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We introduce Memory with Memory Genetic Programming (MwM-GP), where we use soft assignments and soft return
operations. Instead of having the new value completely overwrite the old value of registers or memory, soft assignments combine
such values. Similarly, in soft return operations the value of a function node is a blend between the result of a calculation and
previously returned results. In extensive empirical tests, MwM-GP almost always does as well as traditional GP, while significantly
outperforming it in several cases. MwM-GP also tends to be far more consistent than traditional GP. The data suggest that MwM-
GP works by successively refining an approximate solution to the target problem and that it is much less likely to have truly
ineffective code. MwM-GP can continue to improve over time, but it is less likely to get the sort of exact solution that one might
find with traditional GP.
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1. Introduction

In the vast majority of programming models, dating back to
the Turing machine [1] and the earliest electronic computer
architectures (e.g., [2]), assignments are entirely destructive
in the sense that an instruction of the form x:=y or LOAD
R2 R1 completely overwrites the previous value of a memory
location or register. That earlier value is lost forever, and
has no impact on the future behavior of the system (unless
it was copied elsewhere before it was overwritten). This
overwriting model of assignment was carried over to most
versions of genetic programming (GP) that had state and
assignments (see [3] for a review). This includes linear GP
[4], which evolves sequences of (virtual or real) machine
code instructions that usually act by destructively writing to
registers or memory locations.

This is in contrast to most biological systems, where
the state of such a system is rarely if ever completely
replaced with a new state with no regard for or “memory”
of the previous state. Changes in protein concentrations
in the cell, for example, can happen quickly, but are still
typically incremental in nature, with each new state being
constructed via modification of the previous state rather
than a complete replacement of it. Even dramatic state
changes, such as the transformation of a caterpillar into a

butterfly, take time and involve large numbers of small, local
changes.

This difference with biology might be sufficient reason on
its own to explore other models of assignment in GP. There
are, however, practical concerns that also suggest that there
might be value in alternative approaches. Linear register-
based GP systems with hard assignments, for example, can be
quite fragile with respect to certain changes. A program that
works by incrementally building up a result in a register can
have its behavior radically altered by something like a point
mutation that writes a 0 to the accumulating register late in
the process. These hard assignments can also act as powerful
intron creation mechanisms, as overwriting registers can
render whole sequences of preceding instructions irrelevant
to the final output of the evolved program.

Here we propose an alternative Memory with Memory
(MwM) model, with “soft” assignments that merge new
values with previous values instead of overwriting them. We
show that including this new type of assignment in a register-
based GP system can significantly improve performance on a
variety of symbolic regression problems. We also find that
Memory with Memory changes the nature of bloat, reducing
the amount of ineffective code while at the same time tending
to increase the mean program sizes as GP continues to refine
the evolved approximations.
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A question that naturally comes to mind is whether an
extension of the MwM idea to mainstream tree-based GP is
possible. Obviously, MwM could be used in any GP system
which includes primitives that read and write into some form
of memory: all one needs to do is to make assignments
to memory soft. However, memory is not used frequently
in tree-based GP, where most applications evolve functions
with no side effects rather than assignment-based programs.
For these, the soft-assignment-based form of MwM cannot
be used. There is, however, a hard operation in tree-
based GP which is ubiquitously used: the return operation
which is used by the code implementing function nodes to
communicate results back to their caller. This operation is
hard in the sense that it assigns the value computed by a
function node to one of the arguments of another function
node (or to the fitness evaluator) completely disregarding
the value that would have been passed to the caller had
the instruction not been executed. As we will illustrate,
softening return operations, by making sure the value of a
function node is a blend of the result of a calculation and
previously returned results effectively achieves in tree-based
GP what soft assignments achieve in linear register-based
GP: in both cases, MwM provides significant performance
improvements. Additionally, both forms of Memory with
Memory require only very minor modifications to existing
systems, making them easy to add.

The paper is organised as follows. We begin by reviewing
related work in the next section. We then define our approach
to Memory with Memory both for linear register-based GP
systems and for tree-based representations in Section 3. We
describe the GP systems we used to test the approach in
Section 4. Our empirical results are presented in Section 5.
We summarise our findings in Section 6 and we provide
some indications for interesting future work in Section 7.

2. Related Ideas

While many GP systems are expression based, numerous
GP systems have used some kind of memory or state. An
obvious instance is linear GP [4], but other examples include
indexed memory [5–7], and work on evolving data structures
(such as stacks) that have internal state [8, 9]. Similarly,
systems such as PushGP [10, 11] that use (rather than evolve)
data structures such as stacks in their computational model
are manipulating internal state in an important way. We
are unaware, however, of any memory or (internal) state-
based GP system that uses a soft assignment or a soft return
operation of the type proposed here.

Probably more similar to this work are systems where
evolved agents rely primarily on external state (known as
stigmergy). Here the state of an individual is rarely if
ever completely replaced with a new state with no regard
to the previous one. In swarm intelligence [12] and ant
colony optimization [13], for example, changes in state such
as pheromone levels are typically incremental, basing the
new levels on the old. Similarly, the position of agents in
particle swarm optimization systems [14] is almost always
adjustments of the previous position rather than arbitrary

jumps. This connection would also hold for many traditional
GP systems used to evolve agents whose behavior is driven
primarily by external state. In the classic artificial ant
problem using the function set given in [15], for example,
the new state of the ant following the trail is always a
minor alteration of the previous state as the ant either turns
90◦ or moves forward one square. Similarly, many systems
that evolve strategies for games like RoboCup Soccer [16]
rely largely or entirely on external state which updates in
an incremental fashion. Reference [17] extends the idea of
indexed memory by allowing multiple individuals in the
population to read from and write to a shared memory
space, which allows them to have both internal and external
(shared) states; the write instructions in this system were
traditional hard assignments, however, so the state was not
constrained to incremental changes.

3. Memory with Memory

3.1. Memory with Memory via Soft Assignment. There are
numerous approaches that could be taken to combining the
old values with the new when performing assignments. In
this research we take a simple but flexible approach: weighted
averaging of the old value of a register with the new value
being assigned. In particular, if vold is the original value of
the register, and vnew is the new value being assigned to the
register, the resulting value vresult is given by

vresult = γvnew +
(
1− γ)vold (1)

where γ is a constant that indicates the assignment hardness,
allowing us to determine how “hard” or “soft” the assign-
ment operator is. If γ = 1, for example, we get a completely
“hard” assignment, and have traditional register-based GP.
For γ = 0.5, on the other hand, we have a simple average of
the new and old values. For γ = 0 all registers are effectively
write protected, making all instructions behave like no-ops;
in this situation all programs compute the identity function.

While having the advantages of simplicity and flexibility,
this does introduce yet another parameter into the GP
system. We make no attempt at comprehensively optimizing
that new parameter here, but do perform extensive tests
using a set of four values of γ: 1.0, 0.7, 0.5, and 0.3.

