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Microbial activity is a fundamental component of oceanic nutrient cycles. 48 

Photosynthetic microbes, collectively termed phytoplankton, are responsible for the 49 

vast majority of primary production in marine waters.  The availability of nutrients 50 

in the upper ocean frequently limits the activity and abundance of these organisms. 51 

Experimental data have revealed two broad regimes of phytoplankton nutrient 52 

limitation in the modern upper ocean. Nitrogen availability tends to limit 53 

productivity throughout much of the surface low-latitude ocean, where the supply of 54 

nutrients from the subsurface is relatively slow. In contrast, iron often limits 55 

productivity where subsurface nutrient supply is enhanced, including within the 56 

major oceanic upwelling regions of the Southern Ocean and the eastern equatorial 57 

Pacific. Phosphorus, micronutrients other than iron, and vitamins may also (co-58 

)limit marine phytoplankton. However, the spatial patterns and importance of co-59 

limitation remain unclear. Variability in the stoichiometries of nutrient supply and 60 

biological demand are key determinants of oceanic nutrient limitation. Deciphering 61 

the mechanisms that underpin this variability, and the consequences for marine 62 

microbes, will be a significant challenge. However, such knowledge will be crucial 63 

for accurately predicting the consequences of ongoing anthropogenic perturbations 64 

to oceanic nutrient biogeochemistry.  65 

 66 

The biomass of all living organisms is comprised of approximately 30 of the 92 naturally 67 

occurring elements (Fig. 1a, Supplementary Table S1)1,2. All organisms must obtain 68 

chemical forms of these essential elements, termed nutrients, from their external 69 

environment. The key role that nutrients play in controlling upper ocean productivity has 70 

long been recognised3-5.  However, research over recent decades has yielded significant 71 

new insights into nutrient biogeochemistry, including the importance of numerous trace 72 

metals6, co-limitation by two or more nutrients7,8 and variability in nutrient requirements 73 

related to microbial function, environment and evolution2,7,9-11. Here, we present an 74 

overview of these recent advances, with reference to key concepts of nutrient limitation, 75 
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and new data syntheses. Anthropogenic forcing will increasingly influence oceanic 76 

nutrient cycling12,13. We consider the potential impact of such environmental changes on 77 

nutrient limitation, ocean biogeochemistry and the carbon cycle14.  78 

 79 

Concepts of nutrient limitation 80 

 81 

Nutrient elements comprise one of three principal resources required for life, alongside 82 

space to live, and energy in the form of chemical reducing equivalents and high-energy 83 

bonds. Organisms that use light to fix carbon dioxide, termed photoautotrophs, are 84 

responsible for the vast majority of primary production, both on land and in the ocean. 85 

Consequently sunlight is the ultimate source of energy for most of the biosphere15. 86 

Energy imposes an important constraint on primary productivity in the open ocean. The 87 

rapid attenuation of light with depth restricts the growth of the oceanic photoautotrophic 88 

microbes, collectively termed phytoplankton, to a thin euphotic layer (0-~200m) (Fig. 89 

2a). Phytoplankton and other microbes take up nutrients from this near-surface layer and 90 

assimilate them into macromolecules, resulting in the formation of particulate organic 91 

matter. Downward transport of organic material16, combined with microbially-mediated 92 

remineralisation, enhances nutrient concentrations below the euphotic zone (Fig. 2a), 93 

while the biological uptake of nutrients in the surface can result in depletion to levels that 94 

restrict microbial processes5 (Fig. 2a). Consequently, biological activity influences the 95 

cycling of nutrients throughout the ocean. 96 

The term nutrient limitation (see Box 1) encompasses a hierarchy of different 97 

scales of biological and ecological complexity, from the single cell to the biosphere (Fig. 98 
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2b). At the cellular scale, external nutrient concentrations can be so low that rates of 99 

nutrient transport to the cell surface, and thus the cellular interior, restrict the internal 100 

nutrient pool (quota) and consequently the growth rate of the cell (Box 1)17,18. The 101 

depletion of external nutrient concentrations typically results from integrated nutrient 102 

assimilation by the whole microbial community. The availability of nutrients may thus 103 

also set a limit on the overall community biomass yield (Box 1)18,19. Within the diverse 104 

microbial communities which characterize oceanic systems, the degree of growth rate 105 

limitation may vary between populations20-22, for example due to differences in cell 106 

size23,24 and cellular element requirements8,25 (Box 2). 107 

Although the growth rate of individual cells may depend on nutrient availability, 108 

the net growth rate of cell populations is also profoundly influenced by predation and 109 

other loss processes5. Ecological interactions can thus influence nutrient limitation by 110 

modifying species composition and abundance at multiple scales (Fig. 2b). For example, 111 

the enhanced supply of a limiting nutrient may provide little immediate benefit for the 112 

organisms that initially dominate the community, as these may be highly adapted to the 113 

lack of this resource in the environment and/or under tight grazer control22-24. However, 114 

addition of any limiting nutrient could still increase community biomass, for instance by 115 

enhancing the growth rates of initially rare larger phytoplankton that are more resistant to 116 

grazing18,22. Such mechanisms are supported by the observation that mean community 117 

cell size generally increases in parallel with overall community biomass26.  118 

Interactions between multiple nutrients also strongly influence microbial 119 

dynamics. A range of different nutrients can potentially co-limit microbial processes in 120 

the ocean (Box 1)7,8. Moreover, the nutrients that exert direct (or proximal) control over a 121 
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microbial cell or community may differ from those that set the ultimate constraint on 122 

system productivity18,27. A conceptual two nutrient, two organism model represents a 123 

well-studied case4,27. The ability to convert di-nitrogen gas into the other forms of 124 

nitrogen that are more readily available, collectively termed fixed nitrogen, is restricted to 125 

groups of microbes termed diazotrophs. Loss of fixed nitrogen through the microbial 126 

