

variation in price such as noise traders, endowment shocks or taste shocks. We refer to this

approach as the noise-based approach for brevity (see also Dow and Gorton (2008)). This

added variation implies changes in price are not due solely to changes in information, meaning

price is not invertible as a function of private information and is therefore partially revealing.

The price function in the commonly-used Grossman and Stiglitz (1980) and related noise-

based frameworks is linear due to the assumption of normal distributions, CARA utility, no

wealth constraints, and unambiguous beliefs. Different distributional or utility assumptions

(Mailath and Sandroni (2003), Barlevy and Veronesi (2003), Breon-Drish (2012)) or wealth

constraints (Yuan (2005)) can yield non-linear price functions, while exogenous portfolio

insurance or hedging demand can yield a discontinuous price function (Gennotte and Leland
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(1990)).21 REE models with ambiguity averse traders and noise traders such as Ozsoylev

and Werner (2011) and Mele and Sangiorgi (2011) and without noise traders such as Easley,

O’Hara, and Yang (2011) feature continuous price functions.22

Under the noise-based approach, partial revelation typically does not have volatility

implications beyond what noise adds in a manner qualitatively similar to how noise alters

volatility in a symmetric information setting. Another distinguishing feature is that in

common noise-based CARA-normal models information on trading volume makes partially

revealing prices fully revealing (Blume, Easley, and O’Hara (1994) and Schneider (2009)).

This is not true in the present framework since trade is constant at xI0 for all signals.

The noise-based approach is also used to rule out the existence of fully revealing REE

and provide a resolution to the Grossman and Stiglitz (1980) paradox of costly information

acquisition. Partial revelation under ambiguity does not rule out full revelation REE; indeed

one always exists as noted below.23 The present model also does not analyse costly infor-

mation acquistion. It is not clear that all information used in financial markets involves a

direct cost, such as information from a non-traded asset like labor income, whose payoff is

correlated with, and hence informative about, the stock payoff (see section 5.2). Moreover,

Bernardo and Judd (2000), Muendler (2007), and Krebs (2007) indicate that the co-existence

of informationally efficient prices and costly information is not paradoxical outside of the

widely-used CARA-normal models in the noise-based approach.

Proposition 10. A fully revealing REE always exists with ambiguous information.

Partial revelation under ambiguity involves a range of signal values not being revealed

and yields a non-linear discontinuous price function and discontinuous variation in price

volatility and price impact as noted previously. Overall, the differences in partial revelation

due to ambiguous information and noise-based partial revelation suggest that in principle,

these approaches may provide differing testable implications and be useful in complementary

ways for studying financial markets.

21Price is discontinuous at a point in the noise variable in Barlevy and Veronesi (2003).
22In Ozsoylev and Werner (2011) ambiguity-averse traders do not receive any private signals, while in

Mele and Sangiorgi (2011) private information eliminates ex-ante ambiguity. In Easley, O’Hara, and Yang
(2011), ambiguity-averse, uninformed ‘simple’ traders are ambiguous about the trading strategy of ‘opaque’
traders which yields a price function which is not fully informative for the ‘simple’ traders.

23The analyses of Radner (1979), Grossman (1981), and Condie and Ganguli (2011b) also suggest that a
full revelation REE will exist.
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5.2 Non-tradeable labor income

The information structure used thus far can be reinterpreted as one in which investors receive

information about a non-tradeable asset such as labor income whose payoff is correlated with

the stock. Investors can use the stock to hedge against their labor income fluctuations and in

turn use information about labor income to update their information about the stock payoff.

Benzoni, Dufrense, and Goldstein (2007) and references therein provide a perspective on how

labor income risk can affect investor choices. Related formulations of hedging motives are

also commonly used in the noise-based REE literature.24

Suppose I-investors have non-tradeable labor income that provides a return Rl on initial

wealth and rl ≡ lnRl and µ are jointly normally distributed with means (µl, µ0), precisions

(ρl, ρ0) and covariance η 6= 0. I-investors have private information s = rl + ε about labor

income, where ε is independent of rl and normally distributed with precision ρε so the signal

variance is σ2
s = ρ−1

l + ρ−1
ε . First, suppose there is there is no ambiguity in this signal and

it is unbiased (i.e., Eε = 0). Joint normality of s, rl, and µ implies that the covariance of s

and µ is η and the updated distribution of µ given the observation of the private signal s is

normal with mean

µ0 +
η

σ2
s

(s− µl). (25)

If the mean of the signal (or equivalently, of ε) is ambiguous and indexed by [−δ, δ], then

the updated beliefs are given by a set of normal distributions with means

[µI |s, µI |s] =

[
µ0 +

η

σ2
s

(s− δ − µl), µ0 +
η

σ2
s

(s+ δ − µl)
]
. (26)

Terminal wealth is given by

W2 = W0(θR + (1− θ)Rf +Rl). (27)

Using an approximation of payoffs and assuming rf = 0 as in section 2.3, we have the

following result on investor demand.