3.2. Memory with Memory via Soft Return Operations. In
register-based GP systems executing instructions effectively
involves two steps: (a) a calculation and (b) an assignment
of the result of the calculation into a register or memory
location. The MwM technique for register-based GP acts on
this second component, ensuring that previously computed
results cannot entirely be wiped out by a single instruction.
In tree-based GP, instructions do not write their results
into registers. Instead, they pass them as a return value to
other instructions higher up in the tree. Those instructions,
in turn, use the results to compute a new return value,
and so on. This is very different from what happens in a
register-based system. Executing instructions in tree-based
GP, however, also consists of two operations. One is again a
calculation, while the second consists of passing of the result
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of the calculation to a parent instruction higher up in the
tree. To introduce a form of MwM we again act on the second
stage of execution, that is, on the process which determines
how results of calculations are turned into return values. If
we allow the result of a calculation to entirely determine the
value returned by a node in the tree, we essentially have a
“hard” return operation. If, instead, we allow the return value
of a node to be a blend between the result of a calculation and
previously returned results (we will explain what this means
in a moment), then we create a “soft” return operation. This
allows us to achieve the objectives of MwM for tree-based GP
systems where instructions have no memory or side effects.
For this reason, we also call the use of soft return operations
MwM.

To make this practical, an important question is what
do we mean by “blending return values with previously
returned results”? As was the case for soft assignment,
many approaches are possible. We again chose a simple
approach: function nodes in a tree return a weighted average
of their first argument with the result of the calculation
corresponding to an instruction. In particular, if IN1, IN2,
and so forth represent the inputs to a particular instruction,
F, its output, OUT, is given by

OUT = γF(IN1, IN2, . . .) +
(
1− γ)IN1 (2)

where γ is a constant that indicates the hardness of the return
operations. In the extreme case where γ = 1 the return
is completely “hard” and so OUT = F(IN1, IN2, . . .) as in
traditional GP. Values of γ < 1 provide a smoother behaviour.
Note that there is not any specific reason for always choosing
a weighted sum with the first argument of a function. The
choice of argument could be randomised or there could
be versions of these softer instructions for every possible
argument. In the future we will investigate whether this has
an effect on performance. However, in this study we chose
the simplest possible strategy.

Figure 1 shows an example program. We would normally
interpret it as a representation of the expression (4 × x) ×
(x − 2) = 4x2 − 8x. However, when MwM is used, the tree
in Figure 1 represents the function γ(a× b) + (1− γ)a where
a = γ(4×x)+(1−γ)4 and b = γ(x−2)+(1−γ)x. Substitution
of a and b into that expression produces γ(γ(4 × x) + (1 −
γ)4)×(γ(x−2)+(1−γ)x)+(1−γ)(γ(4×x)+(1−γ)4) which
simplifies to 8γ3 + 4γ2x2 − 8xγ3 + 8γx − 8xγ2 − 4γ2 − 8γ +
4. As γ varies from 1 to 0 the expression gradually morphs
from the original 4x2 − 8x to the value of the leftmost leaf of
the tree, 4 . (This behaviour is consistent with what happens
in the original MwM system for linear GP, where for γ = 0
all programs become identity functions.) If, for example, we
compute this expression for γ = 0.5, we obtain x2 + x, while
for γ = 0.1 we obtain 0.04x2 + 0.712x+ 3.168. This morphing
process is illustrated in Figure 2.

4. GP Systems and Parameters

To test our ideas we used a linear register-based GP system
and a tree-based GP system. These are described in Sections
4.1 and 4.2, respectively.
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Figure 1: Example program.
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Figure 2: Illustration of how the behaviour of the program in
Figure 1 varies from the constant function 4 to the parabola 4x2−8x
as γ varies from 0 to 1.

4.1. Linear Register-Based GP. We used a simple, register
based linear GP system similar to that described in [4].
Table 1 lists the parameter settings used for our experiments;
these values have proven useful in prior work, and no effort
was made to optimize them for any of the systems used here.

The evolved programs are variable length linear
sequences of “machine instructions” acting on a set of up
to six registers (R1-R6); the full instruction set is given in
Table 3. Note that when using traditional, hard assignment,
R3-R6 can only be used to store temporary results; all
arithmetic is performed using just R1 and R2. When using
soft assignment, however, instructions like R4:=R1 implicitly
perform whatever calculations are used to implement soft
assignments.

While there has been some study of function selection
in GP (e.g., [18, 19]), this remains more art than science.
No particular attempt was made to fine tune our instruction
set for the target functions used in this study. To see how
soft assignment would perform with different instructions,
however, we did use four progressively larger instruction sets
F1 (group A from Table 3), F2 (groups A and B), F3 (groups
A,B,C), and F4 (groups A,B,C,D). F1 is a basic two register
system with just addition, multiplication, and swap. F2 adds
the constants 0 and 1, subtraction and division, instructions
to copy data to/from R1 and R2, and swaps with R3. F3 adds
hard assignment from the input variable x and the constants
0 and 1. F4 adds hard and soft assignment of −x and −1 to
R1 and R2.
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Table 1: Parameter settings used in the experiments with soft
assignment in register-based GP. These are fairly generic parameter
choices and were not optimized for any of the systems used in these
experiments.

Parameter Value

Primitive set see Table 3

Independent runs 50

Max initial length 50

Max length after XO 500

Point mutation rate (per primitive) 1/�

Population size 1000

Generations 40

Fitness evaluations per run (pop.
size × gens)

40,000

Crossover rate (per individual) 0.9

Mutation rate (per individual) 0.1

Tournament size 2

Assignment hardness (γ) 1.0, 0.7, 0.5, 0.3

Fitness cases 21

Fitness sum of absolute errors

Stopping criterion fitness < 0.05× # fitness cases

Our linear GP system uses a steady-state control strategy
with binary tournament selection for choosing parents and
negative binary tournament selection for replacement. The
initial random individuals had lengths chosen uniformly
from the range [1, 50].

New individuals are constructed using mutation 10%
of the time, and subtree crossover 90% of the time; we
use no reproduction. If mutation is chosen, a parent
individual is selected via tournament selection, and an
offspring is generated using either point mutation or subtree
mutation with equal probability. With point mutation each
instruction has a 1/� chance (where � is the length of
the program) of being replaced by a randomly selected
instruction. With subtree mutation, a random point is
chosen and all the instructions after that point are replaced
by a new randomly generated sequence of instructions of
length between 1 and 500 (the maximum allowed length after
crossover).

If crossover is chosen, we select two parents (again,
via tournament selection) and apply homologous two-point
crossover with 50% probability, and subtree crossover with
50% probability. Subtree (or variable length) crossover
involves the selection of one crossover point in each par-
ent, and swapping the instructions following the crossover
points. Since the crossover points are chosen independently,
the length of the swapped suffixes can be different, leading
to offspring of varying length. Homologous crossover [3,
Section 7.1.3], requires choosing two crossover points which
are used to divide both parents into three sections. The
offspring is then formed by swapping the “middle” sections
of the two parents, which means that the offspring is
guaranteed to have the same length as the parent donating
the prefix and suffix portions.