processes of denitrification and/or anammox thus creates a niche for diazotrophs, through 127 

effectively generating an excess of other nutrients (e.g. phosphorus). As a consequence, 128 

at least conceptually, fixed nitrogen levels can proximally limit non-diazotrophic 129 

phytoplankton, while the phosphorus inventory sets an ultimate constraint on the nitrogen 130 

inventory27. In the ocean other factors may complicate this simple scenario, including 131 

restrictions on diazotrophy when iron availability is low 28-31. 132 

Establishing the identity of a single ultimate limiting nutrient may thus be less 133 

relevant than understanding the controls on, and feedbacks pertaining to, any given 134 

process (Fig. 2b). For example, within the modern ocean there is no single nutrient for 135 

which the surface concentration, or overall inventory (Supplementary Information), could 136 

be considered limiting in isolation. Given the range of usage, discussions of nutrient 137 

limitation should specify the process being considered18, alongside the scales relevant to 138 

that process, to prevent conceptual misunderstandings. 139 

 140 

The central role of stoichiometry in microbe-nutrient interactions  141 

 142 

Quantitative relationships between chemicals within both intracellular and extracellular 143 

nutrient pools (referred to as stoichiometry) are key determinants of oceanic 144 
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biogeochemical cycles1-4. Six of the essential elements (C, H, N, O, P, S) constitute over 145 

95% of organic matter by mass, principally in the form of the macromolecules: 146 

carbohydrates, proteins, nucleic acids and lipids2,9.  In addition, all organisms require 147 

inorganic ions (for example of calcium, potassium and sodium) and a range of trace 148 

elements, including iron, manganese, cobalt, zinc and copper (Fig. 1a). The latter are 149 

found within a diverse array of metal-containing enzymes6,8,32.  Mineral phases, such as 150 

silicon dioxide and calcium carbonate, are also essential for some organisms.  151 

Redfield first drew attention to the co-variability of dissolved nitrate and 152 

phosphate in the ocean interior, and the similarity of this ratio to N:P ratios within 153 

particulate organic matter and cellular material3. Oceanographers have since employed 154 

the ‘Redfield Ratio’ of 106C:16N:1P as a key stoichiometric concept in ocean 155 

biogeochemistry33,34. Cellular ratios have also been extended to include other elements35. 156 

However, it has long been recognised that considerable variability is observed in the 157 

stoichiometric ratios for all the elements within cellular material2,9,36-38 (Fig. 1a).  158 

Variability in ocean geochemistry throughout evolutionary history has resulted in 159 

significant stoichiometric differences among taxa. In particular, changes in the relative 160 

availabilities of trace metals during redox transitions in ancient oceans have left imprints 161 

on the metal-binding proteomes, and hence trace-metal requirements, of modern 162 

organisms1,10,32,39. Ratios of C:N:P also vary between taxa, potentially reflecting 163 

ecological trade-offs in the allocation of carbon (and associated nutrients) amongst 164 

macromolecules associated with different functions9-11,35. The availability of nutrients in 165 

the environment also drives extensive phenotypic differences in cellular composition 166 

2,9,36-38. Other factors, including acclimation to light intensity, can also significantly 167 
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influence cellular elemental composition11,37. As cells acclimate to environmental 168 

variability, plasticity in intracellular elemental stoichiometry broadly reflects the 169 

changing ratios of functional macromolecular pools (e.g. proteins and ribosomes), 170 

alongside the accumulation or depletion of energy (carbohydrates and neutral lipids) or 171 

nutrient reserves (such as polyphosphate, nitrate and ferritin)2,9,11. Substitutions between 172 

different metal-containing enzymes, or the metals bound by the enzymes, can also 173 

facilitate stoichiometric flexibility for these micronutrient elements2,6,8,9,36.  174 

The degree of variability in cellular elemental quotas appears to decline with 175 

increasing cellular requirements (Fig. 1a, Supplementary Fig. S1). Elements incorporated 176 

within larger biochemical pools will probably be involved in a wider range of metabolic 177 

processes. For example, nitrogen represents over 7% of cellular mass in marine microbes, 178 

being a major constituent of both proteins and nucleic acids9. Although there is scope for 179 

substitution and/or maintenance of metabolism at reduced cellular nitrogen 180 

concentrations40, this appears relatively restricted. In contrast, phosphorus requirements, 181 

which typically account for around 1% of microbial mass, can be more significantly 182 

reduced under limiting conditions. For example, a substantial proportion of one of the 183 

major cellular pools, the phospholipids, can be substituted for non-phosphorus containing 184 

lipids25. The cellular C:N ratio thus appears more constrained than the C:P (and hence 185 

N:P) ratio9,10. Plasticity is even higher for many of the trace metals (Fig. 1a), as excess 186 

intracellular accumulation can occur when external availability is high, while 187 

substitutions can occur under limiting conditions6,8,36.  188 

Cellular stoichiometry and associated uptake ratios dictate how surface organic 189 

matter production both responds to and influences the differential availability of 190 
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nutrients2,4,7,41-44. Assuming no other constraints operate, strict conservation of cellular 191 

stoichiometry would dictate that the nutrient in most deficient supply to the surface layer 192 

should limit the rate of new biomass production (see Box 1). Supply from the sub-surface 193 

will dominate for many nutrients (Fig. 2a). However additional inputs, for example from 194 

the atmosphere, may also be significant for some nutrients, influencing patterns of 195 

limitation45,46. Moreover, stoichiometric plasticity (Fig. 1a) and variable surface recycling 196 

rates for different elements41 may further decouple the proximally limiting nutrient from 197 

what might be predicted on the basis of dissolved nutrient stoichiometry within local sub-198 

surface pools (Supplementary Fig. S2)41,47,48. A significant proportion of the sub-surface 199 

pools of many nutrients results from remineralisation of organic matter produced in the 200 

surface layer (Fig, 2a, Supplementary Table 1). Consequently, the elemental composition 201 

of organic matter production (Fig. 1a), alongside any variability in remineralisation rates 202 

between elements33,41, can also influence sub-surface nutrient stoichiometry4,41-44.  203 

