THE FOUNDATIONS OF SPECIFICATION II

Raymond Turner
The University of Essex

February 13, 2004

Abstract
In the Foundations of Specification I, we developed a Specification the-
ory (CST) to serve as a vehicle to explore the mathematical foundations
of specification. A further aspect of this concerns type inference. In this
paper we develop and explore a type inference system for CST and use
it to illustrate the foundational issues which arise with such systems.

1 The Grammatical Role of Types.

Type membership is embedded in the actual theory CST and, consequently,
types play an essentially mathematical role: they carve up the universe of ob-
jects into different kinds and our definitions and proofs are subject to these
classifications. In this role they serve much the same function as they do in
mathematics: they provide conceptual organization to the theory and its appli-
cation. However, in computer science, types also have a grammatical function.
This aspect is glossed over, or rather ignored, in CST. To see what this function
amounts to consider the following simple wif.

(a) r:NANJy:N-xz €y
(b) x:NAJy:Set(N)-xz=y
(c) z:NAJy:N-z<y

Despite the fact that in the language of CST they are all syntactically legiti-
mate, there is a difference between them: the last is well-typed whereas the first
two are not. Presumably, for them to be so, in the first y should be of type
Set(N) and in the second of type N.

To deal with this, specification languages come equipped with some associ-
ated type-checking tools. Most often such a tool is supplied by a hidden program
([10], [12], [5]). However, in some cases (e.g. [13], [2]) it takes the more explicit
form of a type inference system; much like those of the Lambda calculus ([1]).
However, these systems are rarely properly formulated as logical systems and,
as a consequence, even their elementary properties are not documented. In this
paper we develop and explore such a system for CST. The investigation should
serve as a template for the formulation and exploration of such systems.

2 The System T

The objective of the type inference system is to provide rules which determine
whether wif, and ultimately specifications, are well-typed. The system (T) has
two has two grammatical judgements

t:T
¢ prop

The first states that the term ¢ has type T and the second that a wif is well-
typed. We shall use O for a judgement of either of these two forms. Judgements
are made relative to a declaration ¢ which is here understood as a (possibly
empty) set of assumptions

x1 Ty ey Tyt Ty

where no individual variable is assigned more than one type. We write «(c) for
the set of declared individual variables of a declaration ¢. We write ¢ C ¢ to
indicate that ¢’ is a consistent super-set of ¢’ and, where V is a set of variables,
we shall write ¢ [V' to denote c restricted to the variables in V. We shall say
that a context ¢ covers an expression e if FV(e) C «(c). Finally, we shall write
¢, x : T for the context ¢ updated with the assignment x : T i.e. if x ¢ a(c) then
x: T is added whereas, if x € a(c), its type is replaced by T

The system is determined by the following axioms and rules. We shall sup-
press the declaration context unless the rule effects it.

There are two structural rules: assumption and weakening.

ckHO
Ax z:Tkax:T W ——— ¢ a(c)UFV(O
cr:THO ¢ ale) ()

For each built-in relation symbol, we associate a sequent that determines
the conditions under which it is a proposition. The actual cases for the rela-
tions of our theory are given as follows; they reflect the above demands about
membership, equality and the numerical ordering relation.

A, x:T,y:Set(T)F x €y prop
A, z:T,y:TkFx=yprop
Aj z:Nyy: NFx <yprop

For each of the logical connectives there is a rule of formation that lays out
the conditions under which complex wff are well-typed. Most of these are self
evident but notice that the rules for the implication, conjunction and disjunction
are identical. Similarly, the rules for universal and existential quantification are
identical. This reflects the weaker judgement involved i.e. being a proposition
versus truth.

T, Qprop T, ¢ prop Ts ¢ prop ¢ prop
—¢ prop ¢ —1p prop
¢ prop Y prop ¢ prop ¢ prop
T4 T5
éV Y prop oA prop
c,x:ThH¢ prop c,x:TkH ¢ prop
T T
cEYz:T- ¢ prop ckH3dz:T-¢ prop
ck ¢[X] prop ck @[X] prop
Ty ———————— Ty —————
cHFVYX-¢ prop cH3X -¢ prop

In the rules Tg and Ty, X ¢ FTV(c). The rules for the bound quantifiers are
given as follows. Notice that the premise requires that the wff be a proposition
in the appropriate context.