4.2. Tree-Based GP. We used a version of the TinyGP
system in Java [3] which we modified so that it can handle
MwM instructions and use validation sets. (The system
can also work in a multideme configuration where runs
execute on different machines in a cluster and pass their
best individuals to a central store, which in return passes
individuals back to the demes. However, we did not use this
feature in the work reported here.) This is a tree-based system
with a steady-state control strategy, tournament selection
and negative tournaments as a replacement strategy. More
details and source code can be found in [3]. Algorithm 1
shows the minimal changes necessary to adapt TinyGP to
MwM.

Table 2 shows the parameters and primitive sets we used
for the experiments described in the following section.

5. Test Problems and Results

We performed two large sets of experiments: one using soft
assignment within the register-based GP system described
above and one using soft return operations in TinyGP. The
problems we used for each system and the results we obtained
are described Sections 5.1 and 5.2.

5.1. Soft Assignment in Register-Based GP

5.1.1. Problems. We applied the register-based GP system
with and without MwM to several classes of polynomial
symbolic regression problems, using target polynomials of
several different degrees for each class. In total we tested each
value of γ and each instruction set on a total of 16 different
symbolic regression problems of three different types, with
degrees ranging from 4 to 15 for each of these three classes.

The simplest class of problems we explored was “regular”
polynomials of the form

∑

1≤n≤d
xn = x + x2 + x3 + · · · + xd. (3)

We used six target polynomials of this form, having
degrees d = 5, 7, 9, 11, 13, and 15; two examples of regular
polynomials having degrees 7 and 13, are listed below:

x + x2 + x3 + x4 + x5 + x6 + x7 (4)

x+x2 +x3 +x4 +x5 +x6 +x7 +x8 +x9 +x10 +x11 +x12 +x13 (5)

Low-degree polynomials of this type have often been
used in TP studies [3, 15].

A slightly more complex class of problems had coeffi-
cients that were randomly generated from the set {0, 1}.
(All random coefficients used in our test polynomials
were generated via http://www.random.org/.) Thus they are
essentially the same as the “regular” polynomials, but with
random terms removed. We used five such polynomials, with
degrees 4, 7, 9, 12, and 15; the specific polynomials we used
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Table 2: Parameter settings used in our experiments with soft return operations in tree-based GP.

Parameter Value

Function set ADD, SUB, MUL, DIV (protected)

Terminal set

100 random constants uniformly distributed in the range
[−5, 5] plus 1 to 64 variables (depending on problem),

except for the EEG prediction problem where 40
constants in the range [−1, 1] were used

Independent runs 100, 500 or 2000 (depending on problem)

Max initial depth 5

Max size after crossover 10,000

Crossover point selection uniform

Point mutation rate (per primitive) 0.05

Population size 10,000 or 100,000

Generations 100

Fitness evaluations per run population size × generations

Crossover rate (per individual) 0.1

Mutation rate (per individual) 0.9

Tournament size 2

Hardness of return operation (γ) 1.0, 0.7, 0.5, 0.3, 0.1

Fitness cases 11 to 5000 (depending on problem)

Fitness sum of absolute errors

Stopping criterion fitness < 0.05× # fitness cases

are as follows:

x + x2 + x3 + x4 (6)

x + x2 + x3 + x4 + x6 + x7 (7)

x + x2 + x3 + x4 + x6 + x7 + x8 + x9 (8)

x + x2 + x3 + x4 + x6 + x7 + x8 + x9 + x12 (9)

x + x2 + x3 + x4 + x6 + x7 + x8 + x9 + x12 + x15 (10)

Finally, we created a third class of polynomials by adding
−1 in the set of possible coefficients; then by randomly
choosing coefficients from the set {−1, 0, 1}, we obtained the
following polynomials:

1− x + x2 + x3 − x5 (11)

1− x + x2 + x3 − x5 + x8 − x9 (12)

1− x + x2 + x3 − x5 + x8 − x9 + x10 + x11 (13)

1− x + x2 + x3 − x5 + x8 − x9 + x10 + x11 − x12 (14)

1− x + x2 + x3 − x5 + x8 − x9 + x10 + x11 − x12 + x15 (15)

Note that in each class the polynomials of higher degrees
are “extensions” of the lower degree polynomials in the sense
that the higher degree polynomials are equal to the lower
degree polynomials plus some new higher order terms. For
example, the degree 7 polynomial (7) from (6)–(10). is the
degree 4 polynomial (6) with two additional terms (x6 + x7).

For each target polynomial the fitness is the sum of
the absolute error of the evolved function on 21 evenly
spaced test points in the range [−1, 1]: {−1.0,−0.9,−0.8, . . . ,
0.8, 0.9, 1.0}. The target then is to minimize this error. We
define a success to be a run where the best fitness was less
than 1.05, or an average error of less than 0.05 over the 21
test cases.

5.1.2. Results. To better understand what impact Memory
with Memory and the particular value of γ has on symbolic
regression problems, we performed 50 independent runs for
each combination of the following parameters:

(i) 4 values of γ (1.0, 0.7, 0.5, 0.3)

(ii) 4 instruction sets (F1-F4 from Table 3)

(iii) 16 different polynomials (Section 5.1.1)

leading to a total of 12,800 runs and 512,000,000 fitness
evaluations.

Impact of Soft Assignment on Fitness. Figure 3 shows the
distribution of the best fitness values from each of those
12,800 runs for each of the four values of the assignment
hardness γ. γ = 0.7 has the best results of the four, with
γ = 0.5 second, and γ = 1 (traditional GP) and γ = 0.3
being statistically indistinguishable (Throughout this paper
all tests for statistical significance are at 95% confidence
levels.). The plot also indicates that the variance for the
assignment hardnesses less than 1 are significantly smaller
than for traditional GP, meaning that using soft assignment
gives us more consistent results.
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Table 3: Linear GP instructions used in these experiments. All assignments are soft except those suffixed with “(H)”. % is protected division,
which returns its first argument if the second is less than 10−6. The instructions are divided into four groups of related instructions (A, B, C,
and D, indicated by horizontal lines). We used four progressively larger sets of instructions: F1 (group A), F2 (groups A and B), F3 (groups
A, B, C), and F4 (groups A, B, C, D).