Stoichiometry thus exerts a fundamental control on nutrient limitation and the 204 

coupling between the biogeochemical cycles of the different nutrients2,4,44,49. The 205 

majority of present day large-scale ocean biogeochemical models tend to assume fixed 206 

stoichiometries for many elements45,50,51 (Supplementary Information). Although 207 

implementation of more realistic physiological parameterisations will be challenging50, it 208 

may be necessary for improved representation of current nutrient limitation patterns in 209 

these models45,46. 210 

 211 

Patterns of phytoplankton nutrient limitation in the modern ocean 212 

 213 
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Over much of the surface ocean, non-nutrient constraints on net community growth, such 214 

as light levels, grazing and viral infection, appear insufficient to prevent the depletion of 215 

at least one nutrient to concentrations where experimental amendment can, at times, elicit 216 

a rapid biological response (Fig. 3). Large-scale spatial patterns of limiting nutrients have 217 

been inferred from multiple lines of evidence. Absolute surface nutrient concentrations or 218 

their stoichiometric ratios provide an indication of the potential for limitation or 219 

deficiency (cf. Box 1), respectively. Surface inorganic nitrogen and phosphorus 220 

concentrations are highly depleted throughout much of the low latitude oceans (Fig. 1b & 221 

c, Fig. 3). Phosphorus is typically in excess of nitrogen relative to cellular requirements34 222 

(Figs. 1 & 3). However this is not the case everywhere; both of the northern hemisphere 223 

oligotrophic gyres have lower surface phosphate concentrations than the southern gyres 224 

(Fig. 1b & c, Fig. 3b, Supplementary Fig. S2)31,41,52. Surface depletion of micronutrients, 225 

such as Fe, Co, Zn, Cu, Ni, Cd, is also observed in many regions6. Perhaps the classic 226 

example of how analytical advances can transform our understanding of oceanic nutrient 227 

cycles5 concerns the so-called high-nitrate low-chlorophyll regions. The long-228 

hypothesised deficiency of iron in these environments was only confirmed following 229 

improved sampling and measurement techniques5,53,54 (Fig. 1d).  230 

Variable cellular stoichiometry (Fig. 1a), the rapid turnover of nutrients within the 231 

foodweb5,20, and the differing capacity of microbial groups to access different nutrient 232 

species (termed bioavailability6, see Supplementary Information) complicate inferences 233 

of limitation or deficiency based on observed concentrations (Fig. 1b-d). Consequently, 234 

experimental approaches to directly assess nutrient limitation of marine microbes have 235 

been employed for at least 50 years55. Nutrient manipulation experiments have included 236 
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additions of specific nutrients to natural microbial communities enclosed in bottles53 and 237 

in-situ enrichments in the open ocean20,54. A compilation of such experimental data for 238 

phytoplankton reveals coherent large-scale patterns, and a clear relationship between 239 

proximal nutrient limitation and the concentrations of nutrients (Fig. 1b-d, Fig. 3). These 240 

patterns appear robust to differences in employed methods, including variable time and 241 

space scales (Fig. 2b), and the wide range of ecophysiological and molecular techniques 242 

used to monitor responses. 243 

In the low-biomass (oligotrophic) waters which dominate the low-latitude oceans, 244 

phytoplankton biomass and productivity typically only increase following experimental 245 

addition of nitrogen47,52,56. In contrast, in high-nitrate low-chlorophyll waters (Fig. 3), 246 

increases in phytoplankton biomass and productivity often result from the addition of iron 247 

alone, in both bottle and in situ experiments53,54. In certain oligotrophic regions, including 248 

the Eastern Mediterranean20,48 and the sub-tropical North Atlantic25,41,57,58, bioavailable 249 

forms of phosphorus can become severely depleted alongside nitrogen (Fig. 1c, Fig. 3) 250 

and microbial populations frequently display evidence of phosphorus stress (cf. Box 251 

1)20,25,57,58. However, even in these systems, addition of phosphorus alone does not 252 

typically result in increased autotrophic activity or biomass20,47,48,59. Rather, once 253 

stratified oligotrophic conditions are well established, N- or NP- co-limitation seems to 254 

occur47,48,59.  The higher bioavailability of organic phosphorus compounds41,48 (see 255 

Supplementary Information), acclimation mechanisms for coping with phosphorus 256 

stress25 and/or the selection for higher N:P stoichiometry under low nutrient conditions11 257 

could explain the tendency towards nitrogen limitation. 258 
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Other nutrients can be almost as deficient as nitrogen, iron and phosphorus (Fig. 1 259 

b-d, Supplementary Figure S2). However, our understanding of the importance and 260 

geographic extent of multi-nutrient interactions (beyond those of nitrogen and 261 

phosphorus)47,48,59 is less complete, due to a scarcity of experiments and the potential 262 

limitations of current methodologies8. Experiments that employ a factorial matrix of 263 

differing nutrients provide evidence of secondary- and/or co-limitation in both high-264 

nitrate low-chlorophyll and oligotrophic environments (Fig. 3; Supplementary Table S2). 265 

