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Abstract

An exact form of the local Whittle likelihood is studied with the intent of
developing a general purpose estimation procedure for the memory parameter
(d) that applies throughout the stationary and nonstationary regions of d and
which does not rely on tapering or differencing prefilters. The resulting exact
local Whittle estimator is shown to be consistent and to have the same N(0, 1

4 )
limit distribution for all values of d.
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1 Introduction

Semiparametric estimation of the memory parameter (d) in fractionally integrated
(I(d)) time series is appealing in empirical work because of the general treatment of
the short memory component that it affords. Two common statistical procedures in
this class are log periodogram (LP) regression and local Whittle (LW) estimation.
LW estimation is known to be more efficient than LP regression in the stationary
(|d| < 1

2) case (Robinson, 1995), although numerical optimization methods are needed
in calculation. Outside the stationary region, it is known that the asymptotic theory
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during his stay from January to June 2002. Phillips thanks the NSF for support under Grant #SES
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for the LW estimator is discontinuous at d = 3
4 and again at d = 1, is awkward to use

because of nonnormal limit theory and, worst of all, the estimator is inconsistent when
d > 1 (Phillips and Shimotsu, 2001). Thus, the LW estimator is not a good general
purpose estimator when the value of d may take on values in the nonstationary zone
beyond 3

4 . Similar comments apply in the case of LP estimation (Kim and Phillips,
1999).

To extend the range of application of these semiparametric methods, data dif-
ferencing and data tapering have been suggested (Velasco, 1999, Hurvich and Chen,
2000). These methods have the advantage that they are easy to implement and they
make use of existing algorithms once the data filtering has been carried out. Differ-
encing has the disadvantage that prior information is needed on the appropriate order
of differencing. Tapering has the disadvantage that the filter distorts the trajectory
of the data and inflates the asymptotic variance. In consequence, there is presently
no general purpose efficient estimation procedure when the value of d may take on
values in the nonstationary zone beyond 3

4 .
The present paper studies an exact form of the local Whittle estimator which

does not rely on differencing or tapering and which seems to offer a good general
purpose estimation procedure for the memory parameter that applies throughout the
stationary and nonstationary regions of d. The estimator, which we call the exact LW
estimator, is shown to be consistent and to have the same N(0, 1

4) limit distribution
for all values of d. The exact LW estimator therefore has the same limit theory outside
the stationary region as the LW estimator has for stationary values of d. The approach
therefore seems to offer a useful alternative for applied researchers who are looking for
a general purpose estimator and want to allow for a substantial range of stationary
and nonstationary possibilities for d. The method has the further advantage that it
provides a basis for constructing valid asymptotic confidence intervals for d that are
valid irrespective of the true value of the memory parameter. A minor disadvantage
of the approach is that it involves a numerical optimization that is somewhat more
demanding than LW estimation. Our experience from simulations indicates that the
computation time required is about ten times that of the LW estimator and is well
within the capabilities of a small notebook computer.

2 Preliminaries

2.1 A Model of Fractional Integration

We consider the fractional process Xt generated by the model

(1− L)d Xt = utI {t ≥ 1} , t = 1, 2, . . . (1)

where ut is stationary with zero mean and spectral density fu(λ). Expanding the
binomial in (1) gives the form

t∑
k=0

(−d)k

k!
Xt−k = utI {t ≥ 1} , (2)

where
(d)k =

Γ (d + k)
Γ (d)

= (d)(d + 1) . . . (d + k − 1),
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is Pochhammer’s symbol for the forward factorial function and Γ (·) is the gamma
function. When d is a positive integer, the series in (2) terminates, giving the usual
formulae for the model (1) in terms of the differences and higher order differences of
Xt. An alternate form for Xt is obtained by inversion of (1 ), giving a valid represen-
tation for all values of d

Xt = (1− L)−d utI {t ≥ 1} =
t−1∑
k=0

(d)k

k!
ut−k. (3)

Define the discrete Fourier transform (dft) and the periodogram of a time series at

evaluated at the fundamental frequencies as

wa (λs) =
1√
2πn

n∑
t=1

ate
itλs , λs =

2πs

n
, s = 1, . . . , n, (4)

Ia (λs) = wa (λs) wa (λs)
∗ .

Our approach is to algebraically manipulate (2) so that it can be rewritten in a
convenient form to accommodate dft’s. The following lemma gives an exact expression
that we use for the model in frequency domain form.

2.2 Lemma (Phillips, 1999, Theorem 2.2)

(a) If Xt follows (1), then

wu (λ) = Dn

(
eiλ; d

)
wx (λ)− 1√

2πn
einλX̃λn (d) , (5)

where Dn(eiλ; d) =
∑n

k=0
(−d)k

k! eikλ and

X̃λn (d) = D̃nλ

(
e−iλL; d

)
Xn =

n−1∑
p=0

d̃λpe
−ipλXn−p, d̃λp =

n∑
k=p+1

(−d)k

k!
eikλ. (6)

(b) If Xt follows (1) with d = 1, then

wx (λ)
(
1− eiλ

)
= wu (λ)− eiλ

√
2πn

einλXn. (7)

Note that d̃λp ≡ 0 for p ≥ d when d is nonnegative integer, because (−d)k = 0 for
any integer k > d.

3 Exact Local Whittle Estimation

3.1 Exact Local Whittle Likelihood and Estimator

The (negative) Whittle likelihood based on frequencies up to λm and up to scale
multiplication is

m∑
j=1

log fu (λj) +
m∑

j=1

Iu (λj)
fu (λj)

, (8)
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where m is some integer less than n. As in Phillips (1999) define the new transform

vx(λs; d) = wx (λs)−Dn

(
eiλs ; d

)−1 1√
2πn

X̃λsn(d),

Iv(λs; d) = vx(λs; d)vx(λs; d)∗,

for which the relationship

vx(λs; d) = Dn

(
eiλs ; d

)−1
wu (λs) , Iv(λs; d) =

∣∣∣Dn

(
eiλs ; d

)∣∣∣−2
Iu (λs) ,

holds exactly. Using this exact relationship in conjunction with the local approxima-
tion fu (λs) ∼ G, we can transform the likelihood function (8) to be data dependent,
as suggested by Phillips (1999), to give the exact Whittle likelihood

Lm (G, d) =
1
m

m∑
j=1

log
(∣∣∣Dn

(
eiλj ; d

)∣∣∣−2
G

)
+

∣∣∣Dn

(
eiλj ; d

)∣∣∣2
G

Iv (λj ; d)

 .

Another exact relationship is

∆dXt = (1− L)d Xt = ut,

which leads to
w∆dx (λs) = wu (λs) = Dn

(
eiλs ; d

)
vx(λs; d). (9)

Use (9) to replace |Dn(eiλj ; d)|2Iv (λj ; d) by I∆dx (λj) and approximate |Dn(eiλj ; d)|2
by λ2d

j (Phillips and Shimotsu, 2001). Then the objective function is simplified to

Qm (G, d) =
1
m

m∑
j=1

[
log

(
Gλ−2d

j

)
+

1
G

I∆dx (λj)
]
.

We propose to estimate d and G by minimising Qm (G, d) , so that(
Ĝ, d̂

)
= arg min

G∈(0,∞), d∈[∆1,∆2]
Qm (G, d) ,

where ∆1 and ∆2 are the lower and upper bound of the admissible values of d. We
impose no restrictions on ∆1 and ∆2 except that −∞ < ∆1 < ∆2 < ∞. In what
follows we distinguish the true values of the parameters by the notation G0 = fu (0)
and d0. Concentrating Qm (G, d) with respect to G, we find that d̂ satisfies

d̂ = arg min
d∈[∆1,∆2]

R (d) , (10)

where

R (d) = log Ĝ (d)− 2d
1
m

m∑
1

log λj , Ĝ (d) =
1
m

m∑
1

I∆dx (λj) . (11)

We call d̂ the exact LW estimator of d.

3.2 Consistency

We introduce the following assumptions on m and the stationary component ut in
(1).
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Assumption 1

ut = C (L) εt =
∞∑

j=0

cjεt−j ,
∞∑

j=0

j1/2 |cj | < ∞, C (1) 6= 0, (12)

where E(εt|Ft−1) = 0, E(ε2
t |Ft−1) = 1 a.s., t = 0,±1,. . . , in which Ft is the σ-field

generated by εs, s ≤ t, and there exists a random variable ε such that Eε2 < ∞ and
for all η > 0 and some K > 0, Pr(|εt| > η ) ≤ K Pr(|ε| > η).

Assumption 2 As n →∞,

1
m

+
m (log n)2 (log m)3

n
+

log n

mγ
→ 0 for any γ > 0.

Under (12), the spectral density of ut is fu(λ) = 1
2π |C(eiλ)|2 and clearly satisfies

fu (λ) ∼ fu (0) ∈ (0,∞) as λ → 0 + . (13)

a local condition on fu (λ) analogous to Assumption A1 of Robinson (1995). Assump-
tion 1 applies to ut rather than Xt and does not assume differentiability of fu (λ) (c.f.
A2 in Robinson). Assumption 2 is slightly stronger than Assumption A4 of Robinson
(1995).