Group Description Instructions

A

Read input R1:=X, R2:=X

Plus, times R1:=R1+R2, R2:=R1+R2, R1:=R1∗R2, R2R1∗R2
Accum. swap Swap R1 R2

B

Constants R1:=0, R2:=0, R1:=1, R2:=1

Minus, divides R1:=R1-R2, R2:=R1-R2, R1:=R1%R2, R2:=R1%R2

Copy to R1 R1:=R2, R1:=R3, R1:=R4, R1:=R5, R1:=R6

Copy to R2 R2:=R1, R2:=R3, R2:=R4, R2:=R5, R2:=R6

Copy from R1 R2:=R1, R3:=R1, R4:=R1, R5:=R1, R6:=R1

Copy from R2 R1:=R2, R3:=R2, R4:=R2, R5:=R2, R6:=R2

Swap R3 Swap R1 R3, Swap R2 R3

C
Hard input read R1:=X(H), R2:=X(H)

Hard constants R1:=0(H), R2:=0(H), R1:=1(H), R2:=1(H)

D
Negative input read R1:=-X, R2:=-X, R1:=-X(H), R2:=-X(H)

Negative one R1:=-1, R2:=-1, R1:=-1(H), R2:=-1(H)

1 double run ( ) {/∗ Interpreter ∗/
2 char primitive = program [PC++];
3 double input;
4 if (primitive < FSET START)
5 return(x[primitive]);
6 input = run ( );
7 switch (primitive) {
8 case ADD:
9 return(input ∗ (1.0 − GAMMA) + (input + run( ) ∗ GAMMA);
10 case SUB:
11 return (input ∗ ( 1.0 − GAMMA ) + (input − run( ) ∗ GAMMA);
12 case MUL:
13 return (input ∗ (1.0 − GAMMA) + (input ∗ run( ) ∗ GAMMA);
14 case DIV:
15 double den = run ( );
16 if (Math.abs(den) <= 0.001)
17 return (input);
18 else
19 return(input ∗ (1.0 − GAMMA) + (input / den) ∗ GAMMA);
20 }
21 }
22 return (0.0);
23 }

Algorithm 1: The minimal changes to the TinyGp system needed to implement MwM. Only four lines of code in the interpreter needed to
be altered (lines 9, 11, 13 and 19 below).

This is supported by the estimated success rates listed in
Table 4. Both γ = 0.7 and γ = 0.5 have significantly better
success rates than traditional GP (γ = 1.0). γ = 0.7, for
example, has an estimated success rate of over 10% across
all the combinations we ran, while the estimated success rate
of traditional GP was just over 8%.

Figure 4 shows that the advantage of soft assignment is
quite consistent across a wide range of degrees. The median
for γ = 0.7 and γ = 0.5 are better than for γ = 1

in all cases except the degree 4 polynomial ((6) and the
combination of the two degree 7 polynomials (4) and (7)
where they effectively tie. γ = 0.7 also does better than
γ = 0.5 for several degrees, and never does worse. Note
that the best (minimum) for traditional GP is consistently
nearly perfect (very nearly 0), while the soft assignment
runs were generally unable to reach a perfect solutions.
This is not surprising given that soft assignment tends to
encourage refinement over time, which is likely to lead to
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Figure 3: Boxplot showing the distribution of best fitnesses
across all runs (all polynomial classes and degrees, all instruction
sets). The differences in best fitnesses are statistically significant
(using a pairwise Wilcoxon test) for all pairs except γ = 0.3
versus γ = 1 (traditional GP). The differences in variances
are also statistically significant (using the Fligner-Killeen test of
homogeneity of variances).

Table 4: Estimates of the success rates for each of the four
assignment hardnesses using Wilson’s method for computing
(95%) confidence intervals for binomial probabilities. We define a
success to be a run where the best fitness was less than 1.05, or an
average error of less than 0.05 for each of the 21 test cases.

γ Estimated success rate Lower Upper

1.0 8.148% 7.686% 8.635%

0.7 10.578% 10.057% 11.122%

0.5 9.429% 8.935% 9.948%

0.3 7.679% 7.231% 8.153%

approximate solutions. Those approximations are generally
very close in our runs, but linear GP with soft assignment
does not seem to have the “killer instinct” needed to finally
reach the target, at least with the parameters used here.
(Given that we only used 40,000 fitness evaluations per run,
it is entirely possible that more generations would allow
our system to further refine the solutions, but we have not
explored the impact of either increasing the population size
or the number of generations.) This tendency to approximate
may account for the advantage of hard assignment on the
degree 4 polynomial; that polynomial is sufficiently easy
that traditional GP solves it exactly with a high probability,
while the Memory with Memory approximations are slightly
worse. The variance trend noted earlier continues here,
with the variance for traditional GP being similar in a few
cases, but dramatically greater in others (e.g., degree 13
cases).
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Figure 4: Boxplots of the best end-of-run fitness by degree for
γ ∈ {1.0, 0.7, 0.5}. There are several outlier fitness values between
12 and 26 that are not visible in this plot.

Figure 5 shows the proportion of successful runs by
degree. Here again γ = 0.7 consistently does as well or better
than all the other settings, and γ = 0.3 and traditional GP
typically do the worst.

With one exception, all the instruction sets F1–F4 had at
least moderate levels of success on the different polynomial
classes. As can be seen in Figure 6, the instruction set F1 was
generally incapable of solving any of the polynomials in the
-1, 0, 1-polynomial class.

Figure 7 plots the distribution of best fitnesses across the
40 generations for γ = 0.7 and traditional GP (γ = 1). To
help clarify the pattern, we plotted the application of a single
instruction set (F2) to a single polynomial ((5), the regular
polynomial of degree 13). We again see that the variance
is much smaller with soft assignment. We also see that the
fitness improves much more quickly in the early generations
than traditional GP.

In Figure 8 we have the proportion of these F2-Degree
13 runs that showed any improvement from one generation
to the next. γ = 0.7 shows a consistently higher proportion
of improvements across all the generations than traditional
GP (γ = 1). Both the hard and soft assignments showed a
steady drop in the proportion of runs showing improvement
up to around generation 20, where in both cases the slope
flattens off somewhat. For γ = 0.7, however, the proportion
of runs stays almost constant in the later generations,
while it continues to drop noticeably for traditional GP.
At generation 40 the proportion of runs still showing
improvement in any given generation is over 30% for the
soft assignment runs, while itis only around 10% for the
traditional GP runs. It is important to realize, however, that
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Figure 5: Proportion of successes by degree for each of the four
values of γ. The proportion of successes for a configuration is the
proportion of runs with that configuration that had a total error of
less than 1.05.

most of these improvements in the later generations are
quite small, as is suggested by Figure 7. Thus while we would
expect continued improvements in best fitness if we let the
soft assignment runs continue for additional generations,
many of those improvements would be extremely small
improvements in the evolved approximations.

Impact of Soft Assignment on Length. Hard assignment is
one potential source of ineffective or “intron” code in
GP; that is, sequences of instructions which do work, but
ultimately have no impact on the program’s final output.
An instruction like R10, for example, effectively undoes any
preceding operations that collected results in R1, potentially
making long sequences of previous instructions ineffective.
This suggests that hard assignment could play a role in bloat
[3, Section 11.3], by providing a mechanism for program
lengths to increase without improving (or even changing)
their functionality. With soft assignment, on the other hand,
every instruction has some impact on the future state of the
system. While an early instruction might have a very limited
impact in a long program, it will have some impact, implying
that there is ultimately no truly ineffective code when using
soft assignment. The ability for GP to use soft assignment
to incrementally approximate solutions, however, suggests
that programs could grow longer and longer over time as GP
works to improve its approximations.