However, such approaches are logistically challenging, and may not be capable of 266 

detecting a range of known metal-metal interactions, including the biochemical 267 

substitution of one metal for another8 (Box 1).  268 

Molecular diagnostics, including the expression of specific genes or the presence 269 

of biomarker proteins, hold promise for the future assessment of multi-nutrient 270 

interactions for phytoplankton60 and other microbial groups. A variety of techniques 271 

could potentially be used to determine simultaneous multiple nutrient stress on individual 272 

phytoplankton taxa, circumventing logistical problems and caveats associated with bottle 273 

incubations. Individual diagnostics of both iron and phosphorus stress have already been 274 

employed57,61, and emerging technologies will facilitate more in-depth sampling of 275 

nutrient-related gene expression62 and protein abundance profiles. 276 

Overall, our synthesis of experimental data (Fig. 3) supports prior model 277 

predictions45,46, and can be used to infer that there are two broad nutrient limitation 278 

regimes in the modern ocean. Approximately 30% of the ocean’s surface area consists of 279 

high-macronutrient, iron-limited systems, with most of the remaining low latitude 280 

oligotrophic systems being nitrogen (or in places NP co-) limited (Fig. 3). Certain 281 
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phytoplankton groups may have additional specific requirements.  For example, silicon 282 

availability may limit diatoms21,45. Emerging evidence also points to the potential for 283 

other micronutrients and vitamins, such as Co, Zn, Ni and vitamin B12, to have secondary 284 

or subtle interactive influences beyond the primary N(P) or Fe limitations in some 285 

regions7,8. Variability in the stoichiometry of phytoplankton cellular elemental quotas 286 

(Fig. 1)11,25 and upper ocean nutrient cycling41,48, as well as physical mixing between 287 

water masses with contrasting nutrient stoichiometry (Fig. 3), may provide mechanisms 288 

for generating regions of co-limitation. The seasonal cycle can also influence patterns of 289 

(co-)limitation21,48, as physical nutrient inputs and other drivers, including light levels, 290 

combine with biological cycling to alter nutrient availability. 291 

 292 

Potential for change 293 

 294 

Significant changes in nutrient biogeochemistry have occurred over glacial-interglacial 295 

cycles (Supplementary information), indicating the potential for altered patterns of upper 296 

ocean nutrient limitation63-65. A range of processes could influence nutrient availability in 297 

the future, including altered nutrient demands, increasing external nutrient inputs, and 298 

changes in surface ocean chemistry driven by anthropogenic increases in atmospheric 299 

carbon dioxide concentrations. Changes in ocean circulation could also play a major role, 300 

due to the dominance of physical supply from depth (Fig. 2a) on the fluxes of many 301 

nutrients to the euphotic zone16. At the global scale, physical resupply is dominated by 302 

the Southern Ocean, where strong upwelling brings macronutrient-rich deep waters to the 303 

surface43. These waters are deficient in those trace metals which have short oceanic 304 
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residence times due to scavenging losses (Fig. 1a & d)6,66, contributing to the tendency 305 

for iron limitation in the Southern Ocean (Fig. 3). A proportion of the surface 306 

macronutrients which remain unutilised in the Southern Ocean (Fig. 1d) are subsequently 307 

transported northwards within the thermocline, where smaller scale upwelling and mixing 308 

eventually supports production in the largely nitrogen-limited (Fig. 3) low-latitudes43.  309 

 310 

Anthropogenic CO2 emissions and increasing temperatures 311 

 312 

Continued anthropogenic carbon dioxide emissions and resulting ocean warming may 313 

influence oceanic nutrient cycles. Oceanic uptake of anthropogenic carbon dioxide 314 

directly alters ocean chemistry by changing inorganic carbon speciation, lowering pH and 315 

potentially affecting the speciation of some nutrients. For example, the bioavailability of 316 

iron67 or the biological oxidation rate of ammonia68, a fixed N species, might decrease. 317 

However, any co-occurring changes in nutrient supply and demand need to be taken into 318 

account when attempting to predict overall consequences for upper ocean nutrient 319 

limitation68,69. 320 

The climatic impacts of increased atmospheric carbon dioxide concentrations are 321 

expected to include a strengthening in the density stratification of the upper ocean in 322 

response to warming and intensification of the hydrological cycle70. Resulting changes in 323 

ocean circulation could influence nutrient cycling in several ways. Increased stratification 324 

may restrict the physical resupply of nutrients to surface waters70,71, with some models 325 

predicting declines in global particulate organic matter export of around 10% by the end 326 

of the century as a consequence51. Stratification increases would likely involve expansion 327 



 14 

of the nitrogen-limited sub-tropical gyres71 (Fig. 3). Although some observational data 328 

already supports such a trend72, regional in situ records can differ73 and longer time-series 329 

are needed74.  330 

Increased stratification and warming may also decrease deep-water oxygen 331 

concentrations75. Subsequent expansion of oxygen minimum zones could decrease the 332 

ocean inventory of fixed nitrogen species by increasing microbial denitrification and/or 333 

anammox. Expansion of oxygen minimum zones could also increase trace metal66 and 334 

phosphorus inventories by increasing the release of these nutrients from sediments, as 335 

may have occurred over glacial-interglacial cycles (Supplementary Information). Such 336 

changes at depth could influence surface waters on timescales of decades or longer (Fig. 337 

2a), being most significant in regions extending out from existing oxygen minimum 338 

zones in the eastern tropical Atlantic66 and Pacific and northern Indian Oceans75.  339 

 340 

Changes in external nutrient supply 341 

 342 

Anthropogenic activities have significantly influenced the biogeochemical cycles of 343 

many elements14. Terrestrial nutrients primarily reach the ocean through atmospheric and 344 

fluvial fluxes. These fluxes are of comparable magnitude (Table 1), but differ in their 345 

geographical distribution. Significant anthropogenic perturbations to both supply routes 346 

have increased the external supply of nutrient elements to the ocean (Table 1)12,76-79. 347 

Anthropogenic fixed nitrogen sources are comparable to that derived from biospheric 348 

nitrogen fixation12,49, leading to enhanced fluvial fluxes of nitrogen to the ocean49. 349 

Riverine phosphorus fluxes have also increased by 50-300% over preindustrial levels and 350 