T c,x:NF¢ prop ckn: N T c,x:NF¢ prop ckn: N

10 cHEYr<n-¢ prop 1 cHkdr <n-¢ prop
c,x:TkH¢ prop cks: Set(T) c,x:THG prop ct s: Set(T)

T]_z T13

cEVYxes-¢ prop c-3xes-¢ prop

Almost finally, we provide the rules for the judgement ¢ : T'. These are quite
obvious and should not cause one to pause since they are the closure conditions
for our types. Indeed, we give them the same names as the corresponding axioms
of CST.

N1 0:N
Ny z:NFzt N
S1 : Set(X)

0
S2 x: X,y:Set(X)Fax®y: Set(X)
P, z: X,y:YF(z,y): X®Y

P, 2: XY Fm(z): X

P3 2: XY Fm(z): Y
Finally, since we have no logical quantification rules we require substitution
rules.
c,z:THO ckHt: T c[X]F O[X]

SUB

Sub cF Oft/1] o[T/X]F O[T/X]

This completes the rules of the system T. It should be clear enough how we
use it but we provide a simple example anyway.

Example 1 Given the axiom Ay for membership and the conjunction rule (Ts)
we have:

x: X, y: X,z: Set(X)Fax€zAy€ zprop
By the aziom As for equality:
r: X, y: X,u: XFu=axVu=y
By the rule for set quantification
z: Xy: X, z:Set(X)FYu€z-u=xVu=yprop
Finally, by the conjunction rule

x: Xy: X,z:Set(X)Fax€zAyezAVuEz-u=aVu=yprop

2.1 Properties of T

There are some immediate properties of the system which parallel the standard
results for any well behaved system of type inference. The following parallel the
results for the type systems for the lambda calculus [1].

Proposition 2 In the system T
1. If ¢ © then c covers ©
2. Ifck-© thenc | FV(O)F 6O
3. IfcFO®and ¢ C ¢ thend F©

Proof. All are by induction on the derivations. We illustrate with some
characteristic cases. Consider part (1). The structural rules are automatic:
given that ¢ covers the premise it covers the conclusion. Next consider the type
quantifier rule.

c,r: T+ ¢prop
ckEYx:T - ¢prop

If ¢,z : T covers the premise then ¢ covers the conclusion. For part (2) we again
illustrate with the quantifier rule. By induction,

(c,x:T) | FV(p)F ¢ prop.
Hence, regardless of whether x € FV(¢), we have:
c| FV(Nx: T -¢),z:TF ¢prop
Hence, by the rule,
c| FV(Nx : T -¢)EVx: T - ¢ prop

For part (3) we again illustrate with the quantifier rule. Suppose
ckEYx:T - ¢prop

follows from ¢,z : T + ¢ prop. By induction, for ¢ D ¢, ¢,z : T + ¢ prop.
Hence, ¢ =Yz : T - ¢ prop. R

The next is the standard generation lemma that provides the means of au-
tomatically checking that an expression is well-typed by using the system back-
wards.

Proposition 3 (Generation)

1. If ¢+ t1 =ty prop then ¢k 1 : T for some type T. Moreover, c -ty : T
iff ¢k tg : T

If ckte€s propthen ckt:T and ct s: Set(T) for some T

If ckt<s propthen cHt: Nandchks: N

If ¢+ =¢ prop then c - ¢ prop

If ¢k ¢o prop then ct ¢ prop and ¢+ ¢ prop (o =V, A, —)
IfckQx:T ¢ propthenc,z:THF ¢ prop (Q=3,V)
IfeFQx<t-¢ppropthenckt: Nandx: NF ¢prop (Q=3,V)