Under these conditions we may now establish the consistency of d̂.

3.3 Theorem

Suppose Xt is generated by (1) and Assumptions 1 and 2 hold. Then, for d0 ∈
[∆1,∆2] , d̂ →p d0 as n →∞.

3.4 Asymptotic Normality

We introduce some further assumptions that are used to derive the limit distribution
theory in this section.

Assumption 1′

(a) Assumption 1 holds and also

E(ε3
t |Ft−1) = µ3 a.s., E(ε4

t ) = µ4, t = 0,±1, . . . ,

for finite constants µ3 and µ4.
(b) For some β ∈ (0, 2],

fu (λ) = fu (0) (1 + O(λβ)), as λ → 0 + .

Assumption 2′ As n →∞,

1
m

+
m1+2β(log m)2

n2β
+

log n

mγ
→ 0 for any γ > 0.

Assumption 1′ is analogous to Assumptions A1′-A3′ of Robinson (1995). Robinson
(1995) imposes the assumption on the spectral density of Xt and assumes differentiability.
Assumption 2′ is comparable to Assumption A4′ of Robinson. The following theo-
rem establishes the asymptotic normality of the exact local Whittle estimator for
d0 ∈ (∆1,∆2) .
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3.5 Theorem

Suppose Xt is generated by (1) and Assumptions 1 ′ and 2 ′ hold. Then, for d0 ∈
(∆1,∆2),

m1/2
(
d̂− d0

)
→d N

(
0,

1
4

)
.

4 Simulations

This section reports some simulations that were conducted to examine the finite
sample performance of the exact LW estimator (hereafter, exact estimator), the LW
estimator (hereafter, untapered estimator) and the LW estimator with two types of
tapering studied by Hurvich and Chen (2000) and Velasco (1999) with Bartlett’s
window (hereafter, tapered (HC) and tapered (V) estimator, respectively) . We
generate I(d) processes according to (3) with ut ∼ iidN (0, 1). ∆1 and ∆2 are set
to −2 and 4. The bias, standard deviation, and mean squared error (MSE) were
computed using 10,000 replications. Sample size and m were chosen to be n = 500
and m = n0.65 = 56. Values of d were selected in the interval [−0.7, 2.3].

Table 1 shows the simulation results. The exact estimator has little bias for all
values of d. The untapered estimator has a large negative bias for d > 1, corroborating
the theoretical result that it converges to unity in probability (Phillips and Shimotsu,
2001). When d < 1, the exact and untapered estimators have similar variance and
MSE. The variances of the tapered estimators are always larger than those of the
exact and untapered estimator. Again this outcome corroborates the theoretical
result that the asymptotic variance of the tapered estimators are larger (3/(8m) and
1/(2m), respectively, for the HC and V tapered estimators). Tapered (HC) estimator
has small bias and performs better than tapered (V) estimator. However, tapered
(HC) estimator still has around 50% larger MSE than the exact estimator due to its
larger variance.
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Table 1. Simulation results: n = 500, m = n0.65 = 56
Exact estimator Untapered estimator

d bias s.d. MSE bias s.d. MSE
-0.7 -0.0024 0.0787 0.0062 0.0363 0.0882 0.0091
-0.3 -0.0020 0.0774 0.0060 -0.0017 0.0776 0.0060
0.0 -0.0020 0.0776 0.0060 -0.0066 0.0773 0.0060
0.3 -0.0014 0.0770 0.0059 -0.0059 0.0771 0.0060
0.7 -0.0024 0.0787 0.0062 0.0088 0.0828 0.0069
1.3 -0.0033 0.0777 0.0060 -0.2102 0.0988 0.0539
1.7 -0.0029 0.0784 0.0061 -0.6279 0.1342 0.4122
2.3 -0.0020 0.0782 0.0061 -1.2632 0.1129 1.6084

Tapered (HC) estimator Tapered (V) estimator
d bias s.d. MSE bias s.d. MSE

-0.7 0.0280 0.0972 0.0102 -0.0070 0.1230 0.0152
-0.3 0.0123 0.0978 0.0097 -0.0106 0.1210 0.0147
0.0 0.0043 0.0983 0.0097 -0.0115 0.1218 0.0150
0.3 -0.0007 0.0975 0.0095 -0.0110 0.1202 0.0146
0.7 -0.0076 0.0982 0.0097 -0.0068 0.1216 0.0148
1.3 -0.0084 0.0974 0.0096 0.0139 0.1243 0.0156
1.7 0.0005 0.0971 0.0094 0.0460 0.1286 0.0187
2.3 0.0525 0.0993 0.0126 -0.1776 0.1419 0.0517

Figures 1 and 2 plot kernel estimates of the densities of the four estimators for
the values d = −0.7, 0.3, 1.3 and 2.3. The sample size and m were chosen as n =
500 and m = n0.65, and 10,000 replications are used. When d = −0.7, the exact
and tapered (V) estimators have symmetric distributions centred on −0.7, with the
tapered estimator having a flatter distribution. The untapered and tapered (HC)
estimators appear to be biased. When d = 0.3, the untapered and exact estimators
have almost identical distributions, whereas the two tapered estimators have more
dispersed distributions. When d = 1.3, the untapered estimator is centred on unity.
In this case, the exact estimator seems to work well, having a symmetric distribution
centred on 1.3. The tapered estimators have flatter distributions than the exact
estimator but otherwise appear reasonable and they are certainly better than the
inconsistent untapered estimator. When d = 2.3, the untapered and tapered (V)
estimators appear centred on 1.0 and 2.0, respectively. In this case, the tapered (HC)
estimator is upward biased. Again, the exact estimator has a symmetric distribution
centred on the true value 2.3.

In sum, there seems to be little doubt from these results that the exact LW
estimator is the best general purpose estimator over a wide range of d values.
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Figure 1: Densities of the four estimators: n = 500, m = n0.65
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Figure 2: Densities of the four estimators: n = 500, m = n0.65

5 Appendix A: Technical Lemmas

Lemma A0 is provided for reference, and the proof is omitted because it is trivial.
Lemmas 5.1 - 5.3 extend Lemmas 8.1, 8.3, and 8.5 of Phillips and Shimotsu (2001)
to hold uniformly in θ. Since their proofs are almost identical, we refer the reader to
Phillips and Shimotsu for the proofs. In the following arguments, C and ε denote
generic constants such that C ∈ (1,∞) and ε ∈ (0, 1) unless specified otherwise.

Lemma A0 As n →∞,

(a) sup−1≤α≤C

∣∣∣n−α−1 (log n)−1∑n
j=1 jα

∣∣∣ = O (1) .

(b) sup−C≤α≤−1

∣∣∣(log n)−1∑n
j=1 jα

∣∣∣ = O (1) .

(c) For 1 ≤ p ≤ n, sup−C≤α≤−1

∣∣∣p−α−1 (log n)−1∑n
j=p jα

∣∣∣ = O (1) .

5.1 Lemma (Phillips and Shimotsu, Lemma 8.1)

Uniformly in θ ∈ [−1 + ε, C] and in s = 1, 2, . . . ,m with m = o (n) ,

Dn

(
eiλs ; θ

)
=
(
1− eiλs

)θ
+ O

(
n−θs−1

)
. (14)

9



5.2 Lemma (Phillips and Shimotsu, Lemma 8.3)

Uniformly in θ ∈ [−1 + ε, C] and in s = 1, 2, . . . ,m with m = o (n) ,

λ−θ
s

(
1− eiλs

)θ
= e−

π
2
θi + O (λs) ,

λ−θ
s Dn

(
eiλs ; θ

)
= e−

π
2
θi + O (λs) + O

(
s−1−θ

)
,

λ−2θ
s Dn

∣∣∣(eiλs ; θ
)∣∣∣2 = 1 + O

(
λ2

s

)
+ O

(
s−1−θ

)
.

5.3 Lemma (Phillips and Shimotsu, Lemma 8.5)

For p = 1, 2, . . . , n and s = 1, 2, . . . ,m with m = o (n) , the following holds uniformly
in θ, p and s :

(a) θ̃λsp =

{
O(|p|−θ

+ log n), for θ ∈ [0, C],
O(n−θ log n), for θ ∈ [−1 + ε, 0],

(15)

(b) θ̃λsp = O(|p|−θ−1
+ ns−1), for θ ∈ [−1 + ε, C], (16)

where |x|+ = max{x, 1}.

5.4 Lemma

Let Ũλn (θ) =
∑n−1

p=0 θ̃λpe
−ipλun−p. Then, uniformly in s = 1, 2, . . . ,m with m =

o (n) ,

(a) E supθ n2θ−1s1−2θ (log n)−6 |Ũλsn (θ) |2 = O (1) , θ ∈ [0, 1
2 ],

(b) E supθ

[
n1−2θsθ−1 (log n)4 + n−2θ (log n)2

]−1
|Ũλsn (θ) |2 = O (1) , θ ∈ [−1

2 , 0],
(c) E supθ n2θ−1s (log n)−4 |Ũλsn (θ) |2 = O (1) , θ ∈ [−1

2 , 0].

