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Abstract

We study a model of multi-player communication. Privately informed decision makers have different
preferences about the actions they take, and communicate to influence each others’ actions in their favor.
We prove that the equilibrium capability of any player to send a truthful message to a set of players de-
pends not only on the preference composition of those players, but also on the number of players truthfully
communicating with each one of them. We establish that the equilibrium welfare depends not only on the
number of truthful messages sent in equilibrium, but also on how evenly truthful messages are distributed
across decision makers.
© 2013 Elsevier Inc. All rights reserved.
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1. Introduction

This paper studies multi-player strategic information transmission. We consider a setting in
which multiple decision makers have private incomplete information about a state of the world,
which influences all players’ utilities. But, given the state, the decision makers have different
preferences over the actions they take. Before making a decision, players communicate with
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each other, but the information transmitted is not verifiable. Our analysis can be applied to sev-
eral economic and political scenarios. In many organizations, decision making is decentralized
at the division level, but these divisions do not necessarily share the same preferences over the
optimal course of action.1 Before making decisions, the division leaders may communicate their
information to each other. In international organizations, national leaders retain control of their
own policy choice (such as national environmental, military, or economic policies), but the im-
plementation of such policies may have spillovers on other States. Different States may have
different preferences on policies. Before making decisions, the leaders communicate to each
other within the context of international organizations.

We develop a natural extension of the uniform-quadratic version of the model of cheap talk
by Crawford and Sobel [9]. There are n players, and an unknown state of the world θ , uniformly
distributed on the interval [0,1]. Each player i chooses an action yi , that influences the utility
of all players. Each player i would like that each player j ’s action yj were as close as possible
to θ + bi , where bi represents player i’s bias relative to the common bliss point θ ; specifically,
player i’s payoff is −∑

j (yj − θ − bi)
2. Each player i is privately informed of a signal si , which

takes the value of one with probability θ and the value of zero with complementary probability.
Before players choose their actions, they simultaneously send messages to each other. A player
can differentiate her message only across audiences, where the set of a player’s audiences is a
partition of the set of all the other players. Our model covers both the case of private communi-
cation, where every player can send a message privately to every other player, and the case of
public communication, where every player’s message is common to all other players.

A communication strategy profile is described by a (directed) network in which each link
represents a truthful message, termed a truthful network. Our first result derives the equilibrium
condition for truthful communication of player i with audience J . The characterization identifies
the following equilibrium effects. First, each player’s incentive to misreport a low signal in order
to raise the action of lower bias opponents is tempered by the loss incurred from the increase in
actions of all higher bias players who belong to the same audience J . Second, the composition of
these gains and losses depends on the number of players truthfully communicating in equilibrium
with each player in audience J . The reason for this is that the influence that player i’s message
has on player j ’s decision depends on player j ’s equilibrium information, i.e., on the number
of truthful messages received by j in equilibrium. Third, an increase in the number of truthful
messages received by a player j in an audience J has an ambiguous effect on i’s capability to
truthfully communicate with the audience J in equilibrium. If communication from player i to
player j is private there is a stark congestion effect: the willingness of player i to communicate
truthfully with player j declines with the number of players communicating with j . However, if
j is part of a larger audience and her preferences are distant from i’s preferences, an increase in
the number of truthful messages received by j decreases the influence that i has on j ’s decision.
Hence, player i capability to be truthful depends now more on the effect of her message on the
other players in J , who have a bias closer to i’s bias, than j ’s bias. As a result, player i may
be more willing to communicate truthfully with audience J , than when j receives fewer truthful
messages.

In our framework, an equilibrium maximizes the ex-ante utility of a player if and only if it
maximizes the ex-ante utility of each one of the players. We find that each player i’s ex-ante

1 For example, the priorities of a marketing division may be different from the ones of the R&D division, when devel-
oping a new product.
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payoff induced by a player j ’s choice is an increasing and concave function of the number of
players who truthfully communicate with j (the in-degree of j in the truthful network). Hence,
equilibria can be ranked in the ex-ante Pareto sense on the basis of the in-degree distribution
that they generate in their corresponding equilibrium networks. If the in-degree distribution of an
equilibrium first order stochastic dominates the in-degree distribution of another equilibrium, the
former is more efficient than the latter. Moreover, if the in-degree distribution of an equilibrium
network is a mean preserving spread of the in-degree distribution of another equilibrium network,
then the latter is more efficient than the former.

We then apply our results to some specialized environments for which we can obtain sharp
properties of the associated equilibrium networks. The first environment comprises two groups
of players. Preferences are the same within groups, but different across groups. Focusing on pri-
vate communication, we find that truthful communication across groups requires that the two
groups are sufficiently small. Furthermore, since larger groups endogenously access more infor-
mation within their own group than smaller groups, communication across groups influence the
choice of larger groups less than the choice of smaller groups. This results in higher incentives
for small group members to misreport information to large group members, than vice-versa. In
this environment, we also compare the maximal welfare achieved under private and public com-
munication.

In the second environment, players’ biases are distributed evenly on the real line. Each player i

has bias bi = iβ , where the constant β describes the preference distance across players. Focusing
on private communication, we find that equilibrium networks are highly decentralized, links con-
necting players with a small bias difference are reciprocal, whereas links between players with a
very different bias may be not reciprocal. Specifically, the equilibrium behavior is different for
moderate bias players (i.e., players with a bias close to the average player’s bias), and for extreme
bias players (i.e. players with a bias significantly different from the average bias). Moderate bias
players influence the decision of extreme bias players through truthful communication, whereas
extreme bias players do not influence the decision of moderate bias players.2

Our specific results are derived in a simple quadratic-loss Beta-binomial model, but they de-
liver insights based on general properties of Bayesian models and of utility functions in the
Crawford and Sobel [9] framework. Specifically, these general properties are (i) the assumptions
that utility functions are single-peaked, strictly concave and ordered through a single-crossing
condition, and (ii) the fact that the effect of a signal on the posterior update decreases with
the precision of prior, i.e., in a multi-player communication model, that the effect of a player’s
truthfully reported signal decreases with the number of truthful messages received from other
players.3,4

2 These results can be related to the large literature that studies endogenous network formation, see, e.g., Bala and
Goyal [3], Bloch and Dutta [6], Calvo-Armengol et al. [8], Dessein et al. [12], Jackson and Wolinsky [20], Galeotti et al.
[14] and Hojman and Szeidl [19]. Our main departure from that literature is that we study the formation of endogenous
communication networks in a context where information transmission is costless and non-verifiable.