Ifck Qx €t- ¢ propthen ct t: Set(T) for some T and x : T + ¢ prop
(Q=3,V)

9. Ifc QX - ¢ prop then c F ¢[X] prop (Q = 3,V)
10. Ifc-tT : Nthenckt: N

® N o gk W

11. Ich(tl,tg):T1®T2thenckt1:T1 and ct to : Ty
12. If ek my(t) : Ty then ¢ F ¢ : Ty ® Ty for some Th
13. IfcFa®b: Set(T) then ck-a: T and ¢k b: Set(T) for some T

Proof. By induction on the derivations. Each of the antecedents of the
above conditionals can only be result of a rule application whose premises are
the consequents of the corresponding conditional or the result of a substitution
or the application of a structural rule. The first group of cases are immediate.
For the term substitution rules we illustrate with the first and the following
instance. Suppose that

¢k alt] = b[t] prop
follows from Sub. The premises yield

¢,z : TF alz] = bz] prop ckt: T

Then by induction,
cx:ThHalz]: S

for some type S. We now employ the substitution rule itself. The structural
rules are easy to verify for all the cases. The following derivation involving the
negation instance of the first rule, illustrates the argument. Suppose that

c,r:TF —¢ prop
follows by the rule

ck —¢ prop
c,x:TF —¢ prop

Then by induction ¢ F ¢ prop and so by the structural rule itself c,x : T F ¢
prop. 1
We also have the following admissible rule.

Proposition 4 (Back Substitution)

(1) IfckOft/z]thenckt:T and c,x : T+ O[x] for some type T

(2) If ckO[t/x]and ctkt: T then ¢,z : T+ Olx]

Proof. Both parts are by simultaneous induction on the derivations. We
consider the first. We illustrate with some significant cases. Suppose that

ckalt/x] € blt/x] prop

Then by the generation lemma, for some A,

ckalt/z] : Aand ck b[t/x] : Set(A)
By induction, for some type T, we have:

¢,v:TFalz]: Aand ¢,z : T+ blx] : Set(A) and cH¢: T
so we are finished by the membership axiom. Next assume that
ck (¢ A)[t/x] prop

then

ck ¢[t/x] prop and ¢+ [t/x] prop
Hence, by induction,

c,x:THo¢propandc,x: THYpropand ckHt:T

and we are finished by the conjunction rule. Now consider part two. We again
illustrate with the following case. Suppose that

ckalt/x] € bjt/x] propand cHt: T

Then by the generation lemma, for some A,
chalt/z] : Aand ck b[t/x] : Set(A)
By induction, we have:
c,x:ThHalz]: Aand ¢, : T+ blx] : Set(A)

so we are finished by the membership axiom. H

22 CSTand T

The following informs us that any judgement of the form ¢ : T that is provable
in the type system, is also provable in the logic. This is the first step in charting
the relationship between the two systems.

Proposition 5 Ifckrpt:T thencbgsrt: T

Proof. By induction on the derivations in T. The structural rules are clear.
But then so are the main body of rules with these conclusions: they follow from
the corresponding logical rules. The substitution rules also follow directly from
the rules of the logic.l

The converse is not provable. This marks a difference between the grammat-
ical and logical roles of types. Logically, the type membership assertion forms
part of the logic of the system and, in particular, in the logical theory type
membership is not decidable since the logic is not. However, it is in the type
system. These two systems capture the exact difference between these two roles
and pinpoints the fact that the computational properties of types emerges from
the theory i.e. T versus CST.

3 Specifications

The principal application of T is to type-check specifications. To facilitate this
we must introduce a rule for schema specifications that allows wif involving the
new relation or function symbol, to be checked.