 15 

are expected to track future global population increases, unless declining mineral 351 

phosphorus reserves offset such changes80. Fluvial dissolved iron inputs are presently 352 

small relative to atmospheric inputs81. However, any change in the estuarine trapping 353 

efficiency of the much larger fluvial particulate iron fluxes could have a significant, but 354 

uncertain, impact on the supply of terrestrial iron to the open ocean82.  355 

Atmospheric bioavailable fixed nitrogen deposition to the open ocean has tripled 356 

since 1860 (Table 1), and a further 10-20% increase is expected by 2050 (ref. 12). At 357 

present, most of this anthropogenic nitrogen is deposited in low latitude nitrogen-limited 358 

regions (Fig. 3), with further increases predicted particularly to the Indian Ocean, tropical 359 

Pacific and the waters off southern Africa12,13. The total atmospheric flux of iron into the 360 

ocean is dominated by soil dust from desert regions, resulting in strong regional gradients 361 

in deposition82, with high fluxes in the North Atlantic and western North Pacific from the 362 

Saharan and Asian deserts, and very low fluxes to the iron-limited Southern Ocean (Fig. 363 

3). Although there is evidence that atmospheric dust has increased over the last century78, 364 

the magnitude and even the sign of further changes, resulting from continued shifts in 365 

climate and altered land use in important source regions, is difficult to predict78. 366 

Depending on the regional distribution of changes to dust and other, anthropogenic, 367 

inputs of iron (Supplementary material), biological responses might principally be 368 

expected in iron-limited regions (Fig. 3)13,46 and/or in low latitude waters where iron 369 

potentially limits diazotrophy29,31,83. Atmospheric deposition of phosphorus to the ocean 370 

predominantly comes from natural sources, and changes will likely parallel those of 371 

dust77. Experimental evidence has indicated the potential for a range of microbial 372 

responses to future changes in dust inputs (Supplementary Fig. S3). Overall, atmospheric 373 
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fluxes are predicted to become increasingly enriched in nitrogen relative to both iron and 374 

phosphorus (Table 1).  375 

Although the magnitude of likely changes in external nutrient inputs suggests only 376 

modest changes to whole ocean inventories on decadal timescales (Table 1)12,13,46,78, the 377 

increased anthropogenic fluxes are still significant, particularly at local scales or when 378 

compared to natural inputs. For example, the enhanced fluvial nutrient inputs entering the 379 

coastal zone are responsible for significant eutrophication, contributing to the growth of 380 

low-oxygen waters in many regions84. Overall, anthropogenic inputs are predicted to 381 

continue increasing beyond the magnitude of natural external sources (Table 1)12,76-79, 382 

representing a significant biogeochemical perturbation of the whole oceanic system. For 383 

example, in addition to the well-discussed fixed nitrogen inputs12,46, the short residence 384 

time for iron (Fig. 1a) means that any future changes78 could have significant impacts on 385 

upper ocean cycling over decadal-century timescales13,46 (Table 1).  386 

 387 

Altered nutrient demand  388 

 389 

A range of other factors alongside nutrient availability - including temperature, light, 390 

inorganic carbon availability and grazing - interact to control the physiology, growth and 391 

abundance of different marine microbial groups5,21,85-87. Changes in these non-nutrient 392 

drivers may alter microbial activity and distribution, and hence influence overall 393 

biological uptake, a crucial determinant of nutrient limitation. For example, model studies 394 

indicate that direct physiological responses to increasing temperature could potentially 395 

influence primary (although not export) production by a magnitude comparable to the 396 
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influence of increased stratification71,88. Future warming and higher carbon dioxide 397 

concentrations may also influence diazotrophic growth rates85,87,89, potentially altering 398 

nitrogen inputs and/or phosphorus and iron uptake and hence the stoichiometry of N:P:Fe 399 

cycling in low-latitude nitrogen-limited regions (Fig. 1 b & c, Fig. 3). In the high 400 

latitudes, increases in stratification might increase seasonal light availability for 401 

phytoplankton and hence overall productivity51. However, the extent to which 402 

macronutrient drawdown might subsequently increase in different regions (Fig. 3) will 403 

depend on the current relative importance of light or iron availability as limiting factors, 404 

potentially alongside interactions with altered iron supply and other potential drivers21,69.  405 

Establishing the dominant environmental controls on the ecophysiology of 406 

different microbial groups in diverse regimes thus remains a crucial challenge. 407 

Biogeochemical responses are unlikely to be simply related to single environmental 408 

drivers. Mechanistic understanding of individual physiological responses and how they 409 

interact21,50 will need to guide the next generation of numerical models if these are to 410 

provide accurate predictions of how future changes in patterns of nutrient supply and 411 

biotic demand will combine to alter regional nutrient limitation (Fig. 3)13,46.  412 

Geographical shifts in the boundaries between the two broad regimes of nutrient 413 

limitation apparent at basin scales (Fig. 3) would likely be one primary consequence of 414 

changes in either external inputs46, internal transports related to oceanic circulation71, or 415 

alterations in biological processes linked to other environmental drivers21. 416 

 417 

Implications for the carbon cycle 418 

 419 
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Ultimately, changes in oceanic nutrient cycles have the potential to influence atmospheric 420 

carbon dioxide concentrations, resulting in climate feedbacks13,14,28,63. Partitioning of 421 

carbon dioxide between the atmosphere and oceans is driven by interacting physical, 422 

chemical and biological processes. The downward transport of nutrients resulting from 423 

the sinking and remineralisation of particulate organic material formed in the surface 424 

ocean16 (Fig. 2a) is associated with a flux of carbon, frequently termed the biological 425 

pump90-92. Physical processes also transport biologically unutilised (so-called 426 

‘preformed’) nutrients into the ocean interior, leading to a decreased efficiency of the 427 

biological pump. Assuming constant stoichiometry and effective air-sea equilibration of 428 

gases in the surface ocean, the biological storage of carbon in the ocean is proportional to 429 

the total inventory of nutrients in the interior that arrived through the biological 430 

‘remineralised’ pathway90,92 (Supplementary information). Consequently, circulation 431 

patterns strongly dictate how changes in nutrient limitation can influence atmospheric 432 

carbon dioxide concentrations91. For example, the high-nitrate low-chlorophyll Southern 433 