Lemma 3. The optimal portfolio weight on the stock for investor n who observes information

24For example Biais, Bossaerts, and Spatt (2010), Schneider (2009), Goldstein and Guembel (2008), Watan-
abe (2008), and the references therein where the hedging motive is closely tied to the noise which prevents
prices from revealing information.
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about non-tradable labor income that is correlated with the mean stock payoff is given by

θn(s) =


µn|s+ 1

2
σ2−p

γσ2 if µn|s+ 1
2
σ2 − p > 0

0 if µn|s ≤ p− 1
2
σ2 ≤ µn|s

µn|s+ 1
2
σ2−p

γσ2 if µn|s+ 1
2
σ2 − p < 0.

(28)

This demand is similar to that in the case when signals are directly related to the asset

and the rest of the analysis conducted previously will then follow similarly.

5.3 Multiple signals observed by I-investors

We now consider the scenario where I-investors may observe a sequence of identically and

independently drawn signals before trading occurs in the framework of Section 2. We show

that the partial revelation developed in this paper does not dissappear with such repeated

observation of information by I-investors. For simplicity, we assume that I-investors perceive

the same ambiguity [−δ, δ] in all of the signals and U-investors consider them unbiased.

Suppose I-investors observe a sequence denoted by (s1, s2, . . . , sK) of K ≥ 1 signals

sk = µ+εk. Their updated beliefs about µ are represented by the set of normal distributions

with precision ρ0 +Kρε and means [µI |(s1, . . . , sK), µI |(s1, . . . , sK)], where

µI |(s1, . . . , sK) =
ρ0µ0 + ρε

∑K
k=1 (sk − δ)

ρ0 +Kρε
and µI |(s1, . . . , sK) =

ρ0µ0 + ρε
∑K

k=1 (sk + δ)

ρ0 +Kρε
.

(29)

The length of the interval is given by 2Kδ/(ρ0 + Kρε) which approaches 2δ/(ρ0 + ρε) as

K →∞. This implies that repeated observation of ambiguous information does not eliminate

the ambiguity perceived by I-investors.25

The ambiguity premium now required by I-investors to hold the asset is Kδρε
ρ0+Kρε

which is

increasing in K. Thus, the condition for partial revelation, γσ2

xU0
≤ Kδρε

ρ0+Kρε
, becomes easier to

satisfy as the number of signals increases. When U-investors hold all the stock, the market-

clearing price satisfies p = µUPR(s1, . . . , sK) − γσ2

xU0
+ 1

2
σ2, where µUPR(s1, . . . , sK) denotes the

expected value of µ under U-investors’ updated beliefs.

When I-investors observe K signals before trading, information is revealed or not revealed

in the form of
∑K

k=1 sk. Reasoning similar to section 3.2 shows that a range denoted [aK , bK ]

of values of
∑K

k=1 sk is not revealed. This leads to the following analogue of Proposition 3.

25See also Epstein and Schneider (2007).
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Proposition 11. filler text

1. An interval [aK , bK ] of unrevealed signals exists if and only if Kρεδ
ρ0+Kρε

≤ γσ2

xU0
.

2. The length of the interval [aK , bK ] of unrevealed signals is 2δ.

3. The partially revealing price function pPR satisfies

pPR(s1, . . . , sK) =

µ0 + 1
2σ

2 + ρε
ρ0+Kρε

K∆K(aK , bK)− γ
xU0
σ2 if

∑K
k=1 sk ∈ [aK , bK ]

µ0 + 1
2σ

2 + ρε
ρ0+Kρε

(
∑K

k=1 (sk − µ0))− γ
xU0
σ2 if

∑K
k=1 sk /∈ [aK , bK ] .

(30)

with discontinuities at aK and bK.

5.4 Ambiguity averse U-investors

We extend the model to allow U-investors to also perceive ambiguity in the signals if they

observe it through price while retaining the structure outlined in section 2. U-investors also

consider a range [−δU , δU ] of possible values for the mean µUε of the error term ε, where

δU > 0.