5.5 Proof

When θ = 0, the result follows immediately because Ũλsn (θ) ≡ 0. For θ 6= 0, applying
the BN decomposition

ut = C (L) εt = C (1) εt − (1− L) ε̃t, ε̃t =
∞∑
0

c̃jεt−j , c̃j =
∞∑

j+1

cs, (17)

to Ũλsn (θ) in conjunction with Lemma 5.3 yields (see Phillips and Shimotsu, 2001)

Ũλsn (θ) = C (1) ε̃λsn (θ) + rns (θ) ,

where

rns (θ) =

{
O (log n) ε̃n +

∑n−1
1 O(p−θ−1)ε̃n−p + O(n−θ log n)ε̃0, θ ≥ 0,

O(n−θ log n)ε̃n +
∑n−1

1 O(p−θ−1)ε̃n−p + O(n−θ log n)ε̃0, θ ≤ 0,

uniformly in θ and E|ε̃t|2 < ∞ for t = 0, . . . , n. It follows that

E sup
θ∈[0,1/2]

|rns (θ)|2 = O
(
(log n)2

)
, E sup

θ∈[−1/2,0]
n2θ |rns (θ)|2 = O

(
(log n)2

)
. (18)
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Since

θ̃λsp = Γ (−θ)−1
n∑

p+1

k−θ−1eikλs + O

 n∑
p+1

k−θ−2

 ,

we obtain

ε̃λsn (θ) =
n−1∑
p=0

θ̃λspe
−ipλsεn−p = ε̂λsn (θ) + r′ns (θ) ,

where

ε̂λsn (θ) =
1

Γ (−θ)

n−1∑
p=0

n∑
k=p+1

k−θ−1ei(k−p)λsεn−p, r′ns (θ) =
n−1∑
p=0

O

 n∑
p+1

k−θ−2

 εn−p.

Since

sup
θ∈[0,1/2]

n∑
p+1

k−θ−2 = O
(
|p|−1

+

)
, sup

θ∈[−1/2,0]
nθ

n∑
p+1

k−θ−2 = O
(
|p|−1

+

)
,

it follows that

E sup
θ∈[0,1/2]

∣∣r′ns (θ)
∣∣2 = O

(
(log n)2

)
, E sup

θ∈[−1/2,0]
n2θ

∣∣r′ns (θ)
∣∣2 = O

(
(log n)2

)
. (19)

In view of (18), (19) and the fact supθ∈[−1/2,1/2] |Γ (−θ)−1 | < ∞, the stated result
follows if

E sup
θ

∣∣∣∣∣∣An (θ)
n−1∑
p=0

n∑
k=p+1

k−θ−1ei(k−p)λsεn−p

∣∣∣∣∣∣
2

= O (1) , (20)

where

An (θ) =

{
nθ−1/2s1/2−θ (log n)−3 , θ ∈ [0, 1/2],
nθ−1/2s1/2−θ/2 (log n)−2 , θ ∈ [−1/2, 0],

and we suppress the subscript s from An (θ) . Before showing (20), we slightly modify
a result in Hansen (1996) and state it as a lemma.

Lemma H (Corollary of Hansen (1996) Theorem 2) Let {Xni : i ≤ n;n =
1, 2, . . .} be a triangular array of random vectors defined on a probability space (Ω,F , P ).
Let {Fni} be an array of sub-σ-fields of F , such that, for each n, {Fni} is nonde-
creasing in i. Let F be a class of parametric functions fni(x, θ), where θ ∈ Θ, and
Θ is a bounded subset of Ra. The elements fni ∈ F satisfy the Lipschitz condition

|fni(x, θ)− fni(x, θ′)| ≤ bni(x)|θ − θ′|λ, (21)

for some function bni(·) and some λ > 0. Define the empirical process operator νn

by
νnf (θ) = n−1/2∑n

i=1(fni(Xni, θ)− Efni(Xni, θ)),

and let ||Z||r denote the Lr norm for a random matrix Z, i.e. ||Z||r = (E|Z|r)1/r.
Suppose for some q ≥ 2 with q > a/λ and each θ ∈ Θ, {fni(Xni, θ),Fni} is a

martingale difference array satisfying

lim sup
n→∞

(
n−1∑n

i=1 ||fni(Xni, θ)||2q
)1/2

< ∞, (22)
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and
lim sup

n→∞

(
n−1∑n

i=1 ||bni(Xni)||2q
)1/2

< ∞. (23)

Then, for any θ1 ∈ Θ there exists a constant C < ∞ such that

lim sup
n→∞

|| supθ∈Θ |νnf (θ)− νnf (θ1) | ||q < C. (24)

Proof The stated result follows from Theorem 2 of Hansen (1996) and its proof.
First, Lemma 1 and Theorem 2 of Hansen (1996) still hold if we replace his f(Xni, θ)
with fni(Xni, θ). Let C be a generic positive finite constant. Then, from equation
(27) of Hansen (1996), for n sufficiently large and a sequence of integers k(n) that
satisfies

√
n2−k(n)λ → 0,

|| supθ∈Θ |νnf (θ)− νnf(θk(n))| ||q < C, (25)

where θk(n) is defined on page 356 in Hansen (1996). Furthermore, from equations
(29) and (31) in Hansen (1996) and Minkowski’s inequality it follows that, for a finite
constant A,

|| supθ∈Θ |νnf(θk(n))− νnf (θ1) | ||q ≤ ||
∑k(n)

k=2 supθ∈Θ |νnf(θk)− νnf (θk−1) | ||q
≤

∑k(n)
k=2 || supθ∈Θ |νnf(θk)− νnf (θk−1) | ||q

≤
∑∞

k=2 A2(a/q−λ)k < C, (26)

because q > a/λ. The stated result follows from (25) and (26).
We proceed to show (20). Let

fnp (θ) =
√

nAn (θ)
n∑

k=p+1

k−θ−1ei(k−p)λs ,

so that

An (θ)
n−1∑

0

n∑
p+1

k−θ−1ei(k−p)λsεn−p =
1√
n

n−1∑
p=0

fnp (θ) εn−p =
1√
n

n∑
r=1

fn,n−r (θ) εr.

(20) holds if

lim sup
n→∞

E
∣∣∣n−1/2∑n−1

0 fnp (0) εn−p

∣∣∣2 < ∞, (27)

and we can apply Lemma H to n−1/2∑n
r=1(fn,n−r (θ) εr − Efn,n−r (θ) εr). Because

Efn,n−r (θ) εr = 0 for any θ, in order to apply Lemma H with q = 2, a = 1 and λ = 1,
it suffices to show

|fnp(θ)− fnp(θ′)| ≤ bnp|θ − θ′|, (28)

lim sup
n→∞

(
n−1∑n−1

0 |fnp(θ)|2
)1/2

< ∞, (29)

lim sup
n→∞

(
n−1∑n−1

0 |bnp|2
)1/2

< ∞. (30)

First we show (27) and (29). Observe that

n∑
p+1

k−θ−1ei(k−p)λs ≤ (p + 1)−θ−1 max
N

∣∣∣∣∣∣
N∑

p+1

ei(k−p)λs

∣∣∣∣∣∣ = O
(
|p|−θ−1

+ ns−1
)

, (31)
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and
n∑

p+1

k−θ−1ei(k−p)λs =

 O
(
|p|−θ

+ log n
)

, θ ∈ [0, 1/2],

O
(
n−θ log n

)
, θ ∈ [−1/2, 0],

uniformly in θ. Then, for θ ∈ [0, 1/2],

|fnp (θ)|2 = O
(
n2θs1−2θ|p|−2θ

+ (log n)−4
)

= O
(
n|p|−1

+ (s|p|+/n)1−2θ (log n)−4
)

= O
(
n|p|−1

+ (log n)−4
)

, p ≤ n/s,

|fnp (θ)|2 = O
(
n2θs1−2θ|p|−2θ−1

+ ns−1 (log n)−5
)

= O
(
n|p|−1

+ (s|p|+/n)−2θ (log n)−5
)

= O
(
n|p|−1

+ (log n)−5
)

, p ≥ n/s,

and for θ ∈ [−1/2, 0],

|fnp (θ)|2 = O
(
n2θs1−θ|p|−θ−1

+ ns−1n−θ (log n)−3
)

= O
(
n|p|−1

+ (s|p|+/n)−θ (log n)−3
)

= O
(
n|p|−1

+ (log n)−3
)

, p ≤ n/s,

|fnp (θ)|2 = O
(
n2θs1−θ|p|−2θ−2

+ n2s−2 (log n)−4
)

= O
(
n|p|−1

+ (s|p|+/n)−2θ−1 sθ (log n)−4
)

= O
(
n|p|−1

+ (log n)−4
)

, p ≥ n/s.

It follows that, for any θ ∈ [−1/2, 1/2],

lim sup
n→∞

E
∣∣∣n−1/2∑n−1

0 fnp (θ) εn−p

∣∣∣2 =lim sup
n→∞

n−1∑n−1
0 |fnp (θ)|2 < ∞,

giving (27) and (29).
We proceed to show (28) and (30). For θ ∈ [0, 1/2], observe that

∂

∂θ
fnp (θ) =

√
nAn (θ)

n∑
p+1

k−θ−1 [log (n/k)− log s] ei(k−p)λs .

