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Abstract

Researchers in comparative research increasingly use multilevel models to test effects
of country level factors on individual behavior and preferences. However, the asymp-
totic justification of widely employed estimation strategies presumes large samples and
applications in comparative politics routinely involve only a small number of countries.
Thus researchers and reviewers often wonder if these models are applicable at all. In
other words, how many countries do we need for multilevel modeling? I present results
from a large scale Monte Carlo experiment comparing the performance of multilevel
models when few countries are available. I find that maximum likelihood estimates and
confidence intervals can be severely biased, especially in models including cross-level
interactions. In contrast, the Bayesian approach proves to be far more robust and yields
considerably more conservative tests.
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Integration of micro- and macro-data is now seen as state of the art in many subfields

of political science. This trend is most marked in comparative political research, where

researchers link macro-level differences across countries to individual preferences and

behavior (Anderson and Singer 2008). Indeed, some claim that “all comparative politics is

multilevel” (Kedar and Shively 2005: 2). It is thus not surprising that multilevel models

(Steenbergen and Jones 2002; Gelman and Hill 2007) are increasingly popular.

The majority of studies employ pooled individual level survey data with matched

country level information to estimate micro and macro effects. Using this multilevel

setup, a diverse range of topics have been studied: policy diffusion (Gilardi 2010), at-

titudes towards immigration (O’Rourke and Sinnott 2006), ethnic and social tolerance

(Weldon 2006; Andersen and Fetner 2008), right-wing voting (Arzheimer 2009), social and

political trust (Hooghe et al. 2009), satisfaction with democracy (Anderson and Singer

2008), political participation (van der Meer, van Deth, and Scheepers 2009), the political

economy of the gender vote gap (Iversen and Rosenbluth 2006) and support for European

integration (Hooghe and Marks 2004). Multilevel analysis is not restricted to comparative

politics. Research in American politics using states or neighborhoods (e.g. Lax and Phillips

2009), studies of judicial decision making (Voeten 2008), and research on legislative poli-

tics (Franchino and Hoyland 2009) or the politics of economic reforms (e.g. Denisova et al.

2009) similarly do (or would) benefit from multilevel models.1

Multilevel models and software have mainly been developed in the context of edu-

cational research (Aitkin and Longford 1986; Goldstein et al. 1993), where practitioners

enjoy rather generous sample sizes. The conditions for those models to work might not

be met in comparative politics applications. For example, in a simulation study of the

1Note that a seemingly simple way to avoid multilevel modeling, namely the use of “cluster-robust”
standard errors is highly dangerous, as they can be severely biased if the number of countries is small (e.g.
Angrist and Pischke 2008: ch. 8.2).
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effects of small sample sizes, Maas and Hox’s (2004b) condition for “small” sample size

is 30 groups, whereas in most comparative survey data sets the number of countries

is substantially lower. The fact that comparative applications usually involve a smaller

number of countries matters, because the basis for the widely used maximum likelihood

inference is asymptotic and assumes large sample sizes. Thus standard errors are biased

downwards and researchers who rely on “levels of significance” greatly overstate the level

of their tests – leading to spurious significant effects (Maas and Hox 2004b).

Thus many researchers and reviewers wonder if multilevel models are applicable in

such cases. In other words, how many countries does one need, in order to properly test

hypotheses in a multilevel framework? The literature gives varying rules of thumb ranging

from just 8 or 10 to 30, 50 or even 100 groups (Rabe-Hesketh and Skrondal 2008; Kreft and

de Leeuw 1998; Afshartous 1995)!2

My goal in this paper is to provide some evidence on the necessary number of coun-

tries in typical ‘multilevel data sets’. Furthermore, I emphasize key differences between

the widely employed frequentist and the alternative Bayesian approach. I conduct a

large simulation study, which analyzes the behavior of maximum likelihood and Bayesian

estimation strategies when a small number (5 to 30) of countries is used. My focus lies on

how strongly estimates of theoretically relevant parameters are biased, and to what extent

hypothesis tests will be misleading.