We assume that δU < δ, so that [−δU , δU ] is a strict subset of [−δ, δ]. This assumption

is needed for market clearing to be consistent with I-investors trading away all their stock-

holding. Since U-investors now require an uninformed ambiguity premium δUρε
ρ0+ρε

also to hold

the stock, partial revelation will require that the total premium required by U-investors to

hold all the stock not exceed I-investors’ ambiguity premium for holding the stock.

As in section 3, under the conditions stated above, there will be an interval [a, b] of signals

which aren’t revealed. Define

∆(a, b) = min
d∈[−δU ,δU ]

φ
(√

ρ0ρε
ρ0+ρε

(a− µ0 − d)
)
− φ

(√
ρ0ρε
ρ0+ρε

(b− µ0 − d)
)

Φ
(√

ρ0ρε
ρ0+ρε

(b− µ0 − d)
)
− Φ

(√
ρ0ρε
ρ0+ρε

(a− µ0 − d)
)√ ρ0ρε

ρ0 + ρε
. (31)

Proposition 12. filler text

1. An interval [a, b] of unrevealed signals if and only if ρε
ρ0+ρε

≤ γσ2

xU0
+ ρεδU

ρ0+ρε
.

2. The length of the interval [a, b] of unrevealed signals is 2δ.
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3. The partially revealing price function pPR satisfies

pPR(s) =

µ0 + 1
2
σ2 + ρε

ρ0+ρε
∆(a, b)− δUρε

ρ0+ρε
− γ

xU0
σ2 if s ∈ [a, b]

µ0 + 1
2
σ2 + ρε

ρ0+ρε
(s− µ0)− δUρε

ρ0+ρε
− γ

xU0
σ2 if s < a or s > b

(32)

and is discontinuous at a and b.

Using these results, we can then obtain qualitatively similar results to those in section 4.

6 Concluding remarks

In this paper, we show that partially revealing REE arise and affect market variables when

ambiguous private information is received by investors who exhibit inertia with respect to

information under the Gilboa and Schmeidler (1989) model of decision-making.

Partial revelation of ambiguous information leads to a decline in stock price. Changes in

informational efficiency lead to price swings, excess price volatility, and volatility variation.

Moreover, markets are more liquid with informationally inefficient prices and illiquidity can

spike with small changes in fundamentals. Public information directly affects the informa-

tional efficiency of prices and can lead to excess volatility, illiquidity jumps, and price changes

in the opposite direction to public news. This informational inefficiency persists with the

repeated observation of information by informed traders or when uninformed traders are

also ambiguity-averse. These predictions provide insight into possible causes of time-varying

volatility that are implicit to the market mechanism as opposed to being driven by asset

fundamentals. The model also suggests that volatility is an important by-product of infor-

mative prices and that regulatory actions designed to limit volatility should be taken with

care.

We have focused on a single type of informed investor and a single uncertain asset in order

to highlight the information transmission role of prices. Future areas for research would allow

for multiple types of informed investors who receive different information, thus enabling the

study of information aggregation and transmission as well as the study of multiple traded

assets. In such models, non-revelation of information will require conditions similar to those

in (19).
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A Appendix

A.1 Proofs for Section 2

An approximate solution for investor demand. To solve for investor demand, we

approximate the portfolio return by a lognormal random variable adapting the method of

Campbell and Viciera (2002).26 Terminal wealth is given by

W2 = W0(θR + (1− θ)Rf ). (33)

Expressing the returns in logs and using a second-order Taylor series approximation around

r − rf = 0 gives

ln θR + (1− θ)Rf = rf + ln(1 + θ
(
er−rf − 1

)
) ≈ θ (r − rf ) +

1

2
θ(r − rf )2. (34)

Replacing the second-order term with its unconditional expectation yields

θ (r − rf ) +
1

2
θ(1− θ)σ2 (35)

as our lognormal approximation of market returns.

IfW2 is lognormally distributed then the solution to the individual’s optimization problem

is equivalent to the solution to

max
θ

min
m∈M

lnEm

[
(W2)1−γ

1− γ

]
. (36)

By the lognormality of W2,

lnEm
[
(W2)1−γ] = Em ln(W2)1−γ +

1

2
V ar ln(W2)1−γ

= (1− γ)Em[w0 + ln(θR + (1− θ)Rf )] +
1

2
(1− γ)2(θ)2σ2.