Ocean currently represents the largest source of unutilised (preformed) macronutrients to 434 

the deep ocean63,91.  As such, glacial-interglacial variations in atmospheric carbon dioxide 435 

levels have been linked to altered nutrient biogeochemistry in this region63,64. Past64 or 436 

future increases in iron inputs to high-nitrate low-chlorophyll Antarctic waters could 437 

reduce excess surface macronutrients, decreasing the preformed nutrient contribution to 438 

the deep ocean and hence lowering atmospheric carbon dioxide concentrations91,93. In 439 

contrast, altered iron inputs to the high-nitrate low-chlorophyll Sub-Antarctic waters 440 

could influence (macro-)nutrient input into the thermocline43, impacting phytoplankton 441 
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productivity in low latitude nitrogen-limited regions (Fig. 3), while having less influence 442 

on the overall preformed nutrient pool and hence atmospheric carbon dioxide43,91. 443 

Altered external nutrient inputs (Table 1) influence oceanic carbon storage 444 

through impacts on nutrient inventories46. Any potential impact on atmospheric carbon 445 

dioxide concentrations thus needs to be considered from this perspective. For example, 446 

the nitrogen inventory is thought to be stabilised by feedbacks which keep biological di-447 

nitrogen fixation in balance with the biological processes of fixed nitrogen loss4,27,34,42,44. 448 

Increasing anthropogenic atmospheric nitrogen inputs could directly increase the oceanic 449 

nitrogen inventory, driving a net drawdown of atmospheric carbon dioxide12,13. However, 450 

the associated increases in the ratio of external N:P inputs (Table 1) might also act to 451 

reduce the current excess of phosphorus in oligotrophic waters (Fig. 3). Consequently, 452 

depending on the dominant environmental control(s) on di-nitrogen fixation21,87 - 453 

particularly the extent to which iron or phosphorus are currently limiting29,31,57,61,83 - the 454 

realised niche for diazotrophy might decrease, partially counteracting any increase in the 455 

fixed nitrogen inventory13. Although stoichiometric variability (Fig. 1) in phytoplankton 456 

N:P uptake and/or remineralisation ratios2,9,41,94 may also influence the niche for 457 

diazotrophs and the coupling of the nitrogen and phosphorus cycles both regionally94 and 458 

globally42.  459 

The stoichiometries of biological matter production (Fig. 1) and cycling2 couple 460 

the marine carbon cycle to that of nutrient pools and fluxes49. The relative constancy of 461 

the C:N ratio (Fig. 1) suggests that the total remineralised nitrogen pool could be 462 

considered the best measure of oceanic biological carbon storage (Supplementary 463 

Information). Variability in the overall C:N ratio could hence have a significant influence 464 
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on carbon storage49. More broadly, a better understanding of the environmental controls 465 

on variable elemental stoichiometries of different microbial groups2,25,42,94 would help 466 

constrain the potential magnitude of any future carbon cycle responses.  467 

 468 

Future challenges 469 

 470 

The last two to three decades have seen the emergence of a first order description of 471 

large-scale patterns of phytoplankton nutrient limitation in the upper ocean (Fig. 3), and 472 

the biogeochemical consequences of this limitation. However, clear gaps persist. Many 473 

regions remain under-sampled (Fig. 3), particularly with respect to the trace elements and 474 

the potential for interactive effects between multiple nutrients, including co-limitation7,8. 475 

Furthermore, our understanding of the extent to which important microbial groups such 476 

as diazotrophs and heterotrophs are nutrient-limited lags far behind that of (non-477 

diazotrophic) phytoplankton. Recent research continues to highlight the magnitude, 478 

mechanisms and importance of variable nutrient stoichiometry at levels ranging from 479 

those of the microbial cell2,7,9,11,25 (Fig. 1a) through to the availability and supply of 480 

multiple nutrients at ocean basin scales42-44,46,66 (Fig. 1 b-d).  However, application of 481 

such knowledge to our understanding of existing patterns of nutrient limitation (Fig. 3), 482 

as well as past and potentially significant future change (Table 1), remains rudimentary. 483 

The details of how biological processes both influence and respond to the availability of 484 

nutrients remain debated even in the most well studied case of nitrogen and 485 

phosphorus3,4,31,42,44,94, let alone for a wider suite of elements (Fig. 1). 486 
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Addressing these challenges will require an interdisciplinary approach. New 487 

analytical techniques, together with observational platforms such as gliders and floats 488 

fitted with nutrient sensors, and co-ordinated international sampling surveys such as 489 

GEOTRACES95 and the CLIVAR Repeat Hydrography Program, are all facilitating 490 

better descriptions of the oceanic distributions of many more nutrients (Fig. 1). Such data 491 

provide a basis for monitoring future change. From the biological perspective, even 492 

baseline information on the biogeographical distributions of key microbial groups, and 493 

associated metabolic rate processes, is lacking, while systematic evaluation of 494 

environmental controls, including nutrient limitation, lags even further behind. 495 

Applications of molecular tools should continue to yield insights, although linking such 496 

information to nutrient biogeochemistry in a quantitative way remains a challenge. Fuller 497 

exploitation of observations will also require better representation of trace metal cycling, 498 

flexible stoichiometry and multi-nutrient ecosystem interactions in numerical models. 499 

Only through synthesis of such diverse information will a more complete description of 500 

the physical-chemical-biological interactions driving oceanic nutrient biogeochemistry 501 

emerge.  502 

  503 

504 
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Figure Captions 772 

 773 

Figure 1. Comparisons between intracellular and dissolved seawater elemental 774 

stoichiometry. a. Representative (circle) and observed (bar) range of elemental ratios in 775 

oceanic phytoplankton normalized to carbon (nutrient:C quotas) plotted against mean 776 

dissolved seawater concentrations. Colours indicate oceanic residence times (see 777 