2Most simulation studies focus on simulations that mimic data often found in educational research.
Comprehensive examples are the studies conducted by Maas and Hox (2004b, 2005). For an overview of
earlier studies, which use approximate estimation techniques, see Rodríguez and Goldman (1995) and Kreft
(1996). A comprehensive study by Moineddin, Matheson, and Glazier (2007), oriented towards health care
applications, takes an approach ‘inverse’ to mine, by using a large number of level two units with only few
level one units. A study by Normand and Zou (also a medical application), includes 10 groups as a study
condition, however, their maximum number of individuals is 125 (Normand and Zou 2002). The study by
Browne and Draper (2006) includes six level two units among its conditions, but focuses only on estimation
of variance components.
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Table 1: Six commonly used multilevel setups

Random Macro Macro-micro
effects variables interactions

Linear model I III V
Non-linear model II IV VI

Hierarchical models

I start by describing the basic types of multilevel models used in applied research and

outlining key differences between the dominant frequentist paradigm and Bayesian

approaches. Accessible introductions to multilevel modeling are given by Rabe-Hesketh

and Skrondal (2008) and Gelman and Hill (2007). More thorough introductions are given

by Snijders and Bosker (1999) and Goldstein (2010) in a frequentist framework, and by

Gill (2008: ch.10), Jackman (2009: ch.7) and Draper (2008) in a Bayesian framework. In-

depth treatments covering a broader variety of estimation strategies are available from

McCulloch and Searle (2001) and Jiang (2007).

Table 1 lists multilevel specifications for continuous and binary dependent variables

that are considered in this paper.3 The most basic model (type I and II) tries to capture

systematic differences between countries by including country random effects. This

model is often termed ‘random intercept model’, since it can be understood as providing

country specific intercepts, while all other effects are constant across countries (for a

graphical illustration, see Gelman and Hill 2007: 238). These unexplained differences

between countries often are central objects of study in applied comparative research. For

example, a researcher might be interested in testing whether individual preferences for

3Linear and binary models constitute the vast majority of all applications. Extensions to ordered depen-
dent variables are straightforward (e.g. Agresti et al. 2000; Agresti and Natarajan 2001) and results obtained
here should hold for them as well. Allowing for multinomial outcomes is slightly more involved and requires
a more specific simulation study.
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income redistribution differ between countries as a function of welfare policies. Then,

the random intercept model is extended by including country-level variables, such as

measures of institutional features or income inequality, in order to explain variation in

the dependent variable that is not captured by characteristics of individuals (model types

III and IV).

Somewhat more formally, one models the response of individual i (i = 1, . . . , n j ) living

in country j (j = 1, . . . , J ) as function of individual and macro level variables, x i j and z j ,

respectively:

y (∗)i j ∼N (αj +βx i j ,σ2
y ) (1)

αj ∼N (γ0+γ1z j ,σ2
α) (2)

Here β captures the individual level effect of covariate x i j and αj are country specific

intercepts, which are assumed to follow a normal distribution with freely estimated vari-

anceσ2
α. Since the goal here is to explain variation in country specific intercepts, they are

modeled by a regression equation including country characteristics. An overall intercept

γ0 represent the ‘country averaged level’ or grand mean of the dependent variable, and

the systematic effect of country characteristic z j is captured by γ1.

To reduce notational complexity, equation (1) refers to both continuous and binary

dependent variables. With continuous outcomes this yields a standard linear model

with freely estimated individual level variance σ2
y . For binary dependent variables this

is a probit model, where y ∗ is a latent variable which generates observed categorical

responses, such that one observes y = 1 if y ∗ > 0 and 0 otherwise. Here the individual

level variance has to be fixed at some value, usuallyσ2
y = 1.4

4For readers unfamiliar with the latent variable interpretation of probit models, King (1998: ch. 5.3)
provides a quick introduction. Albert and Chib (1993) provide a Bayesian perspective.
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More sophisticated comparative theories often include hypotheses which specify that

the effect of an individual level variable varies as a function of country level characteristics

(type V and VI). For example, a researcher might want to test if the relationship between

income and left-right self-placement is stronger in countries characterized by high levels

of income inequality. In this setup, often termed “cross level interaction” (Snijders and

Bosker 2012: 81), intercept and covariate effects vary over countries, and one tries to

explain (some of) the covariate’s effect variation by an explanatory country level variable:

y (∗)i j ∼N (αj +βj x i j ,σ2
y ) (3)









αj

βj









∼N

















γ0+γ1z j

δ0+δ1z j









,Σ









(4)