(37)

Since Em(w0) and rf are non-stochastic and 1− γ is a scale factor, solving the optimization

problem is equivalent to solving

max
θ

min
m∈M

Emθ (r − rf ) +
θ(1− θ)

2
σ2 +

(1− γ)θ2

2
σ2. (38)

26We show the derivation for γ 6= 1, the derivation for log utility (γ = 1) is similar.
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using the approximation in (35).

Proof of Proposition 1. Using (38), our normalization of rf = 0 and the expressions for

the updated beliefs in (4), the first order conditions for n-investors are

0 = minm∈[µn|s,µn|s]Emr + 1
2
σ2 − γθσ2 if θ > 0

0 ∈
{
Emr + 1

2
σ2 : m ∈ [µn|s, µn|s]

}
if θ = 0

0 = maxm∈[µn|s,µn|s]Emr + 1
2
σ2 − γθσ2 if θ < 0.

(39)

Therefore, n-investors trade off their stockholding if and only if

min
m∈[µn|s,µn|s]

Emv +
1

2
σ2 − p ≤ 0 ≤ max

m∈[µn|s,µn|s]
Emv +

1

2
σ2 − p

⇔ µn +
1

2
σ2 ≤ p ≤ µn +

1

2
σ2.

(40)

A.2 Proofs for Section 3

Proof of Proposition 2. Suppose markets clear with θI(s) = 1
γσ2

(
µI |s+ 1

2
σ2 − p

)
> 0.

Then the market clearing price is

p = xI0

(
ρ0µ0 + ρε
ρ0 + ρε

(s− δ)
)

+ xU0 µ
U − γσ2 +

1

2
σ2, (41)

where µU denotes the mean of µ under U-investors’ beliefs. If this price were to be non-

revealing then µU must be a decreasing function of the signal s, which cannot occur, either

in partial or full revelation. Thus, the signal must be revealed.

When the signal s is revealed by the price, U-investors’ updated belief µUPR|s about the

mean of µ is ρ0µ0+ρεs
ρ0+ρε

. With this belief, the market clearing price satisfies

p =

(
ρ0µ0 + ρε
ρ0 + ρε

(s)

)
− xI0

δρε
ρ0 + ρε

+ γσ2 +
1

2
σ2 (42)

and again this price is consistent with revelation of s to U-investors and θI(s) > 0. Hence

with θI(s) > 0, the market clearing price reveals the signal to U-investors. Similar arguments

show that if θI(s) < 0, then price reveals the signal s.
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Proof of Lemma 1. The demand function of I-investors given in (1), together with the

definition of µI |s in (4) imply that the range of signals for which I-investors will trade away

their share holdings at the price p is

−ρ0

ρε
µ0 + δ − ρ0 + ρε

ρε

(
1

2
σ2 − p

)
≥ s ≥ −ρ0

ρε
µ0 − δ −

ρ0 + ρε
ρε

(
1

2
σ2 − p

)
. (43)

Using the price expression given in equation (11) we obtain (12).

Proof of Lemma 2. When U-investors are not able to infer the signal, their belief about

the mean of µ is obtained by using the updated beliefs conditional on the knowledge that

the signal is in an interval [a, b]. This conditional expected value is

E [µ|a ≤ s ≤ b] = E
[
µUPR|s |a ≤ s ≤ b

]
=

1

ρ0 + ρε
(ρ0µ0 + ρεE[s|a ≤ s ≤ b])

(44)

Since U-investors believe s is normally distributed with mean µ0 and variance ρ−1
0 + ρ−1

ε ,

using the properties of the truncated normal distribution (see e.g. Johnson and Kotz (1970)),

E [s|a ≤ s ≤ b] = µ0 + ∆(a, b) (45)

where

∆(a, b) =
φ
(√

ρ0ρε
ρ0+ρε

(a− µ0)
)
− φ

(√
ρ0ρε
ρ0+ρε

(b− µ0)
)

Φ
(√

ρ0ρε
ρ0+ρε

(b− µ0)
)
− Φ

(√
ρ0ρε
ρ0+ρε

(a− µ0)
)√ρ0 + ρε

ρ0ρε
, (46)

where φ and Φ denote the standard normal density and distribution functions respectively.

Hence,

µUPR|[a, b] = µ0 +
ρε

ρ0 + ρε
∆(a, b). (47)

The next lemma collects several facts that are useful in proving subsequent results.