Supplementary Table S1 for data and full list of references). Dark and light grey regions 778 

indicate <10 fold and <100 fold excesses and deficiencies relative to nitrogen, which is 779 

limiting over much of the ocean (Fig. 3). Elements to the top left of the shaded area are 780 

thus in great excess in seawater and biological processing has little influence on their 781 

distribution, while some of those in the shaded regions have the potential to become 782 

limiting. b-d. Intercellular quotas versus surface dissolved seawater concentrations 783 

(normalized to mean ocean nitrate) for three oceanic regions. For clarity, intercellular 784 

stoichiometric variability is neglected and only the macronutrients N, P, Si and the 785 

scavenged micronutrients, Co, Mn, Fe are indicated (for additional detail and references 786 

see Supplementary Fig. S2). Experimental addition of the nutrient indicated in red 787 

typically promotes the most immediate (proximal) biological response in each region 788 

(Fig. 3); with solid red, dashed and dotted diagonal lines [can only see solid lines – 789 

amend?] delineating elements which are equally deficient and 10 and 100 fold more 790 

replete than this nutrient respectively.  791 

 792 

Figure 2. Example time and space scales of nutrient related phenomena. a. Profile of 793 

the principal bioavailable form of nitrogen (nitrate) in the sub-tropical North Atlantic 794 
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Ocean (note logarithmic depth scale). Near complete depletion of nitrate occurs in the 795 

euphotic zone, while concentrations are enriched at depth due to both the remineralisation 796 

of particulate organic matter (Nremin) and physical transport of waters containing nitrate 797 

which was unutilized before these waters sank (Npre). Representative time-scales for 798 

mixing back to the surface are indicated. b. Schematic illustrating the time and space 799 

scales of processes, levels of biological-biogeochemical organization and observational 800 

techniques related to oceanic nutrient cycling. Interactions and feedbacks occur over all 801 

scales. For example, large scale biogeochemistry is influenced by the integrated activity 802 

of the microbes operating at much smaller time and space scales. Abbreviations: nAxs, 803 

nutrient addition experiment; BCP, biological carbon pump; S, turnover times of 804 

nutrients in the surface layer; r,Fe,N,P, whole ocean residence times of the key nutrients 805 

iron, nitrogen and phosphorous.  806 

 807 

Figure 3. Patterns of nutrient limitation. Backgrounds indicate surface concentrations 808 

of nitrate (left) and phosphate (right) in umol/kg. To facilitate comparison nitrate 809 

is scaled by the mean N:P ratio of organic matter (i.e. divided by 16, Fig. 1)34. Symbols 810 

indicate the primary (central circles) and secondary (outer circles) limiting nutrients as 811 

inferred from chlorophyll and/or primary productivity increases following artificial 812 

amendment of: N (green), P (black), Fe (red), Si (orange), Co (yellow), Zn (cyan), 813 

vitamin B12 (purple). Divided circles indicate potentially co-limiting elements. White 814 

outer circles indicate that no secondary limiting nutrient was identified, which in many 815 

cases will be due to the lack of a test. See Supplementary Table S2 for references.816 
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Table 1. External inputs of N, P and Fe to the oceans (in Gmol yr-1) for ~1860 (pre-industrial), 2000, and 2050 (projected).  1 
Contributions to primary and export production and to the total inventory of each element are indicated. 2 

 3 

             Totals as % of ‡  4 
    Fluvial Atmospheric  Glacial  Primary Export  Total 5 

            Production production inventory 6 

 7 

  ~1860  1000 (79)# 1000 (12)  11 (96,97)  0.3%  1.5%  0.005% 8 

Total N 2000  2100 (79)# 4800 (12)  11 (96)   1.2%  5.3%  0.017% 9 

  2050  2300 (79)# 5500 (12)   11 (96)   1.3%  5.9%  0.019% 10 

 11 

  ~1860  23 (79)#  16 †   48 (98)   0.2%  1.1%  0.003% 12 

Total P 2000  65 (79)#  21 †   48 (98)    0.4%  1.6%  0.005% 13 

  2050  87 (79)#  21 †   48 (98)   0.4%  1.9%  0.006% 14 

 15 

 ~1860  2 (96)$  4.3 †   0.02 (81) $  2%  10%  0.8% 16 

Dissolved Fe$ 2000  2 (96)$  9.3 †   0.02 (81) $  4%  20%  1.5% 17 

  2050  2 (96)$  8.8 †   0.02 (81) $  4%  20%  1.4% 18 

 19 

  ~1860  44:1  62:1   0.2:1 20 

N:P  2000  33:1  228:1   0.2:1 21 

  2050  26:1  258:1   0.2:1 22 

 23 

  Total inputs Mean biological [How were these N:P ratios calculated, i.e. how do they differ from those directly 24 

above?  And what does ‘mean biological’ stand for?  Explain in legend?] 25 
 26 

  ~1860  23:1  16:1  27 

N:P  2000  52:1 28 

  2050  50:1 29 
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Notes for Table 1. 1 

 2 

# Dissolved only. Particulate nitrogen and phosphorus (respectively estimated to be 960 3 

and 210 Gmol yr-1 in 2000) are likely to be trapped in the near coastal zone. Total 4 

nitrogen and phosphorus analysis for 1860 is based on reanalysis of output from ref 79 5 

(Seitzinger, pers. comm.).  6 

 7 

$ Due to uncertainty concerning the bioavailability of particulate iron81,82,96, we primarily 8 

consider dissolved inputs. For all glacial flows we assume no change in water flows, 9 

which in reality are likely to increase with future warming. Total (reactive particulate and 10 

dissolved) inputs are much higher, however the majority of the fluvial particulate iron 11 

input of around 627 Gmol y-1 is probably trapped on the shelf82 , although much of the 12 

glacial reactive particulate Fe supply of 140 Gmol y-1 may reach the ocean96. We do not 13 

attempt to estimate the magnitude of potential changes in other dissolved iron inputs to 14 

the water column81, including increases in the significant sedimentary source as a result 15 

of decreasing oxygen levels66,75. Iceberg associated fluxes are also an important 16 

contributor, particularly in the Southern Ocean81. 17 

 18 

† See supplementary material.  19 

 20 

‡ Primary and export production are around 4.2 and 0.9 Pmol C y-1 respectively12. 21 