The key addition in equation (3) is the country subscript of βj signifying that covariate

x i j has a different slope in different countries. These different slopes are now, too, modeled

by a regression equation. The country-average effect is captured by δ0, and systematic

differences in slopes between countries are predicted by country characteristic z j and

its associated effect coefficient δ1. As before, systematic variation in the level of the

dependent variable is explained by a macro level covariate z j with coefficient γ1. The fact

that intercept and slope vary over countries leads to a more complex variance structure:

one generally assumes that intercept and slope come from a common multivariate normal

distribution, with variance covariance matrix Σ.5 Thus, with one intercept and one

random slope, there are now three variance parameters to estimate: variances of intercept

5The intercept-slope covariance or correlation should always be included in the model, since setting it to
zero a priori is a rather strong assumption (see Snijders and Bosker 2012: 76).
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(σ2
α) and slope (σ2

β ), and the covariance between intercept and slope (σασβ ):

Σ=









σ2
α σασβ

σασβ σ2
β









.

Frequentist vs. Bayesian multilevel models

However, are multilevel models even applicable to political science problems? What does

it mean to test the ‘significance’ of country level effects? Many authors take a strong

sampling-based perspective (e.g. Snijders and Bosker 2012), where multilevel models

are applicable when groups are sampled from a larger population.6 This works well in

fields such as educational research, where researchers design studies sampling schools

and pupils. Comparative (political) research is markedly different. Most data sets do

not contain a random sample of countries, but have a rather strong regional focus (e.g.

Eurobarometer, Latinobarometer). Furthermore, a random sample from the population

of all countries is often not even desirable, since middle-range theories are limited in their

applicability to, say, advanced industrialized countries.

It is well known that, using the maximum likelihood estimate θ̂ and its associated

standard error s.e.(θ̂ ), the frequentist confidence interval is constructed by θ̂ ±q × s.e.(θ̂ ),

where q is the appropriate quantile from the normal sampling distribution. In contrast,

Bayesian confidence intervals (called ‘credible intervals’) can be constructed without

reference to a hypothetical sampling distribution (Jaynes 1976). As the full posterior

probability distribution of a parameter is available, credible intervals are simply the

6This interpretation follows straightforwardly from the logic of classical inference: significance tests on
group level coefficients have to refer to a larger population for the frequentist interpretation of probability
to make sense. For a short discussion of key differences between classical and Bayesian inference see the
introductory chapter of Jackman (2009).
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corresponding quantiles of that distribution (Gill 2008: 45).7 Thus, a Bayesian credible

interval simply gives the posterior (i.e. after looking at the data) probability that the

coefficient lies in that interval – without any reference to a ‘population’ of countries.8

When employing a Bayesian approach, prior distributions are needed for all parame-

ters, which, multiplied with the data likelihood, yield the full posterior distribution. For a

graphical illustration of the role of priors in Bayesian analysis see Jackman (2009: 15-17).9

Many applied researchers prefer those priors to be ‘non-informative’, in other words

they should exert as little influence on the resulting posterior distribution as possible.10

Therefore, I consider commonly employed, non-informative or vague prior distributions

in my simulations.

• Residuals (level 1 variances) in linear model specifications have (conjugate) inverse

gamma priors,σ2
y ,∼ Γ−1(ε,ε)with ε set to 0.001 (initial Monte Carlo experiments

show that the choice of ε is not consequential, since the data clearly dominate the

prior.)

• Diffuse priors for random effects (level 2 variances) are either distributed (conju-

gate) inverse gamma σ2
y ,∼ Γ−1(ε,ε), with ε being a small constant, e.g. 0.001, or

distributed uniform on the standard deviation,
p

σ2
y ∼ c , as suggested by Gelman

(2006).

• In models containing a random coefficient, the variance covariance matrix Σ has

7For example, a 95% credible interval is constructed by taking the 2.5th and 97.5th quantile of a posterior
distribution. Another widely used interval estimate is the highest posterior density region (Gill 2008: 49).

8In this sense, only the Bayesian approach provides a straightforward interpretation of confi-
dence/credible intervals (for a lucid discussion see Jackman 2009, Chapter 1. An in depth discussion
is given in Robert 2007, Chapter 5.)

9In this simple discussion I ignore the constant of proportionality as well as the discussion about
subjective, diffuse and ‘objective’ priors. A detailed discussion of priors is given in O’Hagan and Forster
2009 and Jaynes 2003.

10But see Jackman and Western (1994) on the benefits of using informative priors.
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the inverse of the Wishart distribution as its prior, Σ ∼W −1(S , d ), with d degrees

of freedom, set to the dimension of the variance-covariance matrix (2) plus one,

and diagonal scale matrix S = I 2. This produces a marginal prior for the correlation

between intercept and slope, which is uniform on [−1, 1], and distributed Γ−1(1, 1/2)

for the two variances. An inverse Wishart prior which posits twice the size for the

(diagonal) variances serves as an alternative specification.