3.1 Relations

Relation Specifications are treated in a similar fashion to the other atomic wif
but now added as a rule with the predicate of the specification supplying the
premise. Given a specification

R[X1, ..., Xin] & [€1:T1, sy s Ty | @)
we extend the system with the rule
1Ty ey s T b O[X0, ooy Xy @14 oo, T] PTOP
x1: T,y T B R[Xy, o, Xin] (21, .oy @) prop

Call this system T+ST. It is then easy to show, by induction on the derivations,
that:

(ST)

Proposition 6 If ¢ FrisT © then ¢ F ©* where ©* is obtained from © by
replacing each occurrence of R[X1, ..., Xm](Z1, .oy n) by ¢[X1, ooy Xin, T1, ooy Tno]

So, in the obvious sense, this addition to the type inference system is con-
servative. We can also easily establish the following.

Proposition 7 The following rules are derivable

1. z: X,y: X,z: Set(X) F Pairx(x,y, z) prop
x: Set(X),y: Set(X),z: Set(X) F Unionx(x,y, z) prop
: Set(Set(X)),y : Set(X) F Genunionx (x,y) prop

e e
8

x:Set(X),y: Set(Set(X)) - Powx (x,y) prop

y : Set(X) - ¢ly] prop
x:Set(X)F{y €x-p}: Set(X)

Proof. We illustrate with second. According to the new rule for the speci-
fication it is sufficient to show that

x: Set(X),y: Set(X),z: Set(X)FVu: X -uex—uecyVuéeEzprop

and this is straightforward.ll
Much the same is true if we wish to type-check relations which are type
independent. Here we add the rule

x1:T1y e, Ty b @lae, ...y] prop
21 : T,y @y T b R(21, ...,) prop

The conservative extension result follows the same route as the general case.

3.2 Functions

The situation with the addition of new function symbols is similar to the basic
operations of the theory except that we need to ensure they are well-typed.
Suppose that we have legitimately introduced a new function symbol via the
specification

FlX] éPfun [z : I[X],y : O[X] | Y[X, 2, y]]
Then we introduce a new type inference rule

z: I[X]),y: O[X]+¢[X,xz,vy] prop PT
x: I[[X])F F[X](x) : O[X] prop

Call this system TH+FT. Once more this addition is conservative. In the fol-
lowing * is the translation from the system with a new function symbol to the
system without (see [15])

Proposition 8 If ¢ Fpipr © then ¢ - ©F where ©* is obtained from © by
replacing every wff by its translation.

Proof. We illustrate with the total case; the partial one causes no additional
complications. We proceed as in the original proof by putting all wif in normal
form and then replace each occurrence of F[X]|(x) : O[X] by « : I[X] A Ty :
O[X] - ¢[X,z,y]. We have then only to show that the following is derivable

x: I[X],y: OX| - y[X, z,y] prop
z: I[X]F 3y : O[X]-¢[X,z,y] prop

which is clear.H
Observe that, given the definition of type membership, by the generation
lemma, we have that the following is derivable.

If cHt:T propthen cHt:T

Hence, given FT, the following is admissable

z: I[X],y: O X+ ¢[X,x,y] prop
x: I[X]F F[X](z) : O[X]

It follows that the following are derivable

a: Set(Set(X)) a: Set(X)
Uxa : Set(X) Setx(a) : Set(Set(X))

Finally, we may drop the type variables on the function symbol when it has
been shown to be type independent. For example, we then have the following
derived rules for Generalised union and power set.

a: Set(Set(X)) a: Set(X)
Ua : Set(X) Set(a) : Set(Set(X))

4 A Strongly Typed Theory

Is CST a typed theory? Certainly it has types and objects in the theory have
them. However, we have observed that not every wif provable in CST is well-
typed. This follows from our preliminary discussion on the relationship between
T and CST. Hence, CST is not a typed theory in the traditional sense of Higher
order logic (HOL) where only well-typed wif are provable. In this section we
develop a version of CST (CSTr) that is typed in this more traditional sense.
This will enable us to fully explore the relationship between CST and T. In
particular, we shall show that CST is a conservative extension of CSTr - with
respect to well-typed expressions. This will throw some mathematical light on
the rather curious and somewhat murky relationship between type and logical
inference that has emerged from the development of specification languages.