Lemma 4. Suppose s is normally distributed with mean µ0 and variance σ2
s ≡ ρ−1

0 + ρ−1
ε .
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Let f(s) denote the pdf of s. Then

1.
∂

∂b

∫ b

b−2δ

sf(s)ds = bf(b)− (b− 2δ)f(b− 2δ)

2.
∂

∂b

∫ b

b−2δ

f(s)ds = f(b)− f(b− 2δ)

3. f(b− 2δ) = f(b)e
− 2δ(δ+µ0)

σ2s e
2δb

σ2s

4. bf(b)− (b− 2δ)f(b− 2δ) =

∫ b

b−2δ

f(s)ds−
∫ b

b−2δ

s

(
s− µ0

σ2
s

)
f(s)ds

5. f(b− 2δ)− f(b) =
1

σ2
s

∫ b

b−2δ

sf(s)ds− µ0

σ2
s

∫ b

b−2δ

f(s)ds

6. 0 <
∂E[s|b− 2δ ≤ s ≤ b]

∂b
< 1 for all −∞ < b <∞

(48)

Proof. The first two results follow from Leibniz’s rule and the third by rearranging terms

in f(b− 2δ). The fourth follows from integrating
∫ b
b−2δ

f(s)ds by parts where u = f(s) and

dv = ds. The fifth follows from observing that

f ′(s) = −
(
s− µ
σ2
s

)
f(s) (49)

and integrating both sides of equation (49) over the region [b− 2δ, b].

To show

0 <
∂E[s|b− 2δ ≤ s ≤ b]

∂b
< 1 (50)
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calculate

∂E[s|b− 2δ ≤ s ≤ b]

∂b
=
∂

∂b

∫ b
b−2δ

sf(s)ds∫ b
b−2δ

f(s)ds

=

(∫ b
b−2δ

f(s)ds
)

(bf(b)− (b− 2δ)f(b− 2δ))−
(∫ b

b−2δ
sf(s)ds

)
(f(b)− f(b− 2δ))(∫ b

b−2δ
f(s)ds

)2

=

(∫ b
b−2δ

f(s)ds
)

(bf(b)− (b− 2δ)f(b− 2δ))(∫ b
b−2δ

f(s)ds
)2

+

(∫ b
b−2δ

sf(s)ds
)(

1
σ2
s

∫ b
b−2δ

sf(s)ds− µ0
σ2
s

∫
b−2δ

bf(s)ds
)

(∫ b
b−2δ

f(s)ds
)2

=

(∫ b
b−2δ

f(s)ds
)(∫ b

b−2δ
f(s)ds−

∫ b
b−2δ

s
(
s−µ0
σ2
s

)
f(s)ds

)
(∫ b

b−2δ
f(s)ds

)2

+

(∫ b
b−2δ

sf(s)ds
)(

1
σ2
s

∫ b
b−2δ

sf(s)ds− µ0
σ2
s

∫ b
b−2δ

f(s)ds
)

(∫ b
b−2δ

f(s)ds
)2

=1− 1

σ2
s

∫ b
b−2δ

s2f(s)ds∫ b
b−2δ

f(s)ds
+
µ0

σ2
s

∫ b
b−2δ

sf(s)ds∫ b
b−2δ

f(s)ds

− 1

σ2
s

[∫ b
b−2δ

sf(s)ds∫ b
b−2δ

f(s)ds

]2

− µ0

σ2
s

∫ b
b−2δ

sf(s)ds∫ b
b−2δ

f(s)ds

=1− 1

σ2
s

E[s2|b− 2δ ≤ s ≤ b] +
1

σ2
s

E[s|b− 2δ ≤ s ≤ b]2

=1− 1

σ2
s

V ar(s|b− 2δ ≤ s ≤ b)

(51)

The third and fourth equalities follow from facts 5 and 4, respectively and the rest are

simplifications. The result follows since

0 < V ar(s|b− 2δ ≤ s ≤ b) < σ2
s ≡ V ar(s). (52)

Proof of Proposition 3. Statements 2 and 3 are proved in the body of the text. For
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statement 1, we first prove that if the interval [a, b] exists then γσ2

xU0
< δρε

ρ0+ρε
. Define h(·) as

h(b) = b− µ0 −∆(b− 2δ, b) = b− E[s|s ∈ [b− 2δ, b]]. (53)

If γσ
2

xU0
> δρε

ρ0+ρε
then (19) requires h(b) < 0⇔ b < E[s|b−2δ ≤ s ≤ b], which is a contradiction.