More sophisticated priors have been proposed (Natarajan and Kass 2000; Gelman 2006);

however, I employ specifications which are commonly used by researchers (e.g. Spiegel-

halter et al. 1997; Gelman and Hill 2007).

Monte Carlo study setup

For this Monte Carlo study I focus on quantities that are usually at the center of compar-

ative researchers’ interest: effect estimates and uncertainties of individual and country

level variables. I use a setup which mimics data structures commonly found in com-

parative (survey) research, and which differs starkly from those found in educational

research: It includes large numbers (usually thousands) of individuals nested within a

small number of countries (often less than twenty). While systematic differences exist

between individuals from different countries, individuals vary on a number of (often

unobserved) factors, so that the ratio of between to overall country heterogeneity, the

intraclass correlation, is rather low.11

11Intraclass correlation (ICC) is defined as variation between countries divided by total (i.e. individual
and country level) variance. It thus indicates the proportion of variance that is accounted for by the country
level (cf. Snijders and Bosker 2012: 17f).
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Experimental design

For each of the six multilevel model types, I use a full factorial 6× 3× 7 design. The

following factors are varied:

• The main factor of interest, the number of countries: I use a commonly available

set of countries ranging from 5 to 30 in increments of 5 (6 conditions). Each country

contains 500 individuals.

• Intraclass correlation: I use three values typical for comparative (survey) research,

namely 0.05, 0.10 and 0.15 (3 conditions).

• Estimators: Models are estimated via Maximum likelihood (1 condition) and Gibbs

sampling with two different prior specifications outlined above, each time summa-

rized using three posterior point summaries: expectation, median and mode (2×3

= 6 conditions).

For each of those 756 conditions (126 experimental conditions for six types of mul-

tilevel models), I generated 1000 data sets and calculated estimates and confidence

intervals using maximum likelihood and fully Bayesian estimation. More specifically,

likelihood estimation is carried out using a standard EM algorithm (McLachlan and Krish-

nan 2008), and integration needed in the probit model is done numerically via adaptive

Gauss-Hermite quadrature using 15 points (Pinheiro and Bates 1995; Rabe-Hesketh, Skro-

ndal, and Pickles 2002).12 I use a Gibbs sampler for the Bayesian model implementations

(Gelfand and Smith 1990; Gelman et al. 2004: ch.11), running 2 chains for 4000 iterations,

12I also estimated ML models using restricted maximum likelihood. This leads to somewhat better
coverage properties of the ML estimates in the simple linear model case (typically by 2-5 percentage points).
However, in more complex random slope and non-linear models quite drastic non-coverage problems
became apparent. Therefore, I present full maximum likelihood results here, which did not show these
problems.)
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and compute posterior mean, median and mode as ‘point estimates’ summarizing the

posterior distribution.13

Reported quantities

I concentrate on two central quantities summarizing the Monte Carlo simulations, which

are of primary importance for applied research: bias of estimates and non-coverage of

confidence intervals. First, in order to assess the bias of point estimates, I calculate the

percent relative bias, which is simply the difference between estimated and true value

expressed as a proportion of the true value:

θ̂ −θ
θ
×100.

Second, the quality of interval estimates (i.e. the 95% confidence or credible intervals), is

of special interest, since researchers will use them to accept or reject theories. At each

Monte Carlo run, I create an indicator variable, which registers if the calculated 95%

confidence interval contains the true population parameter. Averaging these values yields

the coverage of the confidence interval; subtracting the nominal 95% interval coverage

level (950 out of 1000) and multiplying by 100 yields its level of non-coverage in percentage

points, which I report below.14

13To learn about the rate of convergence of the sampler, I carried out initial runs for each model. The
usual tests (see Cowles and Carlin 1996; Gelman and Rubin 1992) suggested that the chains reached their
equilibrium distribution at less than 1000 iterations.