3 The decreasing marginal effect of signals on the posteriors is a general property of Bayesian updating, in environments
where signals are identically distributed and independent conditionally on the state of nature. When signals are not
identically distributed, this property need not hold. For example, see McGee and Yang [25], who consider a multi-
dimensional state and different signals that convey complementary information across different dimensions.

4 However, our specific welfare results also depend on the anonymity assumption that each player i’s payoff depends
on each player j ’s action through the same quadratic-loss function. See also discussion in Section 3.2.
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Our paper relates to the literature on cheap talk, which builds on Crawford and Sobel [9]. This
literature is too vast to be fully surveyed here, and we discuss only the papers closer to ours.5 The
first one is the study of many-to-one communication by Morgan and Stocken [26].6 One of their
findings is that each sender’s incentives to reveal information declines with the number of senders
communicating with the receiver. The other one, by Farrell and Gibbons [13], considers a sender
communicating privately or publicly with two receivers. In the former case, they highlight that
the gains induced by lying to bias one receiver may be tempered by the loss induced by biasing
also the other receiver.7

Our analysis first describes the implications of these two findings for many-to-many com-
munication (Theorem 1). Then, we uncover further novel insights. Unlike in Morgan and
Stocken [26], we find that an increase in the number of truthful messages received by a player
has an ambiguous effect on the other players’ capabilities to truthfully communicate with her
(Example 1). Further, we advance the findings by Farrell and Gibbons [13], by showing that the
composition of the gains and losses induced by misreporting a signal to an audience depends on
the number of players truthfully communicating in equilibrium with each player in that audience
(Theorem 1). Finally, our welfare results (Theorem 2, Corollary 2 and Example 2) are entirely
novel in the cheap talk literature.

Our paper is also related to a recent paper by Hagenbach and Koessler [18], who also in-
vestigate strategic communication with multiple decision makers. In that paper, players have
incentives to coordinate their actions, the common state of the world equals the sum of each
player i’s individual binary signal, and signals are ex-ante independent across players. Under
these assumptions the marginal effect of one truthful message on the action chosen by a player
is constant in the number of truthful messages she receives. Hence, the incentives for a player’s
truthful equilibrium communication do not depend on the other players’ equilibrium strategies.
We abstract from coordination motives, but we consider a (standard) statistical model in which
signals are independent only conditionally on the state of the world, and hence are ex-ante corre-
lated. As a result, the players’ incentives to communicate in equilibrium depend not only on the
players’ biases but also on the other players’ communication strategies.8

The rest of the paper is organized as follows. Section 2 develops the basic framework and
Section 3 presents the general results on equilibrium and welfare. Section 4 studies the two
special environments discussed above. Section 5 concludes. All the proofs of the results presented
in Section 3 are in Appendix A; the proofs of the results presented in Section 4 are in an on-line
Appendix.

2. Model

There are n players, N = {1,2, . . . , n}, and player i ∈ N has bias bi , with b1 � b2 � · · ·� bn;
the vector b = {b1, . . . , bn} is common knowledge. The state of the world θ is uniformly dis-

5 Other influential works include Ambrus and Takahashi [1], Austen-Smith [2], Battaglini [4,5], Gilligan and Krehbiel
[15,16], Kartik, Ottaviani and Squintani [21], Krishna and Morgan [23,24], Wolinsky [27].

6 Indeed, our equilibrium characterization for the special case of private communication (Corollary 1) can be described
as a generalization of their Proposition 2.

7 More recent work on cheap talk game with multiple receivers and a single sender includes Goltsman and Pavlov [17],
Koessler and Martimort [22], and Caillaud and Tirole [7].

8 Despite this difference, it is interesting to note that some of our results in specialized environments are qualitatively
similar to the ones by Hagenbach and Koessler [18]. We will discuss these similarities in details in Section 4.
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tributed on [0,1]. Every player i receives a private signal si ∈ {0,1} on the realization of θ ,
where si = 1, with probability θ . Signals are independent across players, conditionally on θ .

Communication among players is restricted by a communication mode, which describes to
what extent messages can be targeted to a subset of other players. The communication mode
available to i is Ni , a partition of N−i = N \ {i}, with the interpretation that player i must
send the same message miJ ∈ {0,1} to all players j ∈ J , for any group of players J ∈ Ni ; we
refer to each set J as an audience. A communication strategy for player i specifies, for every
si ∈ {0,1}, a vector mi (si) = {miJ (si)}J∈Ni

; m = (m1,m2, . . . ,mn) denotes a communication
strategy profile. Let m̂i be the messages that agent i sends, and m̂ = (m̂1, m̂2, . . . , m̂n).

After communication occurs, each player i chooses an action ŷi ∈ �. Agent i’s action strat-
egy depends on agent i’s signal and the other agents’ messages, i.e., yi : {0,1}n → �. Let
y = {y1, . . . , yn} denote an action strategy profile. Given the state of the world θ , the payoff
of player i facing a profile of actions ŷ is

ui(ŷ|θ) = −
∑
j∈N

(ŷj − θ − bi)
2.