Figure 9 shows the distribution of both mean and best-
of-run program lengths for all four values of γ across all
the runs. Both the mean and best-of-run program lengths
were substantially larger for γ = 0.7 and γ = 0.5 than for
traditional GP. The maximum size allowed after crossover
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Figure 6: Distribution of end-of-run best fitnesses by class of target
polynomial, restricted to runs using the instruction set F1. (All
function sets had reasonable levels of success on all test classes
except F1 on the {−1, 0, 1}-polynomials.) The white boxplots show
the distribution for the {−1, 0, 1}-polynomials, while the gray
boxplots show the aggregate results for all the polynomials in the
other two classes.

(500) would push down the the amount the ineffective code
one would expect in traditional GP. In the case of soft
assignment, however, where all instructions have an impact
and where there are steady, if small, improvements in fitness
over time (as seen in Figures 7 and 8), there was presumably
more fitness correlated pressure to grow.

Figure 10 shows that the tendency for soft assignment to
lead to larger programs holds for all four function sets, and
is much more pronounced for F3 and F4 than F1 and F2.
The best-of-run sizes with F1 were substantially smaller than
with the other three instruction sets for both traditional GP
and γ = 0.7. The best-of-run sizes in fact showed statistically
significant differences across all four function sets when
using traditional GP. The best-of-run sizes were much more
similar, however, when using γ = 0.7, especially for F2 and
F3; in fact, the differences were not statistically significant for
the pairs (F2, F3) and (F2, F4).

Table 5 shows the differences in the proportions of the
different instructions (from set F2) as they appeared in
the best-of-run individuals for the 50 runs with F2 on
the regular degree 13 polynomial (5) between γ = 0.7
and traditional GP (γ = 1). Negative values at the top
of the table (e.g., R1:=X, R2:=X, and R1:=R1+R2 ) all
appear more frequently in the best-of-run individuals in
the soft assignment runs. This indicates that runs with soft
assignment used considerably higher proportions of reads
from the input variable. In traditional GP, such a read would
completely overwrite the contents of the register being read
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Figure 9: Boxplots showing the distribution of both mean and best-
of-run program lengths for the four different values of gamma used
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and best-of-run lengths are statistically significant using pairwise
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into, and would consequently need to be used with some
caution. In our Memory with Memory system, however, such
an instruction blends the contents of a register with the input
variable x (which is not in fact a terrible approximation of
the target function). Conversely, traditional GP was more
likely to include the division instructions (near the bottom
of the table) as well as, to a lesser degree, subtraction and
multiplication. Given that neither division or subtraction
are needed to solve the problem, their increased presence in
the traditional GP runs could help explain traditional GP’s
generally poorer performance on this problem.

5.2. Soft Return Operations in Tree-based GP. To test the
behaviour of our tree-based GP version of MwM, we
used five classes of test problems: (1) symbolic regression
with a sine target function, (2) one symbolic regression
and two prediction problems involving the Mackey-Glass
time series, (3) a prime prediction problem, (4) symbolic
regression with two different polynomial targets, and (5) a
real-world problem involving the reconstruction of EEG ear-
lobe electrodes from other electrodes. The problems and the
results we obtained on them using different values of the
parameter γ are described in the following sections. As we
will see, except in one case, the use of MwM helps GP to
either improve its success rate or the accuracy of its solutions
(or both).
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Table 5: The difference in proportions of the different instructions (from F2) as they appeared in the best-of-run individuals in the runs
on the degree 13 regular polynomial (5) using γ = 0.7 and traditional GP (γ = 1.0). Negative values mean that those instructions appeared
with higher proportion in the soft assignment (γ = 0.7) runs, while positive values mean that those instructions appeared with a higher
proportion in the traditional GP runs.

Used more in soft assignment Neutral Used more in hard assignment

Instruction Difference in
proportions

Instruction Difference in
proportions

Instruction Difference in
proportions

R1 := X −0.025 R1 := 1 0.000 R4 := R1 0.001

R2 := X −0.022 R6 := R1 0.000 R1 := R1 ∗ R2 0.002

R1 := R1 + R2 −0.012 Swap R1 R3 0.000 R6 := R2 0.002

R5 := R1 −0.009 Swap R2 R3 0.000 R1 := R3 0.003

R4 := R2 −0.009 R2 := R5 0.000 R5 := R2 0.004

R2 := 1 −0.009 R2 := R6 0.000 R1 := 0 0.004

R2 := R1 + R2 −0.007 Swap R1 R2 0.004

R3 := R2 −0.006 R1 := R4 0.004

R2 := R1 −0.005 R2 := R1 - R2 0.005

R3 := R1 −0.005 R2 := R3 0.006

R1 := R2 −0.001 R1 := R1 - R2 0.006

R2 := R4 0.006

R1 := R6 0.007

R2 := R1 ∗ R2 0.008

R1 := R5 0.009

R2 := R1 % R2 0.011

R2 := 0 0.012

R1 := R1 % R2 0.013
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Figure 10: Boxplots showing the distribution of the best-of-run
program lengths for the four different instruction sets F1-F4, for
γ = 1.0 and γ = 0.7, across all polynomial classes and degrees.
All differences in the best-of-run sizes for γ = 1.0 are statistically
significant using a pairwise Wilcoxon test. For γ = 0.7, however,
all pairwise differences were statistically significant (again using a
pairwise Wilcoxon test) except the pairs (F2, F3) and (F2, F4).

5.2.1. Problems

Sine Problem. The sine symbolic regression problem was
used for illustration of the TinyGP system in [3]. The
problem requires programs to fit the sine function over a
full period of oscillation. We used 63 fitness cases obtained
by sampling sin(x) for x ∈ {0.0, 0.1, 0.2, . . . 6.2}. Based on
the stopping criterion indicated in Table 2, we define a success
to be a run where the best fitness was less than 3.15, or an
average error of less than 0.05 over the 63 test cases.

Mackey-Glass Problems. The Mackey-Glass chaotic time
series is often used for testing prediction algorithms. We
show the first 1,200 samples of this time series in Figure 11.

In a prediction setting, algorithms are typically required
to predict the next sample in the series given any number of
previous samples. In principle, then, the estimated sample
can be fed back into the algorithm to produce a further
sample into the future and so on. However, the time series
can also be used as a target for symbolic regression where the
independent variable is time, and the dependent variable is
the value taken by the series at that particular time. In this
work we have used the Mackey-Glass chaotic time series for
both types of applications. We ran three types of tests: one
for regression and two for prediction.

In the symbolic regression problem we gave GP the first
51 samples from the series and asked it to find a function
which transformed the sample number (i.e., the numbers 0,
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Figure 11: Mackey-Glass Chaotic Time Series.

1, etc. up to 50) into the corresponding value in the Mackey-
Glass chaotic time series.