14Accordingly, the estimated coverage of the true 95% interval will have a simulation accuracy of 1.35%

(1.96
p

0.05 ∗0.95/1000= 0.0135).
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Results

To reduce the number of graphs and the complexity of the presentation, I do not display

results for simple linear and probit random effect models not containing a country level

explanatory variable (type I and II). Results for those model types are similar to those

from models including a macro predictor (types III/IV).15 Below, I focus on models with

an intra-class correlation of 0.10 and use the mean as posterior summary for Bayesian

models16, since results show that both choice of ICC and posterior summary measure do

not substantially influence the central conclusions of this study. More detailed versions

of these plots including posterior mean, mode, and median are available in the online

appendix. The following subsection documents bias in individual and country level

covariate effects for different estimation strategies in linear and probit random effects

models (type III and IV). Models with random coefficients (or random slopes, type V and

VI) are discussed next. Finally, I discuss the role of intraclass correlation and different

variance prior choices in the last two subsections.

Hierarchical models with macro variables

Before examining estimates of substantive variables, I turn to results for the residuals,

σ2
y , and random effects,σ2

α. In all model types, individual level residuals are estimated

well by both the Frequentist and Bayesian approach, which is to be expected given the

large number of individuals. The situation looks less rosy for the estimated random effect

variance, where both maximum likelihood and Bayesian estimates exhibit strong bias

(the Bayesian posterior mean estimate bias is more than 100% when only five countries

15Furthermore, in absence of country variables of interest, the question of model specification reduces to
‘fixed versus random effects’, which is not the topic of this paper.

16All Bayesian results presented below are estimated using inverse gamma priors. More on the role of
priors for variances in subsection “Priors” below.
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Figure 1: Performance of point and interval estimates of individual level covariate effect β
in hierarchical linear and probit models (type III/IV). Displayed are relative bias (in %)
of estimate and 95% confidence interval non-coverage as a function of the number of
countries used, and ML and Bayes estimation.
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are available). Contrarily, the 95% interval coverage of the Bayesian estimator is excellent

independent of the number of countries used. Maximum likelihood results show greater

non-coverage even when 30 countries are available (similar results are presented by

Browne and Draper 2000; Maas and Hox 2004a; Kreft and de Leeuw 1998). For a much

more extensive simulation study of variance component estimation see Browne and

Draper (2006).17

While unbiased estimation of variance components is certainly important, most

applied researchers are arguably most interested in the quality of estimates of their

theoretical variables. Therefore, I now examine the extent of bias in estimates of individual

and country level covariates. Figure 1 on the previous page shows how well the effect β of

an individual level covariate x i j is estimated, both in linear (upper panel) and probit (lower

panel) hierarchical models. For linear and binary dependent variables, both estimation

methods produce quite reliable coefficient estimates, even when using only five countries.

Similarly the coverage level of the 95% intervals is very close (within 2%) to the nominal

95% level. In practice this means that for the models considered here, which contain

large numbers of individuals, individual level estimates are robust to small country level

sample sizes (cf. Maas and Hox 2005).

However, the main interest in multilevel models with macro variables lies in testing

effects of country level characteristics on individual level outcomes. Therefore, Figure 2

on the following page displays the relative bias of effect estimates γ1 of a macro variable

z j ; and here we see that estimation strategy matters quite a bit for substantial results.

At any number of countries used, Bayesian estimates are within ± 5 percent of the true

population value. In contrast, maximum likelihood estimates are sharply biased upwards

17The term variance component refers to the fact that one tries to decompose the observed variance of a
dependent variable y into several components of variation. For example, in the random intercept linear
model, observed total variance is modeled as the sum of an individual level (σ2

y ) and a country level (σ2
α)

variance component.

14



Number of countries

B
ia

s

−15

−10

−5

0

5

10

15

●

●
●

●
●

●

Estimate
Linear Model

● ● ●
●

●
●

CI non−coverage
Linear Model

−15

−10

−5

0

5

10

15

5 10 15 20 25 30

●

●
● ●

● ●

Estimate
Probit Model

5 10 15 20 25 30

● ● ●
●

●
●

CI non−coverage
Probit Model

Bayes
MaxLik

●

Figure 2: Performance of point and interval estimates of country level covariate effect γ1

in hierarchical linear and probit models (type III/IV). Displayed are relative bias (in %) of
estimate and 95% interval non-coverage as a function of the number of countries used,
and ML and Bayes estimation.

when the number of countries is less than 20 in a hierarchical linear model. Matters get

worse when examining actual versus nominal coverage of 95% intervals: when less than

15 countries are used, maximum likelihood confidence intervals are 5 to 15 percentage

points too narrow, while Bayesian credible intervals are virtually congruent with their

nominal level.
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Models including random coefficients

In this subsection I consider random coefficient or slope models, which specify the effect

of a covariate as varying between countries. As discussed above, there are three central

parameters of interest: the effect of a country-level variable on the outcome, denoted γ1;

the average effect δ0 of an individual-level covariate that varies over countries; and the

effect of country-level variables on that varying variable, δ1.