Agent i’s payoff depends on how close her own action yi , and the actions of the other players,
are to her ideal action bi + θ . The underlying assumption is that players’ interaction is of a global
nature. Depending on the particular context, a model where each player is affected only by the
actions taken by a subset of the population may be more plausible. A way of incorporating this is
to assume that ui(ŷ|θ) = −∑

j∈Ni
(ŷj − θ − bi)

2, for any player i, where Ni is a subset of N . It
can be easily appreciated that our method of analysis and our equilibrium results can be extended
to these settings, with minor modifications.

The equilibrium concept is Perfect Bayesian Equilibrium. We restrict attention to pure strategy
equilibria.9 Hence (up to relabelling of messages), each agent i’s communication strategy m with
an audience J ∈ Ni , may take one of only two forms: the truthful one, miJ (si) = si for all si ,
and the babbling one, miJ (0) = miJ (1).

Given her own signal and the received messages m̂N−i ,i = {m̂j,i}j∈N−i
, by sequential ratio-

nality, agent i chooses yi to maximize her expected payoff. Agent i’s optimization then reads

max
yi

{
−E

[∑
j∈N

(yj − θ − bi)
2
∣∣∣∣si , m̂N−i ,i

]}
= max

yi

{−E
[
(yi − θ − bi)

2
∣∣si , m̂N−i ,i

]}
.

Hence, agent i chooses

yi(si , m̂N−i ,i ) = bi + E[θ |si , m̂N−i ,i], (1)

where the expectation is based on equilibrium beliefs: all the messages m̂ji received by an
agent j who adopts a babbling strategy are disregarded as uninformative, and all the messages
m̂ji received by an agent j who adopts a truthful strategy are taken as equal to sj . Hereafter,

9 The existence of mixed strategies equilibria cannot be ruled out, as is customary in communication models with
discrete signal spaces. A partial characterization result can be proved, stating that each player i would randomize for at
most one signal si , in any mixed strategy equilibrium. The full characterization is cumbersome because the capability of
a player to truthfully communicate with an audience J depends on the equilibrium information held by each player in J .
In a mixed strategy equilibrium, this will depend on the exact randomized communication strategy of each other player
with any player in J . In the conclusion we provide further insights on mixed strategy equilibrium; the discussion is based
on a formal analysis developed in an on-line Appendix.
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whenever we refer to a strategy profile (m,y), each element of y is assumed to satisfy condi-
tion (1).

Players’ updating is based on the standard Beta-binomial model. Suppose that an agent i holds
k signals, i.e., she holds the signal si and k − 1 players truthfully reveal their signal to her. Let
l denote the number of such signals that equals 1. If l out of such k signals equal 1, then the
conditional pdf is

f (l|θ, k) = k!
l!(k − l)!θ

l(1 − θ)(k−l),

and her posterior is

h(θ |l, k) = (k + 1)!
l!(k − l)!θ

l(1 − θ)(k−l).

Consequently, f (l|θ, k) = h(θ |l, k)/(k + 1) and E[θ |l, k] = (l + 1)/(k + 2).
In the first stage of the game, in equilibrium, each agent i adopts either truthful communication

or babbling communication with each audience J ∈ Ni , correctly formulating the expectation on
the action chosen by each player j ∈ J as a function of her message m̂iJ and with the knowledge
of the equilibrium strategies m−i of the opponents.

We remark that our framework encompasses two widely studied modes of communication:
private communication and public communication. The model of private communication obtains
when for each player i, the partition Ni is composed of singleton sets. The model of public
communication obtains when, for each player i, Ni consists of the trivial partition {N−i}.10

3. General results

We first characterize equilibria for arbitrary modes of communication. We then show that the
characterization takes a simple form under private communication. Lastly, we investigate the
relationship between equilibrium and Pareto efficiency.

3.1. Equilibrium networks

A strategy profile (m,y) induces a network, in which a link from a player i to another player j

is associated with truthful communication from i to j . We refer to this network as the truthful net-
work and denote it by c(m,y). Formally, c(m,y) is a binary directed graph where cij (m,y) = 1
if and only if j belongs to some element J ∈ Ni and miJ (s) = s, for every s = {0,1}, with
the convention that cii(m,y) = 0. The in-degree of player j is the number of players who send
a truthful message to j , and it is denoted by kj (c(m,y)). When (m,y) is an equilibrium, we refer
to c(m,y) as to the equilibrium network. Our first result provides the equilibrium condition for
truthful communication of an agent i with an audience J .

Theorem 1. Consider a collection of communication modes {Ni}i∈N . The strategy profile (m,y)

is an equilibrium if and only if for every truthful message from a player i to an audience J ∈ Ni ,

2

∣∣∣∣bi −
∑
j∈J

bjγj

(
c(m,y)

)∣∣∣∣ �∑
j∈J

1

(kj (c(m,y)) + 3)
γj

(
c(m,y)

)
, (2)

10 However, unlike Goltsman and Pavlov [17], our model of communication does not allow players to send both a public
and a private message to any given audience.
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where for every j ∈ J , with J ∈Ni ,

γj

(
c(m,y)

) = 1/(kj (c(m,y)) + 3)∑
j ′∈J 1/(kj ′(c(m,y)) + 3)

.

The left-hand side of condition (2) tells us that player i’s ability to truthfully communicate
with audience J depends on the difference between her own bias bi and the weighted average∑

j∈J bjγj of the audience’s biases (we discuss the weights γj below). This reflects the fact that,
when contemplating whether to deviate from truthful reporting, player i can only influence the
action of all players in audience J in the same direction. When, for example, si = 0 and she
reports m̂iJ = 1, player i will gain by biasing upwards the action of every player j ∈ J with bias
bj < bi , but, at the same time, she will lose by increasing the action of every j ∈ J with bias
bj > bi .