Similarly as above, we have

n∑
p+1

k−θ−1 log (n/k) ei(k−p)λs ≤ (p + 1)−θ−1 log
(

n

p + 1

)
max

N

∣∣∣∣∣∣
N∑

p+1

ei(k−p)λs

∣∣∣∣∣∣
= O

(
|p|−θ−1

+ ns−1 log n
)

, (32)

and

n∑
p+1

k−θ−1 log (n/k) ei(k−p)λs =

 O
(
|p|−θ

+ (log n)2
)

, θ ∈ [0, 1/2],

O
(
n−θ(log n)2

)
, θ ∈ [−1/2, 0],

(33)

uniformly in θ ∈ [−1/2, 1/2]. The same bounds hold for log s
∑n

p+1 k−θ−1ei(k−p)λs .

Then, proceeding as for |fnp (θ)|2 , we obtain uniformly in θ∣∣∣∣ ∂

∂θ
fnp (θ)

∣∣∣∣2 = O
(
n|p|−1

+ (log n)−2
)

.
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Now we consider the case θ ∈ [−1/2, 0]. First observe

∂

∂θ
fnp (θ) =

√
nAns (θ)

n∑
p+1

k−θ−1 [log (n/k)− 0.5 log s] ei(k−p)λs .

Similarly as above, from (32) and (33) we obtain∣∣∣∣ ∂

∂θ
fnp (θ)

∣∣∣∣2 = O
(
n|p|−1

+ (log n)−1
)

.

Since fnp (θ) is a differentiable function, the mean value theorem gives

|fnp(θ)− fnp(θ′)| =
∣∣∣∣ ∂

∂θ
fnp (θp)

∣∣∣∣ |θ − θ′|,

where θp ∈ [θ, θ′]. Define bnp = Bn1/2|p|−1/2
+ (log n)−1/2 for some large B, then bnp

satisfies (28), and

lim sup
n→∞

n−1∑n−1
0 |bnp|2 =B2 lim sup

n→∞

∑n−1
0 |p|−1

+ (log n)−1 < ∞,

giving (30) to complete the proof.

5.6 Lemma

(a) E supd n1−2d(log n)−4X2
n = O (1) , d ∈ [1/2, C],

(b) E supd(log n)−4X2
n = O (1) , d ∈ [−C, 1/2].

5.7 Proof

¿From the proof of Lemma 8.11 of Phillips and Shimotsu (2001), we have

Xn = C (1)
n−1∑

0

(d)k

k!
εn−k + rn (d) =

C (1)
Γ (d)

n−1∑
1

kd−1εn−k + rn (d) + r′n (d) ,

where

rn (d) =
n−1∑

0

O
(
|k|d−2

+

)
ε̃n−k + O

(
nd−1

)
ε̃0, r′n (d) =

n−1∑
0

O
(
|k|d−2

+

)
εn−k.

It follows that

E supd n2−2d |rn (d) + r′n (d)|2 = O((log n)2), d ∈ [1, C],
E supd |rn (d) + r′n (d)|2 = O((log n)2), d ∈ [−C, 1].

We proceed to show

E sup
d

∣∣∣∣∣
n−1∑

1

An (d) kd−1εn−k

∣∣∣∣∣
2

= O (1) ; An (d) =

{
n1/2−d(log n)−2, d ∈ [12 , C],
(log n)−2 , d ∈ [−C, 1

2 ],
(34)

then the required result follows. In view of the proof of Lemma 5.4 , (34) holds if

sup
d

∣∣∣An (d) kd−1
∣∣∣ = O

(
k−1/2 (log n)−1/2

)
, k = 1, . . . n− 1.

sup
d

∣∣∣∣ ∂

∂d
An (d) kd−1

∣∣∣∣ = O
(
k−1/2 (log n)−1/2

)
, k = 1, . . . n− 1,

Trivially the above two conditions are met, thereby giving the stated result.
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5.8 Lemma

Define Jn (L) =
∑n

1
1
kLk and Dn (L; d) =

∑n
0

(−d)k
k! Lk. Then

(a) Jn (L) = Jn

(
eiλ
)

+ J̃nλ

(
e−iλL

) (
e−iλL− 1

)
,

(b) Jn (L) Dn (L; d) = Jn

(
eiλ
)

Dn

(
eiλ; d

)
+ Dn

(
eiλ; d

)
J̃nλ

(
e−iλL

) (
e−iλL− 1

)
+Jn (L) D̃nλ

(
e−iλL; d

) (
e−iλL− 1

)
,

where
J̃nλ

(
e−iλL

)
=
∑n−1

p=0 j̃λpe
−ipλLp, j̃λp =

∑n
p+1

1
keikλ,

D̃nλ

(
e−iλL; d

)
=
∑n−1

p=0 d̃λpe
−ipλLp, d̃λp =

∑n
p+1

(−d)k
k! eikλ.

5.9 Proof

For part (a), see Phillips and Solo (1992, formula (32)). For part (b), from Lemma
2.1 of Phillips (1999) we have

Dn (L; d) = Dn

(
eiλ; d

)
+ D̃nλ

(
e−iλL; d

) (
e−iλL− 1

)
.

and the stated result follows immediately.

5.10 Lemma

Uniformly in p = 1, . . . , n and s = 1, . . . ,m with m = o (n) ,

(a) Jn

(
eiλs

)
= − log λs +

i

2
(π − λs) + O

(
λ2

s

)
+ O

(
s−1

)
,

(b) j̃λsp = O
(
|p|−1

+ ns−1
)

,

(c) j̃λsp = O (log n) .

5.11 Proof

For (a), first we have

Jn

(
eiλs

)
=

n∑
1

1
k
eikλs =

∞∑
1

1
k
eikλs −

∞∑
n+1

1
k
eikλs . (35)

The first term is (Zygmund, 1977, p.5)
∞∑
1

cos kλs

k
+ i

∞∑
1

sin kλs

k
= − log

∣∣∣∣2 sin
λs

2

∣∣∣∣+ i
1
2

(π − λs) .

Since 2 sin (λs/2) = λs + O(λ3
s) = λs(1 + O(λ2

s)), it follows that
∞∑
1

1
k
eikλs = − log λs−log

(
1 + O

(
λ2

s

))
+i

1
2

(π − λs) = − log λs+O
(
λ2

s

)
+

i

2
(π − λs) .

For the second term in (35), from Theorem 2.2 of Zygmund (1977, p.3) and the
ordinary summation formula, we obtain

∞∑
n+1

1
k
eikλs ≤ n−1 max

N

∣∣∣∣∣∣
n+N∑
n+1

eikλs

∣∣∣∣∣∣ = O
(
s−1

)
,
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giving (a). (b) and (c) follows from the fact that |j̃λsp| ≤ (p+1)−1 maxp+1≤N≤n |
∑N

p+1 eikλs |
and j̃λsp = O

(∑n
0 |k|−1

+

)
.

5.12 Lemma

Suppose Yt = (1− L)θ ut. Then, uniformly in θ and s = 1, . . . ,m with m = o (n),

(a) − wlog(1−L)y (λs) = Jn

(
eiλs

)
Dn

(
eiλs ; θ

)
wu (λs) + n−1/2Vns (θ) ,

where
E supθ n2θ−1s1−2θ (log n)−8 |Vns (θ)|2 = O (1) , θ ∈ [0, 1/2],
E supθ n2θ−1s (log n)−6 |Vns (θ)|2 = O (1) , θ ∈ [−1/2, 0].

(b) − wlog(1−L)u (λs) = Jn

(
eiλs

)
wu (λs)− C (1) (2πn)−1/2 J̃nλs

(
e−iλsL

)
εn + rns,

where E |rns|2 = O(n−1 (log n)2).

(c) w(log(1−L))2y (λs) = Jn

(
eiλs

)2
Dn

(
eiλs ; θ

)
wu (λs) + n−1/2Ψns (θ) ,

where

E supθ n2θ−1s1−2θ (log n)−10 |Ψns (θ)|2 = O (1) , θ ∈ [0, 1/2],
E supθ n2θ−1s (log n)−8 |Ψns (θ)|2 = O (1) , θ ∈ [−1/2, 0].

5.13 Proof

Recall that Yt = Dn (L; θ) ut and

log (1− L) Yt =
(
−L− L2/2− L3/3− . . .

)
Yt = −Jn (L) Yt.