Estimates of γ1 are displayed in Figure 3 on the next page. Both maximum likelihood

and Bayesian point estimates are biased when very small samples are used, but display

good properties as sample size grows. The coverage of estimated 95% intervals looks

much more damaging. In contrast to simpler models (cf. Figure 2 on the preceding

page), Bayesian credible intervals for γ1 differ from their nominal level, even when larger

numbers of countries are available. Compared to Bayesian credible intervals, the extent

of non-coverage is larger for maximum likelihood confidence intervals. However, the

most striking difference between both approaches lies in the ‘direction’ of non-coverage.

Bayesian intervals are too wide and consequently provide overly conservative tests of

hypotheses, whereas maximum likelihood intervals underestimate uncertainty of the

effect of γ1 and will provide hypothesis tests that are much more lenient than indicated by

their nominal level.

Figure 4 on page 18 shows bias and non-coverage results for δ0, which represents the

country-average effect of an individual level covariate.18 Results show that this coefficient

is estimated reasonably well by Bayesian as well as maximum likelihood procedures

– with ML estimates exhibiting somewhat more bias when country level sample sizes

are small. This picture looks less favorable for the classical approach when considering

actual coverage of confidence bounds. Both, Bayesian credible intervals and ML based

18This estimate corresponds to the individual level covariate effect β in models III and IV.
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Figure 3: Performance of point and interval estimates of country level covariate effect γ1

in hierarchical linear and probit models (type V/VI). Displayed are relative bias (in %) of
estimates and 95% interval non-coverage as a function of the number of countries used,
and ML and Bayes estimation.
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Figure 4: Performance of point and interval estimates of individual level covariate random
coefficient δ0 in hierarchical linear and probit models (type V/VI). Displayed are relative
bias (in %) and 95% interval non-coverage as a function of the number of countries used,
and ML and Bayes estimation.

confidence intervals get close to their nominal level as sample size gets larger, but when

less than 15 countries are used, coverage of maximum likelihood confidence intervals is

again strongly anti-conservative.

Finally, I examine parameter δ1, which is of primary interest in random coefficient

models: it estimates how a country level variable z j influences the strength of the rela-

tionship between changes in x i j and the dependent variable, often denoted “cross-level

interaction effect”. Values of this coefficient are influenced by estimates of variance

components σ2
β and again differ sharply between maximum likelihood and Bayesian
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approaches. Figure 5 on the following page shows that the relative bias in estimates is

most substantial when maximum likelihood estimation is used with a small number of

countries (less than 15). In hierarchical linear models this leads to an underestimation

of the true effect by 10 to 15 percent, while the converse is true for hierarchical probit

models. Bayesian point estimates produces less bias for small numbers of countries and

are virtually identical with ML estimates when 25 or 30 countries are available. Consid-

ering the actual coverage of nominal 95% intervals the now familiar picture emerges:

Bayesian credible intervals are too wide, i.e. they provide more conservative tests of

hypotheses, while ML confidence intervals are too short providing test that are potentially

very misleading, even at medium sample sizes.
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Figure 5: Performance of point and interval estimates of country*individual level interac-
tion effect δ1 in hierarchical linear and probit models (type V/VI). Displayed are relative
bias (in %) and 95% interval non-coverage as a function of the number of countries used,
and ML and Bayes estimation.
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Intra-class correlation

Previous results were based on an ‘average’ intraclass correlation value of 0.10, since my

results show that it is of minor importance for the kind of model setups considered here.

The pattern among the different estimators, established above, is similar at different ICC

levels. If anything, higher ICC levels yield biases that are slightly more pronounced – thus

making the gap between Bayesian and ML estimators even wider. An instance where an

ICC effect is discernible is displayed in Figure 6 on the next page, which shows relative bias

in estimates at different ICC levels in a hierarchical probit model of type VI. When high

correlations between unobserved characteristics of individuals from the same country

exist, Bayesian as well as maximum likelihood procedures produce slightly larger bias

when the number of countries is very small. With increasing number of countries, this

effect vanishes, with the Bayesian posterior mean getting closer to the true population

value at a slightly faster rate than maximum likelihood estimates.

