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Abstract—In embedded vision systems, parallel computation of 

the integral image presents several design challenges in terms of 

hardware resources, speed and power consumption. Although 

recursive equations significantly reduce the number of operations 

for computing the integral image, the required internal memory 

becomes prohibitively large for an embedded integral image 

computation engine for increasing image sizes. With the objective 

of achieving high-throughput with minimum hardware resources, 

this paper proposes a memory-efficient design strategy for a 

parallel embedded integral image computation engine. Results 

show that the design achieves nearly 35% reduction in memory 

for common HD video. 
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I.  INTRODUCTION 

Although still relatively new in the image processing 
domain, the integral image has long been used in computer 
graphics for texture-mapping as the summed-area table [1]. 
The ground-breaking work of Viola and Jones [2] utilized this 
intermediate image representation for face detection and paved 
the way for its use in several multi-scale computer vision 
algorithms, such as Speeded-Up Robust Features (SURF) [3]. 
Integral image eliminates time-consuming multiplication 
operations to allow fast computation of box-type filters in 
constant time irrespective of their size—a feature which makes 
it especially attractive for real-time embedded vision 
applications. The reduction in computational complexity 
however comes with an associated overhead of calculating this 
intermediate image representation. Although simple addition 
operations are required for computing the integral image, the 
dependence on input image size makes this process 
computation intensive even for images with medium 
resolution. For battery-powered embedded vision systems, this 
presents major challenges in terms of execution speed, 
hardware resources and power consumption [4]. The focus in 
this paper is on minimizing the internal memory resources 
required for an embedded integral image computation engine 
whilst achieving high throughput. The paper presents a design 
strategy that achieves nearly 35% reduction in internal memory 
for common HD video. The remainder of this paper is 
structured as follows.  Section II analyses the internal memory 
requirements for computing integral image in hardware using 

recursive equations. Section III proposes a memory-efficient 
design strategy and presents results for some common image 
sizes. Finally, conclusions are drawn in Section IV.  

II. PARALLEL COMPUTATION OF INTEGRAL IMAGE USING 

RECURSIVE EQUATIONS  

The value of the integral image corresponding to any 
location (x,y) in an image may be defined as the sum of all the 
pixels to the left and above it, including itself. Recursive 
equations due to Viola and Jones [2] provide a useful method 
to reduce the total number of addition operations that are 
required for computation of the integral image. This calculation 
is serial in nature due to the data dependencies involved. By 
decomposition of the Viola-Jones recursive equations, it is 
possible to compute the integral image in row-parallel manner 
as shown by [4]. However, both the recursion-based serial and 
parallel methods require one complete row of integral image 
values to be stored in an internal memory so that it can be 
utilized for the calculation of the very next row. The width of 
the required internal memory is log2(number of rows x number 
of columns x maximum image pixel value) rounded to the 
upper integer whereas the depth is equal to the total number of 
columns in one row of the image. Figure 1 highlights the 
internal memory requirements for an integral image 
computation engine implemented in hardware for some 
common images sizes.  It is evident that with the increasing 
image size, the design of the integral image computation engine 
becomes inefficient in terms of hardware resources due to the 
large internal memory. It is desirable to investigate a better 
design which is memory-efficient, with high throughput.  

 

Figure 1.  Internal memory requirements for the integral image computation 
core for some common image sizes. 
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III. PROPOSED ARCHITECTURE 

To address the internal memory problem discussed in 
Section II, we present a resource-efficient architecture that is 
also capable of achieving high throughput. The design strategy 
makes use of the fact that integral image values in adjacent 
columns of a single row differ by a column sum (please see 
Figure 2). This difference value is maximum in the last row as 
the column sum includes all pixel values from the top to the 
bottom of image in a particular column. In the worst case 
scenario, the difference between two adjacent columns in the 
last row of the image will be the product of the number of rows 
and the maximum value that can be attained by an image pixel 
(e.g., the maximum value is 255 for an 8-bit pixel).  

 

Figure 2.  Worst case difference between adjacent integral image values in 

one row 

Figure 3 shows the proposed architecture for an embedded 
integral image computation engine. This pipelined architecture 
computes two integral image values in a single clock cycle. 
Unlike the methods [2, 4] which store a complete row of 
integral image values in the internal memory for computing the 
very next row, our design only saves the difference values of 
the adjacent columns in a row for calculating the next row. 
Only the integral image value for the first column in that row is 
saved in a separate register to allow computation of the integral 
image values from the stored difference values. Although the 
depth of the internal memory remains the same as mentioned in 
Section II, the proposed design strategy requires the width to be 
log2(number of rows x maximum image pixel value) rounded 
to the upper integer value. Table 1 provides the results for 

internal memory reduction when prototyped on an FPGA, a 
Virtex-6 XC6VLX240T device, for some common image sizes. 
It is evident from Table 1 that the architecture is capable of 
achieving significant memory reduction over other recursion-
based methods [2, 4] even for small image sizes.  

TABLE I.  REDUCTION IN INTERNAL MEMORY REQUIREMENTS FOR THE 

PROPOSED ARCHITECTURE ON VIRTEX-6 XC6VLX240T  

S.No. Image Size Internal Memory 
Bits Required 

Reduction w.r.t 
methods [2, 4] 

1. 360 x 240 4080 32% 

2. 720 x 576 10368 33.3% 

3. 800 x 640 11520 33.3% 

4. 1280 x 720 13680 32.1% 

5. 1920 x 1080 20520 34.4% 

6. 2048 x 1536 29184 36.6% 

7. 3840 x 2160 43200 35.4% 

IV. CONCLUSIONS & FUTURE WORK 

This paper has presented a memory-efficient design 
strategy for a parallel embedded integral image computation 
engine that is capable of achieving nearly 35% memory 
reduction for common HD video (1920 x 1080). In future, we 
intend to design a low-power, high-throughput architecture for 
SURF detector utilizing the proposed integral image 
computation engine.   
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Figure 3.  Block diagram of the proposed architecture. i(x,y) and ii(x,y) are the image pixel value and the integral image value at location (x,y) in the image. 

S(x,y) is the row sum at that particular location. 