Rewrite equation (19) as

h(b) = δ − ρ0 + ρε
ρε

γσ2

xU0
. (54)

We prove sufficiency by showing that h(·) takes all values in [0, δ]. When γσ2

xU0
= 0, given the

symmetry of a normal pdf around its mean, b0 = µ0+δ solves (19) since ∆(µ0−δ, µ0+δ) = 0.

Moreover, h(b0) = δ.

Since for any −∞ < b <∞, h′(b) exists and from (50) 0 < h′(b) < 1, it suffices to show

that

lim
b→−∞

h(b) = 0. (55)

Using L’Hopital’s rule, 1-3 in Lemma 4 and rearranging terms,

lim
b→−∞

E [s|s ∈ [b− 2δ, b]] = lim
b→−∞

∫ b
b−2δ

sf(s)ds∫ b
b−2δ

f(s)ds

= lim
b→−∞

∂
∂b

∫ b
b−2δ

sf(s)ds

∂
∂b

∫ b
b−2δ

f(s)ds

= lim
b→−∞

bf(b)− (b− 2δ)f(b− 2δ)

f(b)− f(b− 2δ)

= lim
b→−∞

b(f(b)− f(b− 2δ)) + 2δf(b− 2δ)

f(b)− f(b− 2δ)

= lim
b→−∞

b+ 2δ
f(b− 2δ)

f(b)− f(b− 2δ)

= lim
b→−∞

b+ 2δ
f(b)e

− 2δ(δ+µ0)

σ2s e
2δb

σ2s

f(b)

(
1− e−

2δ(δ+µ0)

σ2s e
2δb

σ2s

)
= lim

b→−∞
b+ 2δ

e−
2δ(δ+µ0)

σ2 e
2δb

σ2s

1− e−
2δ(δ+µ0)

σ2s e
2δb

σ2s

,

(56)

30



which yields

lim
b→−∞

h(b) = lim
b→−∞

b− E [s|s ∈ [b− 2δ, b]]

= lim
b→−∞

b− b− 2δ
e−

2δ(δ+µ)

σ2 e
2δb
σ2

1− e−
2δ(δ+µ)

σ2 e
2δb
σ2

= lim
b→−∞

−2δ
e−

2δ(δ+µ)

σ2 e
2δb
σ2

1− e−
2δ(δ+µ)

σ2 e
2δb
σ2

= 0.

(57)

A.3 Proofs for section 4

Proof of Proposition 4. Result 1 is proved in the proof to Proposition 3 and result 3 is

a corollary of result 2, which we prove next. Using the sixth result in Lemma 4 and the fact

that E[s|b− 2δ ≤ s ≤ b] = µ0 + ∆(b− 2δ, δ) yields 0 < ∂∆(b− 2δ, δ)/∂b < 1. Applying the

implicit function theorem to equation (19) then yields

∂∆(b− 2δ, δ)

∂ γσ
2

xU0

= − 1

ρε
ρ0+ρε

(
1− ∂∆(b−2δ,δ)

∂b

) < 0 (58)

Proof of Proposition 5. This follows from statement 2 in Proposition 3.

Proof of Proposition 6. Result 1 follows from the discontinuity of the price function

defined in equation (16). Formally, lims↑a pPR(s) = p+
a < p−a = lims↓a, V ar(pPR|a− ε < s <

ε) > V ar(pPR|a− ε < s < ε) for small ε > 0. A similar argument applies at b.

For result 2 consider the variance of pPR conditional on the signal being revealed or not

revealed. When s ∈ [a, b], price is constant at

pPR(s) = µ0 +
1

2
σ2 +

ρε
ρ0 + ρε

∆(a, b)− γ

xU0
σ2. (59)

and conditional price volatility is

V ar [pPR|s ∈ [a, b]] = 0. (60)
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When s < a or s > b then price is

pPR(s) = µ0 +
1

2
σ2 +

ρε
ρ0 + ρε

(s− µ0)− γ

xU0
σ2. (61)

and conditional price volatility is

V ar(pPR|s < a or s > b) =

(
ρε

ρ0 + ρε

)2

V ar(s|s < a or s > b)

=

(
ρε

ρ0 + ρε

)2 (
F̂ (a)V ar(s|s < a) + F̂ (b)V ar(s|s > b)

)
> 0

(62)

where F̂ (a) = F (a)
F (a)+1−F (b)

and F̂ (b) = 1−F (b)
F (a)+1−F (b)

with F (·) denoting the cdf of s and, with

ρs = ρ0ρε
ρ0+ρε

,

V ar(s|s < a) =
1

ρs

[
1− φ

(√
ρs (µ0 − a)

)
1− Φ

(√
ρs (µ0 − a)

) ( φ
(√

ρs (µ0 − a)
)

1− Φ
(√

ρs (µ0 − a)
) −√ρs (µ0 − a)

)]
(63)

and

V ar(s|s > b) =
1

ρs

[
1− φ

(√
ρs (b− µ0)

)
1− Φ

(√
ρs (b− µ0)

) ( φ
(√

ρs (b− µ0)
)

1− Φ
(√

ρs (b− µ0)
) −√ρs (b− µ0)

)]
.