Priors

The previous discussion ignored the role of priors for the variance components in Bayesian

analyses. Results presented used inverse gamma priors with small values for shape and

scale, which showed to yield reasonable results in my simulations, despite their technical

shortcomings (Gelman 2006). The difference between prior choices is illustrated in

Figure 7 on the following page, which shows interval coverage for country level covariate

effects γ1 in a hierarchical linear model under different prior specifications. The slight

differences between inverse gamma and uniform on the standard deviation priors vanish

as more information becomes available. This pattern is similar for other coefficient

estimates in both linear and probit models. When inverse Wishart priors are used as

priors for variance-covariance matrices, I find similar results: differences in prior values
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are only relevant when little country level information is available. This suggest that

applied researchers who have to work with small samples, should test the robustness

of their findings by estimating several models using varying prior values (cf. Gill 2008:

204f.).19

An illustration: Support for the European Union

To illustrate the behavior of different estimators in a practical setting, I continue the

example of Steenbergen and Jones’ (2002) introductory paper. They model citizen support

for the European Union (see also Hooghe and Marks 2004) as a function of individual,

party, and country characteristics. To that end, they employ a three-level model with a

continuous dependent variable (our type III) where individuals are nested in parties and

countries. To stay in line with the setup of this paper, and to keep this example simple, I

will focus on individual and country level factors. Using the Eurobarometer 46.0 survey,

fielded in September and October 1996, I find that – as expected from my Monte Carlo

study results – maximum likelihood and Bayesian estimates agree with each other as far as

individual level effects are concerned.20 What I will focus on here is the effect of country

level variables.

Suppose a researcher is interested in testing the claim that, as dependence between EU

19One of the strengths of the Bayesian approach is the possibility of utilizing prior information when little
data is available (see Jackman and Western (1994) for an illustration of using informative priors). In this
study I relied on priors which are generally seen as ‘uninformative’ in the sense that they try to provide no
or little a priori information. In applications it will often be helpful to use more informative priors, if only as
a robustness check.

20For estimates see the online appendix. Steenbergen and Jones discard all individuals for which they
have no matching party information. Since I do not use party information for this example, my sample
size is slightly higher, comprising 10,777 individuals. Eurobarometer 46.0 was fielded in fifteen countries.
Data on trade balance by Eurostat was not available for Luxembourg, which leaves fourteen countries for
my analysis: Austria, Belgium, Denmark, Finland, France, Greece, Ireland, Italy, the Netherlands, Portugal,
Spain, Sweden, United Kingdom, and West Germany.
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Figure 8: Country level determinants of support for the European Union. Maximum likeli-
hood estimates and normal based 95% confidence intervals. Bayesian estimates (posterior
means) and 95% credible intervals. Sample size: 10,777 individuals, 14 countries.

countries increases, citizens realize the importance of the common market, which leads to

higher popular support for the European Union (Eichenberg and Dalton 1993). Following

Steenbergen and Jones, this dependence is measured using a country’s trade balance – the

ratio of a country’s intra-EU trade to its total trade. I also include a country’s tenure, i.e. the

number of years a country has been a member of the union, in order to capture the effect

that public opinion in new member states is often negative (Steenbergen and Jones 2002:

228). Furthermore, since countries differ widely in their level of economic development

and economic performance, I include their gross domestic product per capita and rate of

inflation (see Mahler, Taylor, and Wozniak 2000 for more detailed analyses). All macro

variables are standardized, i.e. centered around the overall mean and divided by their

standard deviation.21

Figure 8 plots estimates and confidence intervals for our macro variables of interest.22

21GDP per capita and inflation data are from Eurostat’s online database. Information on trade balance is
calculated from Eurostat 2004.

22Bayesian estimates are calculated from two chains run for 30,000 iterations, of which with the first
10,000 were discarded as burn-in. Point summaries are computed from the remaining 20,000 iterations
thinned by a factor of 5.
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We see the now familiar ‘overconfident’ confidence intervals produced by maximum

likelihood estimation when the number of countries is small. While parameter estimates

of macro effects produced by both estimation strategies are virtually identical, maximum

likelihood’s 95% confidence intervals are considerably shorter than those obtained when

following a fully Bayesian approach. With respect to our main variable of interest, trade

balance, two researchers could arrive at two different theoretical conclusions simply

by using different estimation strategies. A researcher relying on maximum likelihood

estimation might confidently conclude to have demonstrated the link between trade

dependence and public opinion. Contrarily, a researcher relying on Bayesian estimation

would have to conclude that such an effect cannot be unambiguously demonstrated

with the data at hand. Clearly, even if one is only interested in substantive questions

when applying multilevel models to comparative data, attention should be paid to the

implications of maximum likelihood versus Bayesian inference.