In the first prediction problem we constructed a training
set including 1,192 fitness cases. Each fitness case had 8
independent variables representing the values taken by the
time series in 8 consecutive samples. The corresponding
target was simply the value of the following sample (which we
wish to predict). For example, the first fitness case provides
the values of the series at times 0 through to 7 to GP and
asks GP to find a function that produces as output the value
of sample 8. By sliding this 9-sample window over the time
series, we obtained the rest of the training set.

The second prediction problem was similarly con-
structed. The difference here was that we used 7 input
samples that were not consecutive, but at distances of 1, 2,
4, 8, 16, 32 and 64 from the sample we wanted to predict.
This produced a training set of 1,137 fitness cases.

Prime Prediction Problem. The prime prediction problem
was originally suggested as a competition for the GECCO
2006 conference. That version of the problem asked par-
ticipants to evolve a polynomial with integer coefficients
such that given an integer value i as input produced the
ith prime number, p(i), for the largest consecutive range of
values 1 . . . k. The evolved functions are therefore required
to produce consecutive primes for consecutive values of the
input i.

Despite its simple statement and the monotonicity of
the function to be evolved, it turned out that the problem
is extremely difficult and so solutions deviated significantly
from the ideal (polynomial with integer coefficients). For
example, the winner of the GECCO 2006 competition, David
Joslin, proposed the polynomial 1.6272 + 0.7747 × x +
0.05215× x3 − 2.7092× 10−6 × x8 + 1.5748× 10−14 × x18 −
2.1966 × 10−16 × x20 that correctly predicts only the first 8
primes. Walker and Miller, the runner-ups, did much better
but with a solution that wasnot even a polynomial.

In our version of the problem we treated the problem
as a symbolic regression problem. We provided the first 11
primes as fitness cases. So, the problem requires GP to evolve

a program that maps 1 into 2, 2 into 3, 3 into 5, 4 into 7, 5 into
11, and so on. To make the problem easier we did not require
programs to exactly match the target output, but to exhibit a
total sum of absolute errors of less than 0.05× 11 = 0.55.

Polynomial Symbolic Regression. We applied the MwM tree-
based GP system to polynomial symbolic regression prob-
lems using two target polynomials: x2 + 1.419x+ 1.009 which
is of medium difficulty and 8x5 + 3x3 + x2 + 6 which is much
harder.

For each target polynomial the fitness is the sum of
the absolute error of the evolved function on 21 evenly
spaced test points in the range [−1, 1]: {−1.0,−0.9,−0.8, . . . ,
0.8, 0.9, 1.0}. The target then is to minimise this error.

EEG Reconstruction Problem. Brain electrical activity is typ-
ically recorded from the scalp using Electroencephalography
(EEG). This is used in electrophysiology, in psychology, as
well as in brain-computer interfaces research. Voltages at
the EEG electrodes are always recorded relative to some
reference. Traditionally the reference has been either one ear
electrode or the average of the two ears [20]. This is because
there is neither muscular activity (which produces very large
potentials) nor, obviously, neural activity in the external ear.
Note that in some EEG equipment, the ear electrodes are
actually the reference voltage against which the voltage of
other electrodes is measured. In others they are not, but it is
still common to refer signals back to the ears to be consistent
with the large body of literature on EEG analysis.

As a result of using the ears as references, any changes
occurring in the impedance of the ear electrodes can produce
huge artifacts in every signal recorded. If, for example, a sin-
gle electrode detaches slightly, then every other channel can
be flooded with noise, leading to huge baseline shifts. It is,
therefore, very important to come up with ways of verifying
if the ear electrodes are working properly, for example by
comparing them against a prediction of what their voltage
should be. There are also systems which do not require the
use of ear electrodes. In these systems it is then impossible to
refer the recorded signals back to the ears (for comparison
with other research, for example). In such systems, if one
could predict what the ear electrodes would measure, based
on the signals recorded from other electrodes, then one could
refer signals back to the reconstructed ear electrodes.

In this last set of experiments we compared GP systems
with different degrees of MwM to see how well they can
construct a soft-sensor for the left ear from real EEG
recordings. We constructed a dataset using 64-channel EEG
recordings from 5 different subjects acquired over a period
of around a month. From each subject’s recording we
extracted two fragments of approximately 20 seconds each.
The fragments were approximately half an hour apart. The
original data was sampled at 2 KHz. After band-pass filtering
we subsampled it at 128 samples per second. We then chose
250 random time steps within each fragment. At each time
step we saved the voltages recorded at the 64 channels plus
the left ear reference voltage as a fitness case. This gave us a
training set of 5,000 fitness cases. Using different fragments
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Table 6: Success rates and average end-of-run program size versus
hardness of return operation (γ) in the Sine symbolic regression
problem. All pairwise differences in success rate are statistically
significant.

γ Success rate Average program size

1.0 0.296 54.88

0.7 0.442 56.24

0.5 0.618 67.59

0.3 0.540 88.16

0.1 0.066 140.54

from the same 5 subjects we also constructed a validation set
of 5,000 fitness cases. This set was not used to compute fitness
but only to decide when runs should be stopped.

The tree-based GP system had 64 input variables (the
voltage values of the 64 channels) and one output (the left
ear voltage).

5.2.2. Results

Sine problem. In the sine symbolic regression problem, for
each configuration of γ we performed 500 independent runs
with populations of size 10,000. Our results are reported in
Table 6.

The results show that most GP configurations that use
MwM performed better than the standard GP case (γ =
1), with the best MwM configuration (γ = 0.5) effectively
doubling the success rate of the system. It is also apparent
from the results that as the value of γ decreases, the average
size of the programs at the end of the run increases. As in the
case of our register-based GP system with soft assignment,
this is a common feature in our experiments with tree-
based GP with MwM. Also in the tree-based case, this
behavior occurs, we theorize, because MwM causes every
instruction to contribute to the output of a program, making
it possible to continue to incrementally improve a program
by appropriately extending it.

Mackey-Glass Problems. With the Mackey-Glass chaotic time
series, as we mentioned above, we tested three configura-
tions: two for prediction and one for regression. For each
configuration and value of γ we performed 100 independent
runs with populations of 100,000 individuals. Table 7 shows
the results with the symbolic regression version of the
problem. Again, the addition of MwM helps evolution
considerably. In fact, γ = 0.1 makes the problem problem
easy, while the results from γ = 1.0 might lead one to
deem the problem impossible to solve. As before, we see the
relationship between γ and the average end-of-run program
size, with smaller γ’s leading to bigger programs.

In the first prediction problem with the Mackey-Glass
time series we had 8 independent variables representing the
values taken by the time series in 8 consecutive samples.
The results of our experiments are shown in Table 8. All GP
configurations were very successful at solving the problem.
This is not surprising given the high correlation between

Table 7: Success rates and average end-of-run program size versus
hardness of return operation (γ) (left) and box plot of best of
run fitnesses (right) in the Mackey-Glass regression problem. The
success rates for γ = 0.3 and γ = 0.1 are statistically significantly
different from all others and each other.