4.1 The Theory CSTr

This is a marriage of CST and T. Consequently, the theory now has three
judgements which combine those of CST and T.

t:T
¢ prop
¢

We use © for a judgment of either kind. In particular, and this is important,
we now drop the definition

t:T23:T-z=t

Type membership is now taken as a primitive judgment in all the axioms and
rules i.e. it is no longer to be interpreted as the above wif.

Such judgements are made relative to a context I' that now contains wif and
type assignments of the form x : T. We shall write

I'tesTr ©

if the sequent follows from the following rules - where we drop the subscript. We
shall write cr for the subset of I' which consists of its set of type assignments.

We begin with the structural rules which now take the following form. These
subsume the structural rules of CST and T.

'+ ¢prop
Thrx: _
Ax, v:Trax:T Axo, T oro
I'oe 'e TI'k¢prop
Wi Tz:THO W2 T,6F 0O

where x ¢ FV(I') U FV(O)

The equality axioms/rules remains intact except for the need to include a
premise in Es.

I,z : X b ¢lx] prop

E, Va:X.-z=x E2 THYz: X -Vy: X -z=y— (¢lz] — oy])

The propositional logical rules are modified to preserve propositions from
premises to conclusions. However, only the following rules need to be modified.

T'EQ 't ¢prop

Lo

TFo
L T'kFo 'y prop L 'y 't ¢ prop
8 THoVi 9 THoVi

10

The axioms and rules for the types remain exactly as before except for the
following. We must state the induction axioms as rules to get preservation of
being a proposition from premises to conclusion.

PO AV : N - pla] — Pla]
Va: N - ¢[x]
S0 AVz : X - Yy : Set(X) - ¢[y] — |z ® y]
Vy : Set(X) - o[y

Almost finally, we modify the bounded quantifier rules to include type inference
premises.

Ny

Ss

N x:NF ¢ Prop

8 Vy: N-Ve<y-¢—Vr:N-z<y—¢
N x:NF ¢ Prop

0 Vy:N-Jz<y-¢o—=Jx:N-z<yA¢
S z: X+ ¢ Prop

8 Vy:Set(X) - Veecy- gV X-zecy—o¢

xz:XF ¢ Prop

Se

Vy:Set(X) - Jxcy-p—Tx: X -z€yn¢d

Alternatively, these could also be stated as pairs of rules without the need to
include the type premises. Finally we admit the substitution rules
Ne:THO k¢:T X+ e[X]

T+ Oft/z] SUB rr X re/x]

Sub

Of course we do not need these for the purely logical cases since they are already
derivable form the quantifier rules. This completes the statement of the theory
CSTr.

4.2 Strong Typing

It is obviously more cumbersome to use CST7 than CST since a great deal of
type inference has to be done in the process of carrying out the proofs. Although
this can all be mechanized, it is harder to use by hand. However, CST7 does
have the following very pleasant property that is not shared by CST.

Theorem 9 (Strong Typing)

(1) If T FesTy ¥ then for each ¢ in T U {¢}, cr b1 ¢ prop
(2) IfT'Festpt: T thenepbp t: T
(3) If T FesT, ¢ prop then cr - ¢ prop

Proof. By induction on the structure of derivations. For part (1) we first
consider the inference rules. Most of the rules are easy to check; we provide

11

some illustrations. Consider first the implication introduction rule. Consider
the premise

Lot

By part (1) and induction, ¢r Fr ¢ prop and cr b ¢ prop. This yields
cr Fr ¢ — ¢ prop. Next consider disjunction introduction. The premise is

I't¢ cr b1 prop.

By induction, c¢r Fr ¢ prop. The result now follows by the grammar rule for
disjunction. Next consider existential quantification introduction.
I'ta:T Tt ¢la/a]
I'kF3dz:T ¢

By induction
crFra:T cr bt ¢la/x] prop

By the properties of the type system, we may assume that = ¢ «(cr). Hence,
by the back substitution lemma:

cryx T b @lx] prop

We are then done by the existential formation rule. The axioms and rules for
the types are equally easy to check. In particular the axioms are well-typed by
their declaration contexts. The only other concern is with the structural rules
which are easy to check. This completes part (1). Parts (2) and (3) are by
structural induction and are easy to check.ll

Part (1) ensures that only propositions are provable and guarantees that if a
propositional term is used in an assumption, the assignment context will guar-
antee that it is provably a proposition. Notice that, via an obvious induction,
the theorem also yields that all derivations are well typed - i.e. all formula in
the derivation will be. Part (2) is exactly the property which distinguished the
classifier and grammatical roles of types in the theory CST.