The right-hand side of condition (2) is a weighted average of the expected action change of
each player j in the audience J of player i, that is induced by an equilibrium deviation by player i

at the communication stage. Specifically, the absolute expected change of each player j ’s action
equals the quantity 1/(kj + 3). To see this, note that sequential rationality, condition (1), implies
that player j matches her action yj to her expected value of θ + bj , and in the Beta-binomial
model E[θ |l, k] = (l + 1)/(k + 2), where l is the number of signals that take value 1 out of k

truthful signals. So, if agent j is informed of her own signal sj = 1, and l out of the kj − 1
truthful messages received from players other than i takes the value 1, an equilibrium deviation
by player i at the communication stage leads to an absolute expected change in j ’s action of
1/(kj + 3).

Each specific weight γj in both the left-hand side and right-hand side of condition (2) rep-
resents the influence that communication of player i has on player j ’s action, 1/(kj + 3),
relative to the aggregate influence that communication of player i has on the whole audience,∑

j ′∈J 1/(kj ′ + 3). In particular, the numerator 1/(kj + 3) decreases in the number of players
truthfully communicating with j in equilibrium. The reason for this is that the more player j is
informed in equilibrium, the less the message m̂iJ will change her final action. Therefore, when
contemplating a deviation, player i can gain or lose less in absolute terms by influencing j rel-
ative to the other players in J . As a result, player i will give less weight γj to player j in the
weighted average, relative to the other players in audience J .

In sum, there is an equilibrium where player i truthfully communicates with audience J if and
only if twice the absolute difference between her bias and the weighted average of their biases is
smaller than the weighted average change of the actions in audience J induced by an equilibrium
deviation by player i at the message stage.

The characterization in Theorem 1 dramatically simplifies when communication is private.

Corollary 1. Under private communication a strategy profile (m,y) is an equilibrium if and only
if for every (i, j) with cij (m,y) = 1,

|bi − bj | � 1

2[kj (c(m,y)) + 3] . (3)

Under private communication, the willingness of a player i to credibly communicate with a
player j displays a simple dependence on their bias difference |bi − bj | and on the number of
players truthfully communicating with j . In particular, a high in-degree kj prevents communi-
cation from i to j to be truthful. To see this, suppose that i is biased upwards relative to j , i.e.,
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bi > bj . When many opponents truthfully communicate with j , this player is well informed. In
this case, if player i deviates from the truthful communication strategy and reports m̂ij = 1 when
si = 0, she will induce a small increase of j ’s action. Such a small increase in j ’s action is always
beneficial in expectation to i, as it brings j ’s action closer to i’s (expected) bliss point. Hence,
player i will not be able to truthfully communicate the signal si = 0. In contrast, when j has a
low in-degree, then i’s report m̂ij = 1 moves j ’s action upwards significantly, possibly over i’s
bliss point. In this case, biasing upwards j ’s action may result in a loss for player i. Hence, she
does not deviate from the truthful communication strategy.

The equilibrium effects derived in Theorem 1 and Corollary 1 are driven by the fact that the
marginal return to receiving an additional signal is strictly decreasing on the number of signals
that a player has already received. This is different from Hagenbach and Koessler [18], where,
because of the statistical model they adopt, the equilibrium communication strategy of a player
is independent of the communication strategy played by all other players.

We conclude this part of the section by returning to general communication modes. We show
that, unlike in the case of private communication, a player i’s willingness to truthfully communi-
cate with another player j need not to decrease in the in-degree of j . We show this in the example
below.

Example 1. Let N = {1,2,3,4} and b = {−1,0, β,β + c}, where β > 1 and c is a small positive
constant. Suppose also that player 2 must send the same message to player 1 and 3, otherwise
communication is private. We construct two equilibria and compare them.

In the first equilibrium player 1 and player 4 babble with player 3, and player 4 and player 3
babble with player 1. In this case, player 2 assigns the same weight to player 1 and player 3, i.e.,
γ1 = γ3 = 1/2. The communication strategy in which player 2 sends a truthful public message
to 1 and 3 is then part of an equilibrium whenever β � 5/4.

In the second equilibrium we still consider that player 1 babbles with player 3 and player 3
babbles with player 1. However, now player 4 communicates truthfully with 3, which is always
consistent with equilibrium for sufficiently small c. In this case, player 2 gives a higher weight
to player 1 who is less informed than player 3, i.e., γ1 = 5/9 > 4/9 = γ3. The communication
strategy in which player 2 sends a truthful public message to 1 and 3 is then part of an equilibrium
whenever β � 241/160.

We conclude that if the difference between the bias of player 2 and the bias of player 3 is
β ∈ (5/4,241/160], then player 2 is capable of reporting a truthful public message to player 1
and player 3, only if player 4 also communicates truthfully with player 3.

3.2. Welfare

We now consider equilibrium welfare. Because of the quadratic utility formulation, if we let
σ 2

j (m,y) be the residual variance of θ that player j expects to have once communication has
taken place, we can write player i’s expected utility in equilibrium (m,y) as follows

EUi (m,y) = −
[∑

j∈N

(bj − bi)
2 +

∑
j∈N

σ 2
j (m,y)

]
.

This is an extension of the welfare characterization by Crawford and Sobel [9] to multiple senders
and multiple receivers for the uniform-quadratic version of their model. A nice feature of our
model is that we can express the sum of residual variances of θ as a function of a simple property
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of the equilibrium network, namely its in-degree distribution. Indeed, using the properties of the
Beta-binomial updating, we have that11

σ 2
j (m,y) =

1∫
0

kj (c(m,y))+1∑
l=0

[
E

[
θ
∣∣l, kj

(
c(m,y)

) + 1
] − θ

]2
f

(
l
∣∣kj

(
c(m,y)

) + 1, θ
)
dθ

= 1

kj (c(m,y)) + 2

kj (c(m,y))+1∑
l=0

Var
(
θ
∣∣l, kj

(
c(m,y)

) + 1
)

= 1

6[kj (c(m,y)) + 3] ,

and, by rearranging, we obtain

∑
j∈N

σ 2
j (m,y) = n

6

n−1∑
k=0

1

k + 3
P

(
k
∣∣c(m,y)

)
, (4)

where P(k|c(m,y)) is the fraction of players with in-degree k in the equilibrium network
c(m,y), and P(·|c(m,y|)) : {0, . . . , n − 1} → [0,1] is its in-degree distribution.