(64)

Proof of Proposition 7. These statements follow from the definition of λ(s, s′) in (21).

The discontinuity in signals follows from the discontinuity of price in signals.

Proof of Propositions 8 and 9. We demonstrate how a public signal changes the range

of unrevealed signals. The results then follow by reasoning similar to the case of no public

information and by comparing the values of the respective price, price volatility, and price

impact variables to the case of no public information.

Proceeding along the same lines as in section 3 shows that U-investor beliefs are given

by

µUPR|([aζ , bζ ], ζ) =
µ̂0 + ρε(µ0 + ∆(aζ , bζ))

ρ̂0 + ρε
(65)
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if s ∈ [aζ , bζ ] where

∆(aζ , bζ) =
φ
(√

ρ0ρε
ρ0+ρε

(aζ − µ0)
)
− φ

(√
ρ0ρε
ρ0+ρε

(bζ − µ0)
)

Φ
(√

ρ0ρε
ρ0+ρε

(bζ − µ0)
)
− Φ

(√
ρ0ρε
ρ0+ρε

(aζ − µ0)
)√ ρ0ρε

ρ0 + ρε
, (66)

the length of the interval of unrevealed signals is 2δ, and the existence of the interval follows

from the existence of a solution to

ρε
ρ̂0 + ρε

(bζ − µ̂0 −∆(bζ − 2δ, bζ)) +
γσ2

xU0
− δρε
ρ̂0 + ρζ + ρε

= 0. (67)

The proof then follows reasoning to that for Proposition 3, subject to a simple change of

notation.

The proofs of 1-3 in Proposition 9 follow from the discussion in the main text and

reasoning similar to that for the proofs of Proposition 6 and Proposition 7.

A.4 Proofs for Section 5.

Proof of Proposition 10. If γσ2

xU0
> ρεδ

ρ0+ρε
the price function

pFR(s) =
ρ0µ0 + ρεs

ρ0 + ρε
+

1

2
σ2 − γσ2 − xI0

δρε
ρ0 + ρε

(68)

is a fully-revealing REE price function and if γσ2

xU0
≤ ρεδ

ρ0+ρε
then

pFR(s) =
ρ0µ0 + ρεs

ρ0 + ρε
+

1

2
σ2 − γσ2

xU0
. (69)

This is also a fully revealing REE price function.

Proof of Lemma 3. Terminal wealth is W2 = W0(θR + (1 − θ)Rf + Rl) and, as before,

we provide a lognormally distributed approximation to the return on initial wealth using a

second order Taylor series.

Arguments similar to those prior to the proof of Proposition 1 yield

ln(θR + (1− θ)Rf +Rl)/Rf ≈ θ(r − rf ) +
Rl

Rf

+
θ − θ2

2
σ2 +

1

2
σ2
l (70)
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by using the appropriate derivatives evaluated at (r − rf , Rl/Rf ) = (0, 0) and replacing the

second order terms with their expectations.

Using V ar(rw) = θ2σ2 + σ2
l and reasoning similarly as before, n-investors’ objective

function is

max
θ

min
m∈Mn

Em
[
θ(r − rf ) +

Rl

Rf

+
θ − θ2

2
σ2 +

1

2
σ2
l − rf +

1− γ
2

[
θ2σ2 + σ2

l

]]
(71)

which simplifies to

max
θ

min
m∈Mn

Em
[
θ(r − rf ) +

θ − θ2

2
σ2 +

1− γ
2

θ2σ2

]
(72)

since rf ,
1
2
σ2
l , Em

(
Rl
Rf

)
, and 1−γ

2
σ2
l do not affect the optimal choice of θ.