For part (a) and (b), from Lemma 5.8 (b) we have for all t ≤ n

− log (1− L) Yt = Jn (L) Dn (L; θ) ut

= Jn

(
eiλs

)
Dn

(
eiλs ; θ

)
ut (36)

+Dn

(
eiλs ; θ

)
J̃nλs

(
e−iλsL

) (
e−iλsL− 1

)
ut (37)

+Jn (L) D̃nλs

(
e−iλsL; θ

) (
e−iλsL− 1

)
ut. (38)

Since
∑n

t=1 eitλs(e−iλsL− 1)ut = −un, taking the dft of (36) - (38) leaves us with

Jn

(
eiλs

)
Dn

(
eiλs ; θ

)
wu (λs)−

1√
2πn

Dn

(
eiλs ; θ

)
J̃nλs

(
e−iλsL

)
un

− 1√
2πn

Jn (L) Ũλsn(θ). (39)

Applying the BN decomposition to J̃nλs(e
−iλsL)un yields

J̃nλs

(
e−iλsL

)
un =

n−1∑
0

j̃λspe
−ipλsun−p =

n−1∑
0

j̃λspe
−ipλs [C (1) εn−p − (1− L) ε̃n−p]

= C (1) J̃nλs

(
e−iλsL

)
εn −

n−1∑
0

j̃λspe
−ipλs (1− L) ε̃n−p. (40)
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For the first term in (40), from Lemma 5.10 we have

E
∣∣∣J̃nλs

(
e−iλsL

)
εn

∣∣∣2 = O

(
(log n)2 +

n−1∑
1

p−1ns−1 log n

)
= O

(
ns−1 (log n)2

)
.

The second term in (40) can be rewritten as follows:

n−1∑
0

j̃λspe
−ipλs (1− L) ε̃n−p

= j̃λs0ε̃n +
n−1∑

1

j̃λspe
−ipλs ε̃n−p −

n−1∑
1

j̃λs(p−1)e
−i(p−1)λs ε̃n−p − j̃λs(n−1)e

−i(n−1)λs ε̃0

=
n−1∑

1

[
j̃λspe

−ipλs − j̃λs(p−1)e
−i(p−1)λs

]
ε̃n−p + j̃λs0ε̃n − j̃λs(n−1)e

−i(n−1)λs ε̃0. (41)

j̃λs0, j̃λs(n−1) = O (log n) from Lemma 5.10 (c), and from Lemma 5.10 (b) and the
fact that j̃λsp − j̃λs(p−1) = p−1eipλs we obtain

j̃λspe
−ipλs − j̃λs(p−1)e

−i(p−1)λs = j̃λsp

[
e−ipλs − e−i(p−1)λs

]
+ e−i(p−1)λs

[
j̃λsp − j̃λs(p−1)

]
= j̃λspe

−ipλs

(
1− eiλs

)
− e−i(p−1)λsp−1eipλs = O

(
p−1

)
.

Since E|ε̃t|2 < ∞, it follows that E sups |(41)|2 = O((log n+
∑n

1 p−1)2) = O((log n)2).
Therefore, in view of the order of Dn(eiλs ; θ) given by Lemma 5.1 we have

E sup
θ

n2θ−1s1−2θ
∣∣∣Dn

(
eiλs ; θ

)
J̃nλs

(
e−iλsL

)
un

∣∣∣2 = O
(
(log n)2

)
, (42)

uniformly in s. Now we evaluate (39). Let

ans (θ) =

{
n2θ−1s1−2θ (log n)−8 , θ ∈ [0, 1/2],
n2θ−1s (log n)−6 , θ ∈ [−1/2, 0].

In view of the proof of Lemma 5.4, LpŨλsn(θ) has the same order as Ũλsn(θ). Thus

E sup
θ

ans (θ)
∣∣∣Jn (L) Ũλsn(θ)

∣∣∣2
≤ E

n−1∑
1

n−1∑
1

p−1q−1 sup
θ

(ans (θ))1/2
∣∣∣LpŨλsn(θ)

∣∣∣ sup
θ

(ans (θ))1/2
∣∣∣LqŨλsn(θ)

∣∣∣
≤

n−1∑
1

n−1∑
1

p−1q−1
[
E sup

θ
ans (θ)

∣∣∣LpŨλsn(θ)
∣∣∣2]1/2 [

E sup
θ

ans (θ)
∣∣∣LqŨλsn(θ)

∣∣∣2]1/2

= O(1). (43)

Combining (42) and (43) gives part (a). If d = 0, (39 )≡ 0 and Dn(eiλs ; 0) = 1, and
part (a) follows immediately.

For part (b), observe that

−wlog(1−L)u (λs) = Jn

(
eiλs

)
wu (λs)− C (1) (2πn)−1/2 J̃nλs

(
e−iλsL

)
εn

+ (2πn)−1/2∑n−1
0 j̃λspe

−ipλs (1− L) ε̃n−p,
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and finding the order of the last term gives the stated result.
For part (c), first from Lemma 5.8 and Lemma 2.1 of Phillips (1999) we have

Jn (L)2 = Jn (L) [Jn(eiλ) + J̃nλ(e−iλL)(e−iλL− 1)]
= Jn (L) Jn(eiλ) + Jn (L) J̃nλ(e−iλL)(e−iλL− 1)
= Jn(eiλ)2 + Jn(eiλ)J̃nλ(e−iλL)(e−iλL− 1)

+Jn (L) J̃nλ(e−iλL)(e−iλL− 1),
Dn (L; θ) = Dn(eiλ; θ) + D̃nλ(e−iλL; θ)(e−iλL− 1).

It follows that

(log (1− L))2 Yt = Jn (L)2 Dn (L; θ) ut

= Jn(eiλ)2Dn(eiλ; θ)ut

+Dn(eiλ; θ)[Jn(eiλ) + Jn (L)]J̃nλ(e−iλL)(e−iλL− 1)ut

+Jn (L)2 D̃nλ(e−iλL; θ)(e−iλL− 1)ut.

Taking its dft gives

Jn(eiλs)2Dn(eiλs ; θ)wu (λs)

− 1√
2πn

Dn(eiλs ; θ)[Jn(eiλs) + Jn (L)]J̃nλs(e
−iλsL)un

− 1√
2πn

Jn (L)2 Ũλsn (θ) .

In view of (42) and (43), we obtain

E sup
θ

n2θ−1s1−2θ
∣∣∣Dn(eiλs ; θ)[Jn(eiλs) + Jn (L)]J̃nλs(e

−iλsL)un

∣∣∣2 = O((log n)4),

E sup
θ

ans (θ)
∣∣∣Jn (L)2 Ũλsn (θ)

∣∣∣2 = O((log n)2),

for s = 1, . . . ,m, and the stated result follows.

6 Appendix B: Proofs

6.1 Proof of consistency

Define G(d) = G0
1
m

∑m
1 λ

2(d−d0)
j and S (d) = R (d)−R (d0) . Rewrite S(d) as follows:

S (d) = R (d)−R (d0)

= log
Ĝ (d)
G(d)

− log
Ĝ (d0)

G0
+ log

 1
m

m∑
j=1

j2d−2d0/
m2(d−d0)

2(d− d0) + 1


−(2d− 2d0)

 1
m

m∑
j=1

log j − (log m− 1)


+(2d− 2d0)− log (2(d− d0) + 1) .

For arbitrary small ∆ > 0, define Θa
1 = {d : d0 − 1

2 + ∆ ≤ d ≤ d0 + 1
2}, Θb

1 =
{d : d0 + 1

2 ≤ d ≤ ∆2} and Θ2 = {d : ∆1 ≤ d ≤ d0 − 1
2 + ∆}, Θb

1 and Θ2 being
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possibly empty. Without loss of generality we assume ∆ < 1
8 hereafter. In view of

the arguments in Robinson (1995), d̂ →p d0 if

sup
Θa

1

|T (d)| →p 0,

and

Pr

(
inf
Θb

1

S (d) ≤ 0

)
→ 0, Pr

(
inf
Θ2

S (d) ≤ 0
)
→ 0,

as n →∞, where

T (d) = log
Ĝ (d0)

G0
− log

Ĝ (d)
G(d)

− log

 1
m

m∑
j=1

j2d−2d0/
m2d−2d0

2(d− d0) + 1


+(2d− 2d0)

[
1
m

m∑
1

log j − (log m− 1)

]
.

Robinson (1995) shows that the fourth term on the right hand side is O (log m/m)
uniformly in d ∈ Θa

1 ∪Θb
1 and

sup
Θa

1∪Θb
1

∣∣∣∣∣2(d− d0) + 1
m

m∑
1

(
j

m

)2d−2d0

− 1

∣∣∣∣∣ = O

(
1

m2∆

)
. (44)

Note that

Ĝ (d)−G(d)
G (d)

=
m−1∑m

1 λ
2(d−d0)
j λ

2(d0−d)
j I∆dx (λj)−G0m

−1∑m
1 λ

2(d−d0)
j

G0m−1
∑m

1 λ
2(d−d0)
j

=
m−1∑m

1 (j/m)2(d−d0) λ
2(d0−d)
j I∆dx (λj)−G0m

−1∑m
1 (j/m)2(d−d0)

G0m−1
∑m

1 (j/m)2(d−d0)

=
[2 (d− d0) + 1] m−1∑m

1 (j/m)2(d−d0)
[
λ

2(d0−d)
j I∆dx (λj)−G0

]
[2 (d− d0) + 1] G0m−1

∑m
1 (j/m)2(d−d0)

=
A (d)
B (d)

. (45)

Therefore, by the fact that Pr (|log Y | ≥ ε) ≤ 2 Pr (|Y − 1| ≥ ε/2) for any nonnegative
random variable Y and ε ≤ 1, supΘa

1
|T (d)| →p 0 if

supΘa
1
|A (d) /B (d)| →p 0. (46)

Define Yt = (1− L)d Xt. Then

Yt = (1− L)d−d0 (1− L)d0 Xt = (1− L)θ utI{t ≥ 1},

where θ ≡ d− d0. Hereafter, we use the notation Yt ∼ I (α) when Yt is generated by
(1) with parameter α. So Yt ∼ I (−θ) . Note that

d ∈ Θa
1 ⇔ −1

2 + ∆ ≤ θ ≤ 1
2 .