γ Success rate Average program size

1.0 0.00 62.74

0.7 0.03 73.90

0.5 0.04 75.31

0.3 0.26 87.46

0.1 0.78 104.87
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samples present in the Mackey-Glass series combined with
the fact that our stopping criterion required absolute average
errors per sample of less than 0.05. Looking at the mean best
fitnesses, however, we find that, again, MwM helps evolution,
as the settings γ = 0.7 and γ = 0.5 provide significant
reductions in prediction error over the standard GP case.
We also find that excessively soft return operations hinder
performance. Very small values of γ lead to bigger programs,
but size seems to depend less on γ than for other problems
(probably because runs were stopped early as a result of being
successful).

In the second prediction problem, where we used 7
nonconsecutive samples at distances of 1, 2, . . . , 64 from the
target sample we obtained the results shown in Table 9. Again
we find that all systems are successful at finding solutions, but
that γ = 0.7 and γ = 0.5 help produce better solutions, while
excessively small γ’s hinder performance. Very small values
of γ lead to bigger programs, but other values affect size less
markedly (again likely because all runs were successful and
were stopped early).

Prime Prediction Problem. In the prime prediction problem
we performed 100 runs with populations of size 100,000
for each assignment of γ, with the results summarised in
Table 10. As was the case in the Mackey-Glass problem,
MwM increases the success rate for the problem significantly,
turning a problem which we would have deemed impossible
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Table 8: GP performance for different values of hardness of return
operation (γ) in Mackey-Glass prediction problem with consecutive
samples.

γ Success rate Mean best
end-of-run fitness

Average program size

1.0 1.0 2.69012 42.48

0.7 1.0 1.61918 35.89

0.5 1.0 1.89431 40.79

0.3 1.0 2.79318 42.26

0.1 0.96 6.44385 98.10
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to solve for standard GP into a problem of moderate diffi-
culty. We again see that solutions are bigger for smaller γ’s.

Polynomial Symbolic Regression. With the two polynomial
symbolic regression problems using two target polynomials
x2+1.419x+1.009 and 8x5+3x3+x2+6 we used population of
10,000 individuals and we performed 500 independent runs
for each value of γ. We also did 100 runs (for each γ) with
populations of 100,000 for the second polynomial which is
much harder. The results are shown in Table 11.

In this instance, MwM results were mixed. While for the
easier polynomial, all GP configurations which used MwM
performed better than the standard GP case (γ = 1), in the
harder polynomial MwM did not help (While it is somewhat
disappointing to find a problem where MwM does not help
given the positive results obtained in all other problems, we
should not be surprised to find such problems in the light of
the no-free lunch theory.).

EEG Reconstruction Problem. In the EEG reconstruction
problem we performed 2,000 runs for each configuration
of γ with a population of size 10,000. Table 12 reports the
generalisation results obtained in different configurations
of MwM. Again, MwM significantly improves performance
(analysis of variance shows that performance differences are
statistically highly significant), with smaller values of γ again
leading to slightly larger program sizes.

Table 9: GP performance for different values of hardness of
return operation (γ) in Mackey-Glass prediction problem with
nonconsecutive samples.

γ Success rate Mean best
end-of-run fitness

Average program size

1.0 1.0 3.79617 45.86

0.7 1.0 2.83241 42.25

0.5 1.0 2.45872 54.50

0.3 1.0 4.51185 75.97

0.1 1.0 6.0517 105.00
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Table 10: Success rates and average end-of-run program size versus
hardness of return operation (γ) in prime prediction problem. The
success rates for γ = 0.3 and γ = 1.0 are statistically significantly
different.

γ Success rate Average program size

1.0 0.00 62.64

0.7 0.04 86.74

0.5 0.08 87.60

0.3 0.12 94.30

0.1 0.02 114.76

6. Conclusions

In this paper we have introduced the idea of Memory with
Memory GP, where we use “soft” assignments to registers
instead of the “hard” assignments used in most computer
science (including traditional GP). Instead of having the new
value completely overwrite the old value of the register, these
soft assignments combine the two values, using a weighted
average in the work reported here.

In addition, we have extended the idea of memory-with-
memory to the domain of tree-based GP with instructions
without side effects and memory. This setup is very common
and is used, for example, in virtually all symbolic regression
applications of tree-based GP. We achieve this by using a
“soft” return operation to pass the values computed by
instructions up the tree instead of the standard, “hard”,
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Table 11: Success rates and average end-of-run program size versus hardness of return operation (γ) in polynomial regression problems.

Target x2 + 1.419x + 1.009 Target 8x5 + 3x3 + x2 + 6 Target 8x5 + 3x3 + x2 + 6

(popsize = 10,000) (popsize = 10,000) (popsize = 100,000)

γ Success rate(a) γ Success rate(b) γ Success rate(c)

1.0 0.888 1.0 0.116 1.0 0.63

0.7 0.976 0.7 0.030 0.7 0.19

0.5 0.996 0.5 0.010 0.5 0.00

0.3 1.000 0.3 0.002 0.3 0.00

0.1 0.982 0.1 0.000 0.1 0.01

γ Avg Prog Size γ Avg Prog Size γ Avg Prog Size

1.0 39.81 1.0 47.88 1.0 50.90

0.7 53.70 0.7 54.78 0.7 55.56

0.5 73.90 0.5 63.86 0.5 66.17

0.3 96.16 0.3 74.41 0.3 72.47

0.1 153.62 0.1 110.37 0.1 100.57
(a)Differences are significant except for γ = 0.7 versus γ = 0.5, γ = 0.7 versus γ = 0.1, γ = 0.5 versus γ = 0.3, and γ = 0.5 versus γ = 0.1. (b)Differences are
significant except for γ = 0.7 versus γ = 0.5, γ = 0.5 versus γ = 0.3, γ = 0.5 versus γ = 0.1, and γ = 0.3 versus γ = 0.1. (c)Differences are significant except for
γ = 0.5 versus γ = 0.1, γ = 0.5 versus γ = 0.3, and γ = 0.3 versus γ = 0.1.

Table 12: GP performance for different values of hardness of return operation (γ) in EEG ear-electrode reconstruction problem.

γ Mean Generalisation Fitness Fitness Std Dev Std Error of the Mean Avg Prog Size

1.0 39886.0 885.42 19.80 5.16

0.7 39637.5 1039.81 23.25 5.74

0.5 39485.6 1252.81 28.01 6.41

0.3 39831.0 1275.56 28.52 7.47

0.1 40342.9 1101.98 24.64 9.25
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return operation. Instead of having the new value completely
determine the output of a node, the computed value is first
combined (using a weighted average) with the value of the
first argument to a function and then returned.