Percentage of upper ocean productivity supported by external nutrient inputs are 22 

calculated by scaling to representative biological ratios (Fig. 1), with estimates for iron in 23 
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particular only considered to be order of magnitude at best, due to known stoichiometric 1 

plasticity (Fig. 1). Cumulative anthropogenic inputs over century timescales are thus 2 

potentially equivalent in magnitude to 100%, 1-2 % and <0.5% of the oceanic iron, 3 

nitrogen and phosphorus inventories respectively.  4 

5 
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Box(1): Concepts of nutrient limitation.  1 

Nutrient scarcity may restrict a number of biological and ecological processes18. Thus, it 2 

is necessary to identify the specific process being “limited” and worth considering the 3 

different conceptual frameworks and terms which have been used in discussing nutrient 4 

limitation5,7,8,17-19. 5 

 6 

Blackman and Liebig. Low nutrient concentrations can limit the growth rate of individual 7 

cells, while the total available amount of a nutrient can also set an upper bound on the 8 

amount of new biomass that can be formed (the yield)5,18. These concepts are often 9 

referred to as Blackman and Liebig limitation5,18, respectively, after two pioneers 10 

working on different aspects of plant production.  F. F. Blackman17 studied 11 

photosynthesis in leaves while J. von Liebig19 worked on agricultural crop yields. The 12 

yield perspective could be extended to consider the total biomass that can be formed at all 13 

trophic levels, including heterotrophic microbes, zooplankton, and viruses. 14 

 15 

Stress and deficiency.  The distinct concepts of stress and deficiency are also sometimes 16 

referred to as nutrient limitation. Although usage varies, we define stress as a 17 

physiological response to a nutrient shortage and deficiency as the stoichiometric lack of 18 

one element relative to another. For example, assuming a fixed biological N:P 19 

stoichiometry of 16:1 (cf. Redfield), if the concentration or flux of dissolved N falls 20 

below 16 times P, a system could be considered nitrogen deficient. Stress and deficiency 21 

are more closely related to, but clearly not synonymous with, the concepts of Blackman 22 

and Liebig respectively. There need not be a consistent relationship between the degree 23 
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of physiological stress and growth rate99, while the most deficient nutrient will still not 1 

become limiting if all the nutrients remain replete [could you expand on this?  What do 2 

you mean by ‘all’?  All nutrients? And is this a continuation of the analogy with 3 

Blackman and Liebig?]]. 4 

 5 

Nutrient co-limitation.  Conditions where two or more nutrients are co-limiting may be 6 

common in oceanic systems, however usage of the term varies greatly7,8. Nutrient co-7 

limitation is typically ascribed to conditions where two (or more) nutrients have 8 

simultaneously been drawn down to levels where addition of both (or on some usage 9 

either) is required to stimulate growth. This may happen in a number of ways7,8. First, 10 

two or more nutrients can simply be drawn down to equally limiting levels so that both 11 

must be added to observe a growth response. Second, one limiting nutrient may be 12 

biologically substituted with another36, either directly within the same macromolecule or 13 

indirectly by substituting one macromolecule for another. Third, the ability to take up low 14 

concentrations of one nutrient may require the availability of another nutrient8. Finally, 15 

one member of the microbial community may respond to the addition of one nutrient 16 

while another member responds to that of a different nutrient7. In the last three scenarios, 17 

addition of either nutrient elicits a growth response. Within nutrient addition experiments 18 

it may be difficult to distinguish the various types of co-limitation from each other, or 19 

from a secondary response due to addition of a nutrient depleted to levels where it is 20 

close to co-limiting8,47.  21 

22 
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Box(2): Competition in low nutrient environments. 1 

Under stable low nutrient concentrations, the specific affinity (, m3 mol-1 s-1), the slope 2 

of the relationship between growth rate and bulk concentration of a nutrient, represents a 3 

key parameter describing the competitive ability of microorganisms100. Assuming that 4 

diffusive transport towards a (for simplicity spherical) cell becomes rate limiting when 5 

the bulk concentration of the nutrient drops below some critical level, mechanisms for 6 

achieving a high , and hence competitive advantage, can be understood by considering 7 

two readily derived expressions (Supplementary information): 8 

Q

Dr


4
 ,      (1a)  9 

or 10 

2

3

r

D


  ,      (1b) 11 

where D is the diffusion constant for the nutrient (m2 s-1), r is the cell radius (m), Q is the 12 

cells nutrient quota (mol) and  is the average whole cell concentration of the nutrient 13 

(mol m-3), i.e. 3Q/4r3 for a spherical cell.  14 

At constant , small cells with high surface area to volume ratios will have a 15 

competitive advantage (Eqn. 1b). This size dependence of nutrient competition has likely 16 

been a key driver of phytoplankton evolution, explaining the dominance of pico-17 

phytoplankton in very low nutrient oligotrophic systems23,24.  In contrast, if constant Q 18 

can be maintained, increased size may actually represent an advantage (Eqn. 1a), a 19 

strategy that vacuolated organisms such as diatoms may adopt100. Finally, for a given 20 

size, minimisation of Q or  (Eqns. 1 a or b) will maximise competitive ability, 21 

formalising the advantage gained from cellular substitutions of limiting nutrients8,25 and 22 
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other adaptive traits, including, for example, minimisation of protein nitrogen costs in 1 

oligotrophic waters40.  2 

 3 

4 
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Figure 3 3 