5 CST,T and CST7

We shall show that, with respect to well-typed expressions, CST is a conser-
vative extension of CST. This is achieved by translating CST into CST
relative to a context ¢ in such a way that each translated expression is, relative
to ¢, well-typed.

The types are translated to themselves: we have only to translate the wif
and terms. We deal first with the wif. The tricky clauses are those for the

12

atomic wif and here we translate the ill-typed cases as false.

(tes) = {tcesc
= = {
(t<s) = {

“if ebp t©: T and cbp s¢: Set(T)
Q otherwise
tc=sifckptc:Tandctp s¢: T for someT
Q) otherwise

tc<sCifeckrtc: Nandebgr s€: N
) otherwise

|
|

|

For the main connectives and quantifiers, matters are straightforward.

(o)) = ¢ oyp° o any connective
(Qu:T-9)° = Qu:T-¢""T Q=3
(QX-9)° = QX-¢°"" Q=3¥

The translation of the bounded quantifiers follows a similar pattern where we
have to take care of the bad cases explicitly.

se<sor = { Tt "N
e oo = { ot TN)

srevor = { it TV)
wrevor = { i TS0)

Finally, for the translation of the terms we have only to be careful about
the cases where the types are inappropriate and then assign the result some
arbitrary value.

0 = 0
(tH)e =)t ifckrtc: N
0 otherwise
(1517152)C = (tti?tg)
() mi(t€) ifckptc: A® B for some A, B
! 0 otherwise
¢ = P
(a®b)F = a®b1chTa : T and cb7 b° : Set(T)
() otherwise

This completes the translation.

13

Lemma 10 (Substitution Lemma)
1. Ifctp t€: T then ¢[t/x]¢ = ¢ [t¢/a]
2. Ifcbp t¢: T then s[t/x]¢ = s 1[t¢ /]

Proof. By simultaneous induction on the terms and wif. Il
Our first significant result shows that the translation always yields well-typed
expressions.

Proposition 11 (Typing) Let ¢ be any context
1. If ¢ covers t/¢ and ¢ C e then t¢ = t¢ and ¢° = ¢°
2. If ¢ covers ¢ then ¢ b1 ¢ prop
3. If c covers t then c bt t: T for someT
4. If ¢ ¢° prop then ¢ = ¢°

Proof. (1) is by induction on the terms and wff. For parts 2 and 3, we
employ a simultaneous induction on the syntax of terms and wiff. For example,
consider universal quantification. Assume that ¢ covers Vo : T - ¢. We may
assume that F'V (Vx : T - ¢) are exactly the variables of ¢. By induction,

e,z : T hp 6T prop
Hence by the type rule for quantifiers
chr Vo : T ¢%"T prop

Part (4) is also by induction but we only need inspection of the clauses. B
We can now prove the main theorem which ensures the translation preserves
provability in the two systems.

Theorem 12 (Soundness) I f
I'test ¢
and c covers I', ¢ then
I, ckesty ¢°
where I'® is the translated context.