The first order conditions are

0 = minm∈Mn Em
[
(r − rf ) + 1

2
σ2 − θσ2 + (1− γ) θσ2

]
if θ > 0

0 ∈
{
Em
[
(r − rf ) + 1

2
σ2 − θσ2 + (1− γ) θσ2

]
: m ∈Mn

}
if θ = 0

0 = maxm∈Mn Em
[
(r − rf ) + 1

2
σ2 − θσ2 + (1− γ) θσ2

]
if θ < 0

(73)

which implies a demand of

θn(Mn) =


µn−rf+ 1

2
σ2−p

γσ2 if µn − rf + 1
2
σ2 − p > 0

0 if µn − rf ≤ p− 1
2
σ2 ≤ µn − rf

µn−rf+ 1
2
σ2−p

γσ2 if µn − rf + 1
2
σ2 − p < 0

(74)

using [µn, µn] to denote the corresponding interval of means. Normalizing rf = 0 and using

[µn|s, µn|s] provides the result.

Proof of Proposition 11. The proof is similar that of Proposition 3 by substituting ρε

with Kρε and s by
∑K

k=1 sk.

Proof of Proposition 12. The market clearing price when I-investors trade away their

stockholdings to U-investors is

p = µU
PR

+
1

2
σ2 − γσ2

xU0
. (75)

where µU
PR

is the lower bound of the interval of means under U-investor updated beliefs since
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θU > 0.

When U-investors only know that the signal is in the range [a, b],

µU |[a, b] = min
d∈[−δU ,δU ]

Ed
[

min
d′∈[−δU ,δU ]

Ed′ [µ|s]
∣∣∣∣ [a, b]]

= min
d∈[−δU ,δU ]

Ed
[
ρ0µ0 + ρε(s− δU)

ρ0 + ρε

∣∣∣∣ s ∈ [a, b]

]
=

ρ0

ρ0 + ρε
µ0 −

ρεδ
U

ρ0 + ρε
+

ρε
ρ0 + ρε

min
d∈[−δU ,δU ]

Ed[s|s ∈ [a, b]]

(76)

The set of distributions of s comprises normal distributions with variance ρ−1
0 +ρ−1

ε and means

[µ0 − δU , µ0 + δU ]. From Lemma 2, for each d ∈ [−δU , δU ], Ed[s|s ∈ [a, b]] = µ0 + ∆d(a, b)

where

∆d(a, b) =
φ
(√

ρ0ρε
ρ0+ρε

(a− µ0 − d)
)
− φ

(√
ρ0ρε
ρ0+ρε

(b− µ0 − d)
)

Φ
(√

ρ0ρε
ρ0+ρε

(b− µ0 − d)
)
− Φ

(√
ρ0ρε
ρ0+ρε

(a− µ0 − d)
)√ ρ0ρε

ρ0 + ρε
(77)

Using ∆(a, b) as defined in (31), the market clearing condition above implies a price of

p = µ0 +
1

2
σ2 +

ρε
ρ0 + ρε

∆(b, b− 2δ)− ρεδ
U

ρ0 + ρε
− γ

xU0
σ2. (78)

Plugging this price into the conditions necessary for partial revelation as in Section 3, the

existence of a range [a, b] of unrevealed signals follows from the existence of a solution to

ρε
ρ0 + ρε

(b− µ0 −∆(b− 2δ, b)) +

(
γσ2

xU0
+

ρεδ
U

ρ0 + ρε
− ρεδ

ρ0 + ρε

)
= 0. (79)

The proof then follows similarly to that of Proposition 3.
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Figure 1: Equilibrium price function

The parameter values for all plots in the paper are ρ0 = 10, ρε = 120, σ = 0.05448, µ0 = 0.006 and
δ = 0.10. The values for µ0 and σ were taken from the average monthly equity premium on the
CRSP value-weighted market index (using the Fama risk-free rates available from CRSP) from
January 1925 to December 2011. For each market risk scenario, xU0 = 0.99. Low, medium, and
high market risk correspond to γ = 0 (risk-neutral), γ = 1

2 and γ = 1 (log utility) respectively.
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Figure 2: Excess volatility of price with σ2
p = Var(pPR|b− η < s < b+ η), σ2

s = Var(s|b− η < s <
b+ η) for small η > 0. Parameter values are as in Figure 1(b).
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Figure 3: Price impact λ(s, s′) as a function of s′ for a given s: (i) solid lines for s ∈ [a, b], (ii)
dashed lines for s < a, and (iii) dotted lines for s > b. Price impact λ(s, s′) = 0 when s = s′. The
plot is for γ = 1 (log utility) investors. Other parameter values are the same as in Figure 1(b).
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