Inspection of the above equation shows that an equilibrium (m,y) yields a higher ex-ante
expected utility to a player i than another equilibrium (m′,y′) if and only if (m,y) yields higher
ex-ante expected utility than (m′,y′) to all players j ∈ N . Hence, ranking equilibria in the Pareto
sense is equivalent to ranking them in the sense of utility maximization for all players. We can
now state the following result.

Theorem 2. Equilibrium (m,y) Pareto dominates equilibrium (m′,y′) if and only if

n−1∑
k=0

1

k + 3
P

(
k
∣∣c(m,y)

)
<

n−1∑
k=0

1

k + 3
P

(
k
∣∣c(m′,y′)). (5)

Condition (5) allows us to rank equilibria in the Pareto sense based on stochastic dominance
relations between the in-degree distributions of their corresponding equilibrium networks.12

Corollary 2. Suppose that (m,y) and (m′,y′) are equilibria.

1. If P(k|c(m,y)) first order stochastic dominates P(k|c(m′,y′)) then equilibrium (m,y)

Pareto dominates equilibrium (m′,y′).
2. If P(k|c(m′,y′)) is a mean preserving spread of P(k|c(m,y)) then equilibrium (m,y) Pareto

dominates equilibrium (m′,y′).

11 Recall from Section 2 that in the Beta-binomial model if l out of k signals equal 1 then f (l|k, θ) = h(θ |l, k)/(k + 1).

Furthermore, Var(θ |l, k) = [(l + 1)(k − l + 1)]/[(k + 2)2(k + 3)].
12 The fact that only the distribution of in-degrees and not the identity of players matters for equilibrium welfare relies

on the anonymity assumption embedded in the payoff specifications ui(ŷ|θ) = −∑
j∈N(ŷj − θ − bi )

2, for all i. For
example, if each player i cared more about her own action yi , than about others’ actions y−i , then equilibria could not
be Pareto ranked on the basis of their in-degree distributions. However, a result analogous to Theorem 2 would still hold
if we focused on the utilitarian welfare criterion, and if the effect of the action yj of each player j �= i on any player i

did not depend on i and j .
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To illustrate the first part of Corollary 2, consider an equilibrium in which i babbles with j and
another equilibrium in which the only difference is that player i communicates truthfully with j .
The presence of this additional truthful message only alters the equilibrium action of player j . In
particular, player j ’s action becomes more precise, increasing the utility of each player. A direct
consequence of this result is that if (m,y) and (m′,y′) are two distinct equilibria and c(m′,y′) is
a subgraph of c(m,y), then equilibrium (m,y) Pareto dominates equilibrium (m′,y′).

The second part of Corollary 2 compares equilibria that have the same number of truthful
communication links. It shows that equilibria in which truthful messages are distributed evenly
across players Pareto dominate equilibria where few players receive many truthful messages,
while others receive only a few. The reason is that the residual variance of θ associated with
every player j is decreasing and convex in j ’s in-degree.

Theorem 2 and Corollary 2 suggest the possibility that an equilibrium that sustains a low
number of truthful messages may Pareto dominate an equilibrium with a high number of truthful
messages, as long as its messages are distributed more evenly across players. We now develop
an example in which this is the case.

Example 2 (Evenly distributed truthful messages vs. total number of truthful messages). Suppose
that n = 5, bi+1 − bi = β , for i = 1,2,3,4, and assume private communication. When β � 1/28
the following two networks are equilibrium networks. The first one has four truthful links: each
agent sends a truthful message to agent 3, and there are no other truthful messages. The in-degree
distribution of the equilibrium network is then: P(0) = 4/5, P(4) = 1/5, and P(k) = 0, k =
1,2,3. The other equilibrium network has three truthful links: agent 3 sends a truthful message to
players 1, 2 and 4, and there are no other truthful messages. The in-degree distribution associated
to this equilibrium is: P̃ (0) = 2/5, P̃ (1) = 3/5 and P̃ (k) = 0, k = 2,3,4.

Note that P and P̃ cannot be ranked in terms of first order or second order stochastic domi-
nance relations. However, applying condition (5), it is easy to check that

n−1∑
k=0

P̃ (k)
1

k + 3
= 17

60
<

31

105
=

n−1∑
k=0

P(k)
1

k + 3
.

Hence, the second equilibrium Pareto dominates the first one, despite its lower number of truthful
messages.

4. Two simple environments

In this section we apply our theorems to two interesting environments for which we derive
detailed equilibrium properties. We shall focus on the set of utility-maximizing equilibria, i.e.,
equilibria that maximize the ex-ante expected utility of all players. As noted in Section 3.2, in
our setting a utility-maximizing equilibrium weakly Pareto dominates every other equilibrium.

4.1. Communication across groups

We specialize our analysis to the case in which players are divided in two groups with ho-
mogeneous biases. The set of players is partitioned into a group 1 of size n1 and a group 2 of
size n2; without loss of generality, we assume that n1 � n2 � 1. Players in group 1 have bias 0
and players in group 2 have a bias b > 0.
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We first consider the case of private communication. In an on-line Appendix we provide a
full characterization of utility-maximizing equilibria. Here, we focus on a natural subclass where
there is complete intra-group communication: each player in group G communicates truthfully
with each other player in group G.13

Proposition 1. Consider private communication. In every utility-maximizing equilibrium net-
work with complete intra-group communication,

1. if b < 1
2(n+2)

there is complete communication across groups;

2. if b ∈ [ 1
2(n+2)

, 1
2(n2+3)

] the number of truthful messages that each player in group G sends
to group G′ declines with the size of group G′; furthermore, the number of truthful messages
that each player in the larger group 1 sends to the smaller group 2 is larger than the number
of truthful messages that each player in the smaller group 1 sends to the larger group 2;

3. if b > 1
2(n2+3)

, there is no communication across groups.