Applying Lemma 2.2 (a) to (Yt, ut) replacing the role of ut, we obtain

wy (λj) = wu (λj) Dn

(
eiλj ; θ

)
− 1√

2πn
Ũλjn (θ) , (47)
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and A (d) can be written as, with g = 2 (d− d0) + 1,

A (d) =
g

m

m∑
1

(
j

m

)2θ [
λ−2θ

j Iy (λj)−G0

]
.

Hereafter let Iyj denote Iy (λj), wuj denote wu (λj) , and similarly for other dft’s and
periodograms. From a similar argument as Robinson (1995, p. 1636), supΘa

1
|A (d)|

is bounded by

m−1∑
r=1

(
r

m

)2∆ 1
r2

sup
Θa

1

∣∣∣∣∣∣
r∑

j=1

[
λ−2θ

j Iyj −G0

]∣∣∣∣∣∣+ 1
m

sup
Θa

1

∣∣∣∣∣∣
m∑

j=1

[
λ−2θ

j Iyj −G0

]∣∣∣∣∣∣ . (48)

Now

λ−2θ
j Iyj −G0

= λ−2θ
j Iyj − λ−2θ

j

∣∣∣Dn(eiλj ; θ)
∣∣∣2 Iuj +

[
λ−2θ

j

∣∣∣Dn(eiλj ; θ)
∣∣∣2 − fu (0) /fu (λj)

]
Iuj

+
[
Iuj − |C(eiλj )|2Iεj

]
fu (0) /fu (λj) + fu (0) (2πIεj − 1) . (49)

¿From Lemma 5.2 and arguments in Phillips and Shimotsu (2001, pp. 18-19), for
any η > 0

m∑
1

(
r

m

)2∆ 1
r2

sup
Θa

1

r∑
1

∣∣∣∣[λ−2θ
j

∣∣∣Dn(eiλj ; θ)
∣∣∣2 − fu (0) /fu (λj)

]
Iuj

+
[
Iuj − |C(eiλj )|2Iεj

]
fu (0) /fu (λj)

∣∣∣ = Op

(
η + m2n−2 + m−2∆ + n−1/2

)
.

Robinson (1995) shows that
∑m

1 (r/m)2∆ r−2 |
∑r

1(2πIεj − 1)| →p 0. From (47), the
fact that ||A|2− |B|2| ≤ |A+B||A−B| and the Cauchy-Schwartz inequality we have

E sup
Θa

1

∣∣∣∣λ−2θ
j Iyj − λ−2θ

j

∣∣∣Dn(eiλj ; θ)
∣∣∣2 Iuj

∣∣∣∣
≤

E sup
Θa

1

∣∣∣∣∣2λ−θ
j Dn(eiλj ; θ)wuj − λ−θ

j

Ũλjn (θ)
√

2πn

∣∣∣∣∣
2
1/2E sup

Θa
1

∣∣∣∣∣λ−θ
j

Ũλjn (θ)
√

2πn

∣∣∣∣∣
2
1/2

.(50)

In view of Lemmas 5.2 and 5.4 (a) and (c), (50) is bounded by

j−1/2 (log n)3 + j−1 (log n)6 + j−∆ (log n)2 + j−2∆ (log n)4 = O
(
j−∆ (log n)6

)
.

It follows that

m−1∑
1

(
r

m

)2∆ 1
r2

E sup
Θa

1

∣∣∣∣∣
r∑
1

[
λ−2θ

j Iyj − λ−2θ
j

∣∣∣Dn(eiλj ; θ)
∣∣∣2 Iuj

]∣∣∣∣∣ = Op

(
m−∆ (log n)6

)
,

hence the first term in (48) is op (1) . Using the same technique, we can show that the
second term in (48) is op (1) , and supΘa

1
|A(d)| →p 0 follows. (44) gives supΘ1

|B(d)−
G0| = O(m−2∆), and (46) follows.
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Next we take care of Θb
1 = {d : d0 + 1

2 ≤ d ≤ ∆2} = {θ : 1
2 ≤ θ ≤ ∆2 − d0}. Note

that

S (d) = log Ĝ (d)− log Ĝ (d0)− 2 (d− d0)
1
m

m∑
1

log λj

= log
1
m

m∑
1

I∆dxj − log
1
m

m∑
1

I∆d0xj − 2 (d− d0) log
2π

n
− 2 (d− d0)

1
m

m∑
1

log j

= log
1
m

m∑
1

λ
2(d−d0)
j λ

2(d0−d)
j I∆dxj − log

1
m

m∑
1

I∆d0xj

−2 (d− d0) log
2π

n
− 2 (d− d0) log p

= log
1
m

m∑
1

(j/p)2θ λ−2θ
j I∆dxj − log

1
m

m∑
1

I∆d0xj

= log D̂ (d)− log D̂ (d0) .

where p = exp
(
m−1∑m

1 log j
)
∼ m/e as m →∞. Since

log D̂ (d0)− log G0 = log

(
1 + G−1

0 (
1
m

m∑
1

Iuj −G0)

)
= op (1) ,

Pr(infΘb
1
S (d) ≤ 0) tends to 0 if, for δ ∈ (0, 0.01),

Pr
(
infΘb

1
log D̂ (d)− log G0 ≤ log (1 + δ)

)
= Pr

(
infΘb

1
D̂ (d)−G0 ≤ δG0

)
→ 0,

as n → 0. Because

infΘb
1
(j/p)2θ ≥ (j/p)2∆2−2d0 , 1 ≤ j ≤ p,

infΘb
1
(j/p)2θ ≥ j/p, p < j ≤ m,

it follows that, for d ∈ Θb
1 ,

D̂ (d) ≥ m−1∑m
1 ajλ

−2θ
j I∆dxj ,

where, for a number M ≥ max {2∆2 − 2∆1, 2}

aj =

{
(j/p)M , 1 ≤ j ≤ p,
j/p, p < j ≤ m.

(51)

Therefore, for d ∈ Θb
1 we have

D̂ (d)−G0 ≥ m−1∑m
1 aj(λ−2θ

j Iyj −G0) + G0m
−1∑m

1 (aj − 1) . (52)

Before proceeding, collect the results concerning
∑

aj ,
∑

a2
j , etc.

(i)
∑

1≤j≤m

aj = p−M
∑

1≤j≤p

jM + p−1
∑

p<j≤m

j = O (m) ,

(ii)
∑

1≤j≤m

a2
j = p−2M

∑
1≤j≤p

j2M + p−2
∑

p<j≤m

j2 = O (m) ,

(iii)
∑

p<j≤m

aj ∼ p−1
∫ m

p
xdx =

m2 − p2

2p
∼ p2

(
e2 − 1

)
2p

=
e2 − 1

2e
m > 1.1m,
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where the last inequality holds because
(
e2 − 1

)
/2e

.= 1.17. It follows that

G0m
−1∑m

1 (aj − 1) > G0

(
m−1∑m

p aj − 1
)

> 10δG0,

as n →∞. In addition, for −M − 1/2 ≤ α ≤ C,

(iv) supα

∣∣∣m−α−1∑m
1 ajj

α
∣∣∣

≤ supα

∣∣∣(p/m)α+1 p−1∑p
1 (j/p)M+α

∣∣∣+ supα

∣∣∣(p/m)α m−1∑m
p (j/p)1+α

∣∣∣
= O

(
p−1∑p

1 (j/p)−1/2 + m−1∑m
p (j/p)1+C

)
= O (1) ,

and there exits κ > c > 0 such that

(v) min{m−1∑m/4
1 ajj

α,m−1∑m
3m/4 ajj

α} ≥ κmα,

uniformly in α ∈ [−C,C] . This is because

m−αm−1∑m/4
1 ajj

α ≥ (m/p)Mm−1∑m/4
1 (j/m)M+α ≥ m−1∑m/4

1 (j/m)M+C ≥ κ,

m−αm−1∑m
3m/4 ajj

α ≥ (m/p)m−1∑m
3m/4(j/m)1+α ≥ m−1∑m

3m/4(j/m)1+C ≥ κ.

We proceed to derive the limit of infθ m−1∑m
1 aj(λ−2θ

j Iyj − G0) for subsets of Θb
1.