Proof. By induction on the derivations in CST. Each of the axioms is
easy to verify. We illustrate the logical rules with disjunction introduction,
implication elimination and the universal quantification introduction rule. For
the first assume c covers ¢ V . Then by induction

I ch ¢

14

Hence, since ¢ F ¢ prop, we are finished by the CSTr disjunction rule. For
implication elimination,
T'ko I't¢—1
Tk

Let ¢ cover the conclusion and expand it to e to cover ¢ as follows: for each
y € FV(TU{¢}) — FV(¢) we add y : N to ¢. Then we have by induction

e et ¢° e ek ¢f — ¢°
Hence by the rules of CSTr,
e etk ¢°
Now by the lemma on the properties of the translation,
I et °

For simplicity, suppose that y is the only variable in FV(T'U{¢}) — FV (¢)). We
then have:

I ckVy: N -y°
Since y ¢ FV (1), this yields
e et y°
as required. For the universal introduction rule i.e.
Fx:TkF¢
TEYx:T-¢
We may assume c exactly covers the conclusion. By induction, the premise
follows. Hence, by the quantifier rule in CST'r:
re,x:TE¢" "
Tek (Vo : T ¢)c

The introduction rule uses the substitution lemma for the translation.l
Putting this together with part 4 of the previous proposition, we have:

Theorem 13 CST is a conservative extension of CSTr relative to well-typed

wff.

CSTrt is conceptually prior in that it is a typed logic in the traditional
and natural sense. It thus provides conceptual underpinning for the half-way
house instantiated in CST. Consequently, we are justified in using our original
cavalier and practical syntax together with the post-hoc type inference system.
It all comes out in the wash. This is advantageous since we really have enough
to do constructing the proofs without having to worry about type-checking.

15

6

Further Work

CST is a core theory that provides a basic framework for exploring some fun-
damental issues about specification. However, there are many such issues we
have still to explore. Recursive specifications and the impact of computability
considerations are two such. Set theoretic models of CST need to be developed
and explored. In addition, we need to study the inclusion of new type construc-
tors such as recursive types, sub-types, function space types and objects/classes

etc.

These will be considered in future publications.

References

1]

Barendregt, H.P.: Lambda Calculus With Types. Handbook of Logic in
Computer Science. Oxford Science Publications. Abramsky, S., Gabbay,
D.M. and Maibaum, T.S.E. (eds), pp. 118-310, 1992.

Brien, S.M. and Nicholls, J.E. Z Based Standard Version 1.0, Oxford Uni-
versity Computing Laboratory. PRG 107, 1992.

Dawes, J. The VDM-SL Reference Guide. Pitman. 1991.
Diller, A. Z: An Introduction to Formal Methods. John Wiley& Sons, 1990.

Flemming,D. Bruun, H. and Hansen, B.S. On Type Checking in VDM
and Related Consistency Issues. VDM ’91: Formal Software Development
Methods, pp. 45-62, Springer-Verlag, October 1991.

Henson, M. and Reeves, S. Revising Z -I Semantics and Logic. Journal of
Formal Aspsects of Computing, vol 11,no 4, pp 359-380, 1999.

Henson, M. and Reeves, S. Revising Z -II Logical Development. Journal of
Formal Aspsects of Computing, vol 11,no 4, pp 381-401, 1999.

Jones, C,B. and Middleburg, C.A. A typed Logic of Partial Functions re-
constructed classically, Acta Infromatica, 31(5); 399-430, 1994.

Larson, P,G. and Pawlowski, W. The Formal Semantics of ISO VDM-SL.
The Journal of Computer Standards and Interfaces. 1995.

Monahan, B. Type Checking for VDM Reference Language, July 1985.
Nicholls, J.E. (ed) : Z-Notation version 1.2, 1995.

Plat ,N., Huijsman, R., Katwijk, C, Van Oosten, G, Pronk ,G and Toetenel,
H. Type checking BSI/VDM SL. VDM 90 VDM and Z — Formal Methods
in Software Development, pp. 399-425, Springer-Verlag, April 1990.

Spivey, J.M. : Understanding Z. Cambridge University Press, 1988.
Spivey, J.M.: The Z Notation: A Reference Manual. Prentice Hall, 1992.

16

[15] The Foundations of Specification I, This journal.

[16] Woodcock, J. and Brien, S.M. : W: a logic for Z, in J.E. Nicholls (ed), Z
Users Workshop, York, 1991, Proceedings of sixth Annual Z User Meeting.
Springer Verlag, 1992.

17