Proposition 1 highlights how the size of the two groups affects communication across groups.
Members of larger groups endogenously access more information within their own group than
members of smaller groups. In view of Corollary 1 this implies that communication across groups
influences the choice of larger group members less than the choice of smaller group members.
As a consequence, members of small groups have higher incentives to misreport information to
members of larger groups, than vice-versa.14

We now investigate the effect that different modes of communication have on equilibrium
welfare. We say that a communication mode dominates another mode if the utility-maximizing
equilibria under the former Pareto dominate utility-maximizing equilibria under the latter. As a
first step we compare private communication and public communication. For expositional sim-
plicity, we assume that the two groups are of equal size, n1 = n2 = n/2.

Proposition 2. Assume that n1 = n2 = n/2. There exists 1
2(n+2)

< b̂(n) < ∞, such that:

1. If b � 1
2(n+2)

, then utility-maximizing equilibria under private and public communication
yield the same utility to all players;

2. If b ∈ ( 1
2(n+2)

, b̂(n)], then public communication dominates private communication;

3. If b > b̂(n), then private communication dominates public communication.

If the conflict between the two groups is sufficiently small, regardless of the communication
mode, all players truthfully communicate in the utility-maximizing equilibrium. As the level of

13 These equilibria are robust to the introduction of infinitesimal group-sensitive preferences. For example, we can

slightly modify the model so that the utility of every player i in group G is: −(1 + ε)
∑

j∈NG
(ŷj − θ − bi )

2 −∑
j∈NG′ (ŷj − θ − bi )

2, where ε is a small positive constant. Furthermore, this class of utility-maximizing equilib-

ria coincides with the set of utility-maximizing equilibria as long as the conflict of interest between the two groups is not
too low.
14 Despite the significant modelling differences that we discussed earlier, Hagenbach and Koessler [18] find a similar
result. In their model, players wish to coordinate their actions. So, the capability of a player to communicate truthfully
increases with the number of players with whom she is truthful. Consequently, an increase in the size of, say, group 1,
increases truthful communication from group 1 to group 2.
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conflict across groups increases, we know from Proposition 1 that communication across groups
eventually breaks down under private communication. However, as long as the level of conflict
is not too high, player i has no incentive to misreport information, under public communica-
tion. This is because such a deviation will also change the action of players in her own group.
In this case public communication dominates private communication. As the conflict of interest
becomes large, public communication prevents truthful reporting, while under private communi-
cation players communicate within their own group, and hence private communication dominates
public communication.

In light of Theorem 1, when public communication fails, an intuitive way to restore some
amount of equilibrium communication across groups is to lower the average bias difference be-
tween the player and her audience, by reducing the number of players from the other group in
the audience. This observation leads us to consider modes of communication where each player’s
audience is composed of all the fellow players in her group, and of a subset of the players in the
other group. Such mixed modes of communication may dominate private and public communi-
cation, as we show next.

Proposition 3. Assume that n1 = n2 = n/2. Consider the mixed communication modes family,
parametrized in k, such that each player i in group G = 1,2 has an audience composed by all
members of group G and players i, i + 1 mod (n/2), . . . , i + k mod (n/2) in opposite group
G′ �= G, and sends private messages to the remaining players.15 For any bias value b, there
exists a k such that the associated mixed mode weakly dominates the private and the public
communication mode. The dominance is strict for b > b̂(n), as long as b is not too large.

This result is intuitive. Because these mixed communication modes generalize public com-
munication, evidently they cannot be dominated by the latter. Further, for b � b̂(n), public
communication fails, and communication is truthful to a set of players larger than under private
communication, because it mixes members of the different groups in the same audience.16

4.2. Equidistant bias

The equilibrium characterization in Theorem 1 and Corollary 1 does not provide specific
insights on the properties of the equilibrium network. To make progress on this issue we focus
on private communication and assume that any players i and i + 1 have equidistant biases, i.e.,
bi+1 − bi = β , for all i = 1, . . . , n − 1. In an on-line Appendix we characterize a subclass of
utility-maximizing equilibria, which coincides with the whole set for a wide range of values
of the parameter β . In what follows we summarize the properties of the equilibrium networks
associated to the equilibria in this subclass.

15 The notation a + b mod (c) stands for a + b if a + b � c and a + b − c otherwise.
16 Proposition 3 identifies a simple communication mode in which each player in the same group truthfully commu-
nicates to an audience composed of the same number of players in the two groups. It would be interesting to also
characterize optimal audience structures. But, even in the simplified example that we are considering, this may require
studying communication modes in which the audience structure differs across players even within the same group. We
postpone this analysis to further research.
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Fig. 1. Equilibrium networks in Proposition 4, n = 6.

Proposition 4. For every β , there exists a utility-maximizing equilibrium with the following prop-
erties:

1. Localization. If a player i communicates with j , then so do all players l such that |l − j | <

|i − j |.
2. Asymmetric Communication. For every i < j � 	n+1

2 
 or i > j � 	n+1
2 
, it can be the case

that j truthfully communicates with i and yet i does not truthfully communicate with j , but
not vice-versa.

3. Decentralization. There exists an integer kβ such that the fraction of players with in-degree
kβ converges to one as n → +∞.