For Θb1
1 = {θ : 1

2 ≤ θ ≤ 3
2}, first define Dnj (θ) = λ−θ

j (1 − eiλj )Dn(eiλj ; θ − 1). Since
θ − 1 ≥ −1/2, from Lemma 5.2 we have

Dnj (θ) = e−
π
2
θi + O (λj) + O(j−1/2), uniformly in θ ∈ Θb1

1 . (53)

Thus, we can easily show that supθ

∣∣m−1∑m
1 aj

[
|Dnj (θ) |2Iuj −G0

]∣∣→p 0. Now we
evaluate m−1∑m

1 aj [λ−2θ
j Iyj − |Dnj (θ) |2Iuj ]. From Lemma 2.2 (b) we have

wyj = (1− eiλj )wzj + (2πn)−1/2 eiλjZn, (54)

where Zn =
∑n

t=1 Yt ∼ I (1− θ) . ¿From this and (47) we obtain

λ−θ
j wyj = Dnj (θ) wuj − λ−θ

j (1− eiλj ) (2πn)−1/2 Ũλjn (θ − 1) + λ−θ
j (2πn)−1/2 eiλjZn.

It follows that m−1∑m
1 aj [λ−2θ

j Iyj − |Dnj (θ) |2Iuj ] consists of

m−1∑m
1 ajλ

−2θ
j |1− eiλj |2 (2πn)−1 |Ũλjn (θ − 1) |2 (55)

+m−1∑m
1 ajλ

−2θ
j (2πn)−1 Z2

n (56)

−m−1∑m
1 ajDnj (θ)∗ w∗

ujλ
−θ
j (1− eiλj ) (2πn)−1/2 Ũλjn (θ − 1) (57)

−m−1∑m
1 ajλ

−2θ
j (1− eiλj ) (2πn)−1 Ũλjn (θ − 1) e−iλjZn (58)

+m−1∑m
1 ajDnj (θ)∗ w∗

ujλ
−θ
j (2πn)−1/2 eiλjZn, (59)

and complex conjugates of (57)-(59). First, we state some results as lemmas, which
will be used repeatedly. Lemma A is an immediate consequence of Lemma 5.4 (a)
and (b) and its proof.

22



Lemma A For d ∈ [−1/2, 1/2] ,

λ−d
j (2πn)−1/2 Ũλjn (d) = Anj(d) + Bnj(d),

where{
E supd |Anj(d) + Bnj(d)|2 = O(j−1(log n)6), d ≥ 0,

E supd |Anj(d)|2 = O(j−1/2(log n)4), E supd |Bnj(d)|2 = O(jn−1(log n)2), d ≤ 0.

Lemma B For d ∈ [−1/2, 1/2] , aj defined in (51), and a function C (λj ; d) such
that |C (λj ; d) | < ∞ uniformly in λj and d, we have

E supd

∣∣∣m−1∑m
1 ajC (λj ; d) wujλ

−d
j (2πn)−1/2 Ũλjn (d)

∣∣∣→ 0.

Proof ¿From Lemma A, the above quantity is bounded by O
(
m−1∑m

1 ajj
−1/2 (log n)3

)
, d ≥ 0,

O
(
m−1 supd

∑m
1 aj

[
j−1/4 (log n)2 + j1/2n−1/2 log n

])
, d ≤ 0,

= O
(
m−1/2 (log n)3 + m−1/4 (log n)2 + m1/2n−1/2 log n

)
,

giving the stated result.

Lemma C For any aj = {(j/p)αfor 1 ≤ j ≤ p; (j/p)βfor p < j ≤ m}, where
p ∼ m/e and γ ∈ [−C,C] ,∣∣∣m−1∑m

1 ajj
γwuj

∣∣∣ ≤ m−1∑m
1 ajj

γ−1/2|ζj |, for large n,

where E|ζj | < ∞ for j = 1, . . . m.

Proof As in Robinson (1995, p.1636), use summation by parts to obtain

1
m

p∑
1

ajj
γwuj =

1
m

p−1∑
r=1

[arr
γ − ar+1 (r + 1)γ ]

r∑
j=1

wuj +
app

γ

m

p∑
1

wuj .

For 1 ≤ r ≤ p− 1, we have

arr
γ − ar+1 (r + 1)γ = arr

γ
[
1− (1 + 1/r)α+γ

]
= O

(
arr

γ−1
)

,

because | (1 + x)a − 1| ≤ Cx uniformly in 0 ≤ x ≤ 1. The same result holds for
p < r ≤ m− 1. It follows that∣∣∣∣∣ 1

m

p∑
1

ajj
γwuj

∣∣∣∣∣ ≤ C
1
m

p−1∑
1

arr
γ−1/2

∣∣∣∣∣ 1√
r

r∑
1

wuj

∣∣∣∣∣+
∣∣∣∣∣app

γ

m

p∑
1

wuj

∣∣∣∣∣ ,∣∣∣∣∣∣ 1
m

m∑
p+1

ajj
γwuj

∣∣∣∣∣∣ ≤ C
1
m

m−1∑
p+1

arr
γ−1/2

∣∣∣∣∣∣ 1√
r

r∑
p+1

wuj

∣∣∣∣∣∣+
∣∣∣∣∣∣ammγ

m

m∑
p+1

wuj

∣∣∣∣∣∣ ,
giving the required result.
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(55) is almost surely nonnegative, and Lemma B gives (57)→p 0. We proceed to
evaluate (56), (58) and (59). For (56), from (v) there exists η > c > 0 such that

(56) = (2π)−2θ−1 n2θ−1Z2
nm−1∑m

1 ajj
−2θ ≥a.s. η|m−θnθ−1/2Zn|2,

uniformly in θ. (58) is equal to

Cn (θ) nθ−1/2Znm−1∑m
1 ajj

−θλ−θ+1
j n−1/2|Ũλjn (θ − 1) |, (60)

where Cn (θ) is a generic function with supθ |Cn (θ)| < ∞ for all n. First we consider
θ ∈ [1, 3/2] . Let Ω be the sample space with typical element ω and Θ be the domain
of θ. From Lemma A, (60) can be written as

m−θnθ−1/2 |Zn|Rn (θ, ω) , (61)

where
sup

θ
|Rn (θ, ω)| = Op(kn); kn = m−1/2 (log n)3 . (62)

Define

Ω1 =
{
(ω, θ) ∈ Ω×Θ : m−θnθ−1/2 |Zn| < kn log m

}
,

Ω2 =
{
(ω, θ) ∈ Ω×Θ : m−θnθ−1/2 |Zn| ≥ kn log m

}
,

so that Ω1 ∪ Ω2 = Ω×Θ. Now for any ε > 0 we have{
(ω, θ) : η

∣∣∣m−θnθ−1/2Zn

∣∣∣2 + (61) ≤ −ε

}
=

{
(ω, θ) :

(
η
∣∣∣m−θnθ−1/2Zn

∣∣∣2 + (61) ≤ −ε

)
∪ Ω1

}
∪
{

(ω, θ) :
(

η
∣∣∣m−θnθ−1/2Zn

∣∣∣2 + (61) ≤ −ε

)
∪ Ω2

}
⊆

{
(ω, θ) : η

∣∣∣m−θnθ−1/2Zn

∣∣∣2 + kn log m ·Rn (θ, ω) ≤ −ε

}
∪
{
(ω, θ) : m−θnθ−1/2 |Zn| [ηkn log m + Rn (θ, ω)] ≤ −ε

}
⊆ {(ω, θ) : kn log m ·Rn (θ, ω) ≤ −ε} ∪ {(ω, θ) : ηkn log m + Rn (θ, ω) ≤ 0} .

It follows that

Pr
(

inf
θ

η
∣∣∣m−θnθ−1/2Zn

∣∣∣2 + (61) ≤ −ε

)
= Pr

(
∪θ

{
(ω, θ) : η

∣∣∣m−θnθ−1/2Zn

∣∣∣2 + (61) ≤ −ε

})
≤ Pr

(
inf
θ

kn log m ·Rn (θ, ω) ≤ −ε

)
+ Pr

(
inf
θ

ηkn log m + Rn (θ, ω) ≤ 0
)
→ 0,

because k2
n log m → 0 and Rn (θ, ω) is Op(kn) uniformly in θ by virtue of (62 ). Hence,

(56)+ (58) ≥ −ε with probability approaching one. For θ ∈ [1/2, 1] , from Lemma A,
(60) is

m−θnθ−1/2 |Zn|Op(m−1/4 (log n)2) + m−θnθ−1/2 |Zn|Op(m1/2n−1/2 log n).
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For θ ∈ [1/2, 3/2] , (59) is equal to, from Lemma C,

Cn (θ) nθ−1/2Znm−1∑m
1 ajDnj (θ)∗ j−θw∗

uje
iλj

= Cn (θ) nθ−1/2Zne−
π
2
θim−1∑m

1 ajj
−θw∗

uj

+Cn (θ) nθ−1/2Znm−1∑m
1 aj

[
O (λj) + O(j−1/2)

]
j−θw∗

uj

= m−θnθ−1/2 |Zn| [Op(m−1/2) + Op(mn−1)].

Therefore, provided that mn−1(log n)2 log m → 0, (56) + 2Re[(58) + (59)] ≥ −δG0

with probability approaching one. It follows that Pr(infΘb1
1

D̂(d) − G0 ≤ δG0) → 0
as n →∞.

For Θb2
1 = {θ : 3

2 ≤ θ ≤ 5
2}, from applying (54) twice and (47), λ−θ

j wyj is equal to

λ−θ
j (1− eiλj )2Dn(eiλj ; θ − 2)wuj − λ−θ

j (1− eiλj )2 (2πn)−1/2 Ũλjn (θ − 2)

+λ−θ
j (1− eiλj ) (2πn)−1/2 eiλj

∑n
1 Zt + λ−θ

j (2πn)−1/2 eiλjZn.