Conclusion

In this Monte Carlo study I examined the effects of using a small number of countries in

multilevel models. I used an extensive design, covering both linear and non-linear models

estimated via maximum likelihood in a classical framework and via MCMC sampling in a

Bayesian framework, different posterior summaries, different prior choices and different

levels of intraclass correlation.

Results are rather sobering from a classical maximum likelihood perspective. The

simulations confirm, once more, the literature on problems with maximum likelihood

inference for multilevel models when the number of groups is small – a problem that

arises when the log-likelihood is not close to being a quadratic function of the parameters.

Simple linear or probit models containing only a random intercept are the best case
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scenario. Here ML estimates and confidence interval coverage of estimated macro effects

are only biased to a limited extent, as long more than 15 or 20 countries are available.

But even in this optimal setting, using fewer countries quickly leads to confidence in-

tervals that are far from their declared level. While confidence interval non-coverage is

undesirable in itself, it is the direction of this bias which is cause for concern. Without

exception, ML produces confidence intervals that are too short, so that hypothesis tests

are anti-conservative.

Many comparative theories build on interactions between effects of individual level

variables and country level characteristics, the so called ‘cross-level interactions’. Here,

the problems of ML estimation are most apparent. Even in their most simple specification

(as employed in this simulation study), those models include three variance parameters:

intercept and slope variance and the covariance between them. Their estimation is

difficult even with 20 or more countries. ML estimates of cross-level interactions tend

to be biased upwards in probit models, whereas the opposite occurs for linear models.

More problematic is, again, the fact that actual and nominal confidence interval level

do not match: ML confidence intervals are invariably too short. Furthermore, in these

more complicated models testing the effect of a country level covariate on the dependent

variable is problematic as well. Estimated with 15 or 20 available countries, ML confidence

intervals are almost 5% too short – in other words, researchers are more likely to obtain

90% confidence intervals, rather than the 95% intervals announced by their software

package.23

In contrast, estimates obtained using a Bayesian approach show far better properties,

especially with respect to confidence interval coverage. When using only a small number

of countries (<10), Bayesian point estimates are biased as well. But the magnitude of

23One should keep in mind that Monte Carlo studies represent optimal conditions. Thus in real-life data
analyses bias and non-coverage problems are likely to be worse.
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this bias is much smaller as in the case of ML estimates: under conditions considered

in this study, Bayesian point estimates were biased at most 5%, whereas ML estimates

reached 10 or 15%. The clearest advantage of employing a Bayesian approach to multilevel

modeling lies in its excellent confidence interval coverage. Bayesian credible intervals are

closer to their nominal level than their ML counterparts. What is more, when they are

biased, they usually are too long. Thus, one could claim that researchers using Bayesian

multilevel models put their hypotheses to more rigid tests than their colleagues relying on

ML estimates! However, there is no magic bullet. A small numbers of countries combined

with complex models can present problems for the Bayesian approach as well. This is

evident in complex cross-level interaction models, where the credible interval for this

interaction effect is consistently too large, even with 20 or more countries.

This point is worth repeating. As already discussed above, estimation of models with

just one cross-level interaction can already prove to be difficult. For practical applications

this means that researchers should be cautious when fitting complex models with a large

number of macro-micro interactions. Researchers might be tempted to include many such

cross-level interactions to specify flexible models where ‘everything depends on context’.

A seemingly simple strategy then starts from a specification with many interactions and

removes those with “non-significant” variances one-by-one. My results strongly suggest

that this is doomed to fail: confidence intervals of cross-level interactions will likely

be severely biased and theoretical conclusion drawn from such a procedure are not

particularly trustworthy. This suggests that analyses using many cross-level interactions

with a limited set of countries should be met with a healthy dose of skepticism.

Despite these reservations, my results show that the integration of micro- and macro-

data is a worthwhile enterprise – provided one’s tools are chosen wisely. Thus, for re-

searchers in comparative politics (and adjacent ‘comparative’ fields), who are interested

in multilevel analyses, turning to a Bayesian approach might be a fruitful choice.
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