Fig. 1 illustrates equilibrium networks associated to utility-maximizing equilibria for the case
of n = 6 and for different values of β . In the figure a solid line linking i and j means that i and
j communicate truthfully with each other; a dashed line starting from i with an arrow pointing
at j means that only player i truthfully communicates with j . Communication is localized in
the sense that each player i communicates truthfully to players j whose indexes are consecutive
numbers. Due to the congestion effect, communication may be asymmetric, from moderate bias
to extreme bias players, but not vice-versa. Finally, the players’ equilibrium network in-degrees
are fairly similar across players, as they do not differ by more than two. Indeed Proposition 4
shows that the proportion of players with the same in-degree converges to one as n tends to
infinity.17

17 Interestingly, moderate bias players communicate more than extreme bias players also in Hagenbach and
Koessler [18]. However, this occurs because of the assumption of coordination motives. In our case, instead, moderate
bias players communicate more than extreme bias players because of the congestion effect. Furthermore, the equilibrium
network localization property we uncover here is entirely novel.
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5. Conclusion

In this paper we have studied a model of multi-player communication. Our analysis has clar-
ified the forces that determine the possibility of information aggregation in equilibrium and its
consequences for welfare.

Our analysis has focused on pure strategy equilibrium. An on-line Appendix explores the
characteristics of mixed strategy equilibrium. We omit formal derivations, here, and only sum-
marize the main insights. By fully characterizing mixed strategy equilibrium in the case of two
players, we show that mixed strategy equilibria are Pareto dominated. In fact, we prove that,
whenever there exists an equilibrium in which player i randomizes her message, then there is
also an equilibrium in which player i is truthful. Truthful communication yields both players’
higher expected utility than player i’s randomization. Because our analysis focuses on Pareto
dominant equilibria, we conclude that the restriction to pure strategy is without loss of gener-
ality, in the two-player case. But then, we show that this result does not extend to settings with
more than two players, by providing an example with three players and private communication.
For some range of the bias parameters, there is an equilibrium in which agent 1 communicates
truthfully to agent 2 and agent 3 randomizes when communicating to agent 2. However, for the
same range of parameters, there is no equilibrium in which both agent 1 and agent 3 communi-
cate truthfully to agent 2.18

Beyond the analysis of mixed strategies, our work can be extended in other directions. For
instance, in our model, each player takes an action, but in many settings (such as in governments
or in organizations), the allocation of decision making authority is often the result of the solution
of a design problem. This question is investigated in Dewan et al. [10], who apply our findings
to the institutional design of governments. Further, Dewan and Squintani [11] consider the pos-
sibility that decision making authority is voluntarily delegated to players that are more informed
in equilibrium, in the context of faction formation in parties. Another possibility is to relax the
assumption, made here, that there is only one round of communication. This is a good approxi-
mation when decisions must be taken urgently, and there is no time for lengthy meetings. It would
interesting to extend the model to allow for repeated communication. Finally, in our setting the
communication mode is given exogenously, but in many applications, a player or a designer can
choose whether to make communications private (e.g., by organizing bilateral meetings), public
(by organizing public meetings), or more generally, could select appropriate audiences for each
player. While we have provided some results on this question in Section 4.1 for the case of two
groups, the general model analysis is left for further research.
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Appendix A

All the proofs of the results presented in Section 3 are in this appendix while the proofs of the
results presented in Section 4 are in an on-line Appendix.

Proof of Theorem 1. Suppose that all players in J believe that player i reports her signal si
truthfully. We henceforth simplify notation and denote si simply as s. Let sR be a vector con-
taining the (truthful) signals that each j has received and her own signal. With some abuse of
notation, we denote the in-degree of j in truthful network c by kj . Let also ysR,s be the action
that j would take if she has information sR and player i has sent signal s; analogously, ysR,1−s is
the action that j would take if she has information sR and player i has sent signal 1 − s. Player i

reports signal s truthfully to a collection of players J if and only if

−
1∫

0

∑
j∈J

∑
sR∈{0,1}kj

[
(ysR,s − θ − bi)

2 − (ysR,1−s − θ − bi)
2]f (θ, sR|s) dθ � 0,

and using the identity a2 − b2 = (a − b)(a + b) we get

−
1∫

0

∑
j∈J

∑
sR∈{0,1}kj

[
(ysR,s − ysR,1−s)

(
ysR,s + ysR,1−s

2
− (θ + bi)

)]
f (θ, sR|s) dθ � 0.

Next, observing that ysR,s = E[θ + bj |sR, s] we obtain

−
1∫

0

∑
j∈J

∑
sR∈{0,1}kj

[(
E[θ + bj |sR, s] − E[θ + bj |sR,1 − s])

·
(

E[θ + bj |sR, s] + E[θ + bj |sR,1 − s]
2

− (θ + bi)

)]
f (θ, sR|s) dθ � 0.

Denote �(sR, s) = (E[θ |sR, s] − E[θ |sR,1 − s]). Observing that f (θ, sR|s) = f (θ |sR, s) ×
P(sR|s), and simplifying, we get

−
∑
j∈J

∑
sR∈{0,1}kj

1∫
0

[
�(sR, s)

(
E[θ |sR, s] + E[θ |sR,1 − s]

2
+ bj − bi − θ

)]

· f (θ |sR, s)P (sR|s) dθ � 0.
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Furthermore,

1∫
0

θf (θ |sR, s) dθ = E[θ |sR, s],

and

1∫
0

P(θ |sR, s)E[θ |sR, s]dθ = E[θ |sR, s],

because E[θ |sR, s] does not depend on θ . Therefore, we obtain

−
∑
j∈J

∑
sR∈{0,1}kj

[
�(sR, s)

(
E[θ |sR, s] + E[θ |sR,1 − s]

2
+ bj − bi − E[θ |sR, s]

)]
P(sR|s)

= −
∑
j∈J

∑
sR∈{0,1}kj

[
�(sR, s)

(
−E[θ |sR, s] − E[θ |sR,1 − s]

2
+ bj − bi

)]
P(sR|s) � 0.