Our extensive empirical tests with symbolic regression
problems show that in a linear register-based GP system
Memory with Memory GP almost always does as well as GP
with hard assignments, while significantly outperforming it
in several cases. Memory with Memory GP also tends to be

far more consistent, having much less variation in its best-of-
run fitnesses than traditional GP.

In tests with a variety of symbolic regression and
prediction problems using tree-based GP, again we found
that MwM GP almost always does very well compared to
traditional GP. Particularly striking are the very small values
of γ (corresponding to a very soft form of value return). In
several of the cases the greatest success was obtained with γ
values of 0.3, and in one case (the Mackey-Glass regression)
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γ = 0.1 provided the best performance. These are extremely
low values and represent a radically different notion of value
return than standard GP. This suggests that these kinds of
semantics play a crucial role, and that modifying them can
have a powerful impact on system performance.

Overall the data suggest that Memory with Memory GP
works by successively refining an approximate solution to
the target problem. Where traditional GP may get stuck in
local optima, MwM GP can continue to improve solutions
over time even if slowly and in small increments. This means
that it is less likely to get the sort of exact solution that
one might find with traditional GP. Also, solutions evolved
using MwM tend to be bigger than without it. Unlike with
other systems, however, this cannot be attributed to introns
since with MwM every instruction contributes to a program’s
output.

7. Future Work

This is a first exploration of a new approach to state updates
in GP, and we could only examine a handful of the many
alternatives.

An obvious area for future exploration would be the
specific implementation of soft assignment and soft return
operations. We used a weighted average between the previous
and new value (Section 3), but one could, for example, use
moving averages, where only the last k values impact the
new value, allowing old values to be completely “forgotten”
over time. Other approaches such as nonlinear combinations
could certainly be explored. We also didn’t perform a detailed
exploration of different values of γ, or its interaction with
other parameters of our evolutionary system.

Another issue not addressed here is whether it would
be beneficial to distinguish between different kinds of
assignments and return operations, making some soft and
some hard. An instruction like R1:=R1+R2, for example,
already incorporates the old value of R1, and it could
be argued that soft assignment is unnecessary there. The
instruction R1:=R1∗ R2 also typically includes the old value
of R1, but if R2:=0 then the old value of R1 is completely
overwritten. Function sets F3 and F4 both contain hard
and soft versions of some assignments, so we can get a
sense of how evolution combines soft and hard assignment
operators. A more sophisticated option would be to allow
each instruction to have its own value of γ which could be
adjusted over time via some process (e.g., evolution or back-
propagation).

One of the challenges with MwM is that it makes the
evolved solutions harder to represent and analyze since every
assignment and every return operation is in fact a linear
combination of two values. An interesting possibility would
be to start with γ < 1, but progressively move it to 1 over
the course of a run. This might have the effect of smoothing
the fitness landscape, but itis not clear how easily the system
would transition from the approximations generated by soft
assignment/return to a successful (exact) solution using hard
assignment/return.

Similarly, one could start with hard assignments/returns,
but when a run appears stuck, decrease γ (making assign-
ments/returns softer) in the hope of introducing a gradient
or at least a neutral network that would allow for additional
progress, possibly increasing γ again when progress has
resumed.

Another interesting direction to take this work is to look
at how it performs on noisy and dynamic problems, e.g.,
problems where the target function changes over time.

In future research we would like also to try to understand
what makes a problem hard or easy for systems with different
forms of MwM.

Acknowledgments

The authors would like to thank EPSRC (Grant
EP/G000484/1) for financial support, and the Dagstuhl
seminar 08051 on the Theory of Evolutionary Algorithms,
where the initial study of these ideas was finalized. Nic would
also like to thank Riccardo and the University of Essex for
being such gracious hosts during his research sabbatical.

References

[1] A. M. Turing, “The essential turing: seminal writings in com-
puting, logic, philosophy, artificial intelligence, and artificial
life plus the secrets of enigma,” in On Computable Numbers,
with an Application to the Entscheidungsproblem, pp. 58–87,
Oxford University Press, Oxford, UK, 2004.

[2] J. von Neumann, “First draft of a report on the EDVAC,”
Tech. Rep., United States Army Ordnance Department and the
University of Pennsylvania, 2008, http://www.virtualtravelog
.net/entries/2003-08-TheFirstDraft.pdf.

[3] R. Poli, W. B. Langdon, and N. F. McPhee, “A field guide to
genetic programming,” (With contributions by J. R. Koza),
2008, http://www.gp-field-guide.org.uk/.

[4] W. Banzhaf, P. Nordin, R. E. Keller, and F. D. Francone, Genetic
Programming: An Introduction; On the Automatic Evolution of
Computer Programs and Its Applications, Morgan Kaufmann,
San Francisco, Calif, USA, 1998.

[5] A. Teller, “The evolution of mental models,” in Advances in
Genetic Programming, K. E. Kinnear Jr., Ed., chapter 9, pp.
199–219, MIT Press, Cambridge, Mass, USA, 1994.

[6] S. Brave, “Evolving recursive programs for tree search,” in
Advances in Genetic Programming 2, P. J. Angeline and K.
E. Kinnear Jr., Eds., chapter 10, pp. 203–220, MIT Press,
Cambridge, Mass, USA, 1996.

[7] P. J. Angeline, “An alternative to indexed memory for evolving
programs with explicit state representations,” in Proceedings
of the 2nd Annual Conference on Genetic Programming, J. R.
Koza, K. Deb, M. Dorigo, et al., Eds., pp. 423–430, Morgan
Kaufmann, Stanford University, CA, USA, July 1997.

[8] W. B. Langdon, Genetic Programming and Data Structures:
Genetic Programming + Data Structures = Automatic Pro-
gramming!, vol. 1 of Genetic Programming, Kluwer Academic
Publishers, Boston, Mass, USA, 1998.

[9] W. S. Bruce, “Automatic generation of object-oriented pro-
grams using genetic programming,” in Proceedings of the 1st
Annual Conference on Genetic Programming, J. R. Koza, D. E.
Goldberg, D. B. Fogel, and R. L. Riolo, Eds., pp. 267–272, MIT
Press, Stanford University, Calif, USA, July 1996.



16 Journal of Artificial Evolution and Applications

[10] L. Spector and A. Robinson, “Genetic programming and auto-
constructive evolution with the push programming language,”
Genetic Programming and Evolvable Machines, vol. 3, no. 1, pp.
7–40, 2002.

[11] L. Spector, J. Klein, and M. Keijzer, “The push3 execution stack
and the evolution of control,” in Proceedings of the Conference
on Genetic and Evolutionary Computation (GECCO ’05), H.-
G. Beyer, U.-M. O’Reilly, D. V. Arnold, et al., Eds., vol. 2, pp.
1689–1696, ACM Press, Washington, DC, USA, June 2005.

[12] E. Bonabeau, M. Dorigo, and G. Theraulaz, Swarm Intelligence
: From Natural to Artificial Systems (Santa Fe Institute Studies
on the Sciences of Complexity), Oxford University Press, San
Diego, Calif, USA, 1999.
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