Now, note that

�(sR, s) = E[θ |sR, s] − E[θ |sR,1 − s]
= E[θ |l + s, kj + 1] − E[θ |l + 1 − s, kj + 1]
= (l + 1 + s)/(kj + 3) − (l + 2 − s)/(kj + 3)

=
{−1/(kj + 3) if s = 0,

1/(kj + 3) if s = 1,

where l is the number of digits equal to one in sR . Hence, we obtain that player i is willing to
communicate the signal s = 0 to player j if and only if

−
∑
j∈J

( −1

kj + 3

)(
− −1

2(kj + 3)
+ bj − bi

)
� 0,

or ∑
j∈J

bj − bi

kj + 3
�−

∑
j∈J

1

2(kj + 3)2
.

Note that this condition is redundant if
∑

j∈J bj − bi > 0. On the other hand, she is willing to
communicate the signal s = 1 to player j if and only if

−
∑
j∈J

(
1

kj + 3

)(
− 1

2(kj + 3)
+ bj − bi

)
� 0,

or ∑ bj − bi

kj + 3
�

∑ 1

2(kj + 3)2
.

j∈J j∈J
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Note that this condition is redundant if
∑

j∈J bj − bi < 0. Collecting the two conditions∣∣∣∣∑
j∈J

bj − bi

kj + 3

∣∣∣∣� ∑
j∈J

1

2(kj + 3)2
.

This completes the proof of Theorem 1. �
Proof of Corollary 1. Corollary 1 is a special case of Theorem 1, in which for every i ∈ N the
partition Ni is composed of singleton sets. �
Proof of Theorem 2. Assume (m,y) is an equilibrium. Select an arbitrary player i. The ex-ante
expected utility of i is

EUi (m,y) = −E

[
n∑

j=1

(yj − θ − bi)
2

∣∣∣∣∣{0,1}kj (c)+1

]
(6)

= −
n∑

j=1

E
[
(yj − θ − bi)

2
∣∣{0,1}kj (c)+1], (7)

where (with some abuse of notation) kj (c) indicates j ’s in-degree in truthful network c(m,y).
Consider an arbitrary j with in-degree kj (c) and let l be the number of digits equal to one in

a realized information vector {0,1}kj (c)+1. Then, we obtain

E
[
(yj − θ − bi)

2
∣∣{0,1}kj (c)+1]

=
1∫

0

kj (c)+1∑
l=0

(
E

[
θ
∣∣l, kj (c) + 1

] + bj − θ − bi

)2
f

(
l
∣∣kj (c) + 1, θ

)
dθ

=
1∫

0

kj (c)+1∑
l=0

(
E

[
θ
∣∣l, kj (c) + 1

] + bj − θ − bi

)2 h(θ |l, kj (c) + 1)

kj (c) + 1 + 1
dθ,

where the second equality follows from f (l|kj (c) + 1, θ) = h(θ |l, kj (c) + 1)/(kj (c) + 2). Let
Π = (E[θ |l, kj (c) + 1] − θ)2. Then we have

E
[
(yj − θ − bi)

2
∣∣{0,1}kj (c)+1]

= 1

kj (c) + 2

1∫
0

kj (c)+1∑
l=0

(
Π + (bj − bi)

2 + 2(bj − bi)
(
E

[
θ
∣∣l, kj (c) + 1

] − θ
))

· h(
θ
∣∣l, kj (c) + 1

)
dθ

= (bj − bi)
2 + 1

kj (c) + 2

[ 1∫
0

kj (c)+1∑
l=0

(
Π + 2(bj − bi)

(
E

[
θ
∣∣l, kj (c) + 1

] − θ
))

· h(
θ
∣∣l, kj (c) + 1

)
dθ

]

= (bj − bi)
2 + 1

kj (c) + 2

[kj (c)+1∑
l=0

( 1∫ (
E

[
θ
∣∣l, kj (c) + 1

] − θ
)2

f
(
θ
∣∣l, kj (c) + 1

)
dθ

)]
.

0
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Next, let V (θ |l, k) be the variance of a beta distribution with parameters l and k, i.e.,

V (θ |l, k) =
1∫

0

(
E[θ |l, k] − θ

)2
h(θ |l, k) dθ.

It is well known that

V (θ |l, k) = (l + 1)(k − l + 1)

(k + 2)2(k + 3)
.

Hence,

E
[
(yj − θ − bi)

2
∣∣{0,1}kj (c)+1] = (bj − bi)

2 + 1

kj (c) + 2

[kj (c)+1∑
l=0

V
(
θ
∣∣l, kj (c) + 1

)]

= (bj − bi)
2 +

kj (c)+1∑
l=0

(l + 1)(kj (c) − l + 2)

(kj (c) + 2)(kj (c) + 3)2(kj (c) + 4)

= (bj − bi)
2 + 1

6(kj (c) + 3)
.

We can then write the ex-ante expected utility of player i in equilibrium (m,y) as follows

EUi (m,y) = −
n∑

j=1

[
(bj − bi)

2 + 1

6(kj (c) + 3)

]

= −
n∑

j=1

(bj − bi)
2 − 1

6

n∑
j=1

1

kj (c) + 3

= −
n∑

j=1

(bj − bi)
2 − 1

6

n−1∑
k=0

|I (k|c(m,y))|
k + 3

,

where |I (k|c(m,y))| is the set of players with in-degree k, i.e., I (k|c(m,y)) = {i ∈ N :
ki(c(m,y)) = k}. Therefore,

EUi (m,y) � EUi

(
m′,y′)

if and only if

n−1∑
k=0

|I (k|c(m,y))|
k + 3

�
n−1∑
k=0

|I (k|c′(m′,y′))|
k + 3

,

which is equivalent to

n−1∑
k=0

P
(
k
∣∣c(m,y)

) 1

k + 3
�

n−1∑
k=0

P
(
k
∣∣c′(m′,y′)) 1

k + 3
.

This concludes the proof of Theorem 2. �
Proof of Corollary 2. The proof of Corollary 2 follows from standard arguments of stochastic
dominance, the details are omitted. �
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Appendix B. Supplementary material

Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/
j.jet.2013.04.016.
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