First we state a useful result as a lemma.

Lemma D For large n, the following holds either for j = 1, . . . ,m/4 or j =
3m/4, . . . ,m. ∣∣∣(1− eiλj )

∑n
1 Zt + Zn

∣∣∣2 ≥ (1/4)
[
(λj

∑n
1 Zt)

2 + Z2
n

]
.

Proof Note that

|(1− eiλj )
∑n

1 Zt + Zn|2 = ((1− cos λj)
∑n

1 Zt + Zn)2 + (sinλj
∑n

1 Zt)2.

Since sin λ ∼ λ for λ ∼ 0, for large n we have

(sinλj
∑n

1 Zt)2 ≥ (1/2)(λj
∑n

1 Zt)2. (63)

Since 1− cos λ ≥ 0, if sgn(
∑n

1 Zt) = sgn(Zn), then

|(1− cos λj)
∑n

1 Zt + Zn| = (1− cos λj)|
∑n

1 Zt|+ |Zn| ≥ |Zn|, (64)

and the required result follows immediately. When sgn(
∑n

1 Zt) 6= sgn(Zn), without
loss of generality assume

∑n
1 Zt > 0 and Zn ≤ 0. Then (1 − cos λj)

∑n
1 Zt is an

increasing function of j. Now suppose (1 − cos λm/2)
∑n

1 Zt + Zn ≥ 0. Then, since
1− cos λ ∼ λ2 for λ ∼ 0,

(λm/2)
2∑n

1 Zt ≥ (3/4)|Zn|,

and it follows that

(1− cos λ3m/4)
∑n

1 Zt ≥ (8/9)(λ3m/4)
2∑n

1 Zt = 2(λm/2)
2∑n

1 Zt ≥ (3/2)|Zn|,

giving
(1− cos λj)

∑n
1 Zt + Zn ≥ (1/2)|Zn| for j = 3m/4, . . . ,m. (65)

Now suppose (1− cos λm/2)
∑n

1 Zt + Zn < 0. Then,

(λm/2)
2∑n

1 Zt ≤ (3/2)|Zn|,
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and it follows that

(1− cos λm/4)
∑n

1 Zt ≤ (4/3)(λm/4)
2∑n

1 Zt = (1/3)(λm/2)
2∑n

1 Zt ≤ (1/2)|Zn|,

giving
(1− cos λj)

∑n
1 Zt + Zn ≤ −(1/2)|Zn| for j = 1, . . . ,m/4. (66)

The stated result follows from (63)-(66).
¿From Lemma D and (v), there exists η > c > 0 such that

(2πn)−1 m−1∑m
1 ajλ

−2θ
j |(1− eiλj )

∑n
1 Zt + Zn|2

≥ (2πn)−1 m−1(
∑m/4

1 +
∑m

3m/4)ajλ
−2θ
j |(1− eiλj )

∑n
1 Zt + Zn|2

≥ η[m−2θ+2n2θ−3(
∑n

1 Zt)2 + m−2θn2θ−1Z2
n], (67)

uniformly in θ. The terms involving the cross products of wuj , Ũλjn (θ − 2) and
λ−θ

j (1− eiλj )
∑n

1 Zt + λ−θ
j Zn are dominated by (67). For instance,

m−1∑m
1 ajλ

−θ
j (1− eiλj )2Dn(eiλj ; θ − 2)wujλ

−θ
j (2πn)−1/2 e−iλj

×[(1− e−iλj )
∑n

1 Zt + Zn]
= (m−θ+1nθ−3/2|

∑n
1 Zt|+ m−θnθ−1/2|Zn|)[Op(m−1/2) + Op(n−1m)],

and Pr(infθ D̂(d) − G0 ≤ δG0) → 0 follows. For larger values of θ, applying (54)
repeatedly and the same argument establishes Pr(infθ D̂(d)−G0 ≤ δG0) → 0, albeit
the expression of λ−θ

j wyj will contain
∑n

k=1

∑k
t=1 Zt, etc.

Now we consider Θ2 = {θ : ∆1 − d0 ≤ θ ≤ −1
2 + ∆}. Since

infΘ2 (j/p)2θ ≥ (j/p)2∆−1 , 1 ≤ j ≤ p,

infΘ2 (j/p)2θ ≥ (j/p)2∆1−2d0 , p < j ≤ m,

it follows that D̂ (d) ≥ m−1∑m
1 ajλ

−2θ
j I∆dxj for d ∈ Θ2, where

aj =

{
(j/p)2∆−1 , 1 ≤ j ≤ p,

(j/p)2∆1−2d0 , p < j ≤ m.
(68)

Therefore, for d ∈ Θ2 we have

D̂ (d)−G0 ≥ m−1∑m
1 aj(λ−2θ

j Iyj −G0) + G0m
−1∑m

1 (aj − 1) .

As m → ∞, p ∼ m/e, and we can also show that m−1∑m
1 (aj − 1) > 2δ when

∆ < 1/ (2e) ,
∑m

1 aj = O (m) and
∑m

1 a2
j = O(m2−4∆). Furthermore, m−1∑m

1 ajj
α =

O(mα log m + m−2∆ log m) uniformly in α ∈ [−C,C] because

supα

∣∣∣m−max{α,−2∆}m−1∑p
1 ajj

α
∣∣∣

= O
(
supα≥−2∆ m−1∑p

1 (j/p)2∆−1+α + supα≤−2∆

∑p
1 j2∆−1+α

)
= O (log m) ,

supα≤C

∣∣∣m−αm−1∑m
p+1 ajj

α
∣∣∣ = O

(
supα≤C m−1∑m

p+1 (j/p)2∆1−2d0+α
)

= O (1) .

We proceed to derive the limit of m−1∑m
1 aj(λ−2θ

j Iyj −G0) for subsets of Θ2. First,
for Θa

2 = {θ : −1
2 ≤ θ ≤ −1

2 + ∆}, supθ |m−1∑m
1 aj [λ−2θ

j |Dn(eiλj ; θ)|2Iuj −G0]| →p 0
can be shown as above, and from (47) λ−2θ

j Iyj − λ−2θ
j |Dn(eiλj ; θ)|2Iuj is equal to

λ−2θ
j (2πn)−1|Ũλjn (θ) |2 − 2 Re[λ−2θ

j Dn(eiλj ; θ)wuj(2πn)−1/2Ũλjn (θ)∗]. (69)
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The contribution to m−1∑m
1 aj [λ−2θ

j Iyj−λ−2θ
j |Dn(eiλj ; θ)|2Iuj ] from the first term is

almost surely nonnegative. Before proceeding to evaluate the contribution from the
second term, we state a general result analogous to Lemma B.

Lemma E For d ∈ [−1/2, 1/2] , aj defined in (68), and a function C (λj ; d) such
that |C (λj ; d) | < ∞ uniformly in λj and d, we have

E supd

∣∣∣m−1∑m
1 ajC (λj ; d) wujλ

−d
j (2πn)−1/2 Ũλjn (d)

∣∣∣→ 0.

Proof ¿From Lemma A, the above function is bounded by{
m−1∑m

1 ajj
−1/2 (log n)3 , d ≥ 0,

m−1∑m
1 aj

[
j−1/4 (log n)2 + j1/2n−1/2 log n

]
, d ≤ 0,

= O(m−2∆ (log n)4 + m1/2n−1/2 log n),

giving the stated result.
The contribution from the second term in (69) is op (1) by Lemma E. Therefore,

Pr(infΘa
2
D̂(d)−G0 ≤ δG0) → 0 as n →∞.

We move to Θb
2 = {θ : −3/2 ≤ θ ≤ −1/2} . Note that Yt ∼ I (−θ) and ∆Yt ∼

I (−θ − 1) . Since

wyj = (1− eiλj )−1w∆yj − (1− eiλj )−1 (2πn)−1/2 eiλjYn, (70)

λ−θ
j wyj is equal to

λ−θ
j (1− eiλj )−1Dn(eiλj ; θ + 1)wuj

−λ−θ
j (1− eiλj )−1 (2πn)−1/2 Ũλjn (θ + 1)− λ−θ

j (1− eiλj )−1 (2πn)−1/2 eiλjYn.

Since θ + 1 ≥ −1/2, with a slight abuse of notation we have

λ−θ
j (1− eiλj )−1Dn(eiλj ; θ + 1) ≡ Dnj (θ) = e−

π
2
θi + O (λj) + O(j−1/2).

Therefore, apart from op (1) terms, m−1∑m
1 aj [λ−2θ

j Iyj −G0] consists of

m−1∑m
1 ajλ

−2θ
j |1− eiλj |−2 (2πn)−1 Y 2

n (71)

+m−1∑m
1 ajλ

−2θ
j |1− eiλj |−2 (2πn)−1 |Ũλjn (θ + 1) |2 (72)

+m−1∑m
1 ajλ

−2θ
j |1− eiλj |−2 (2πn)−1 Ũλjn (θ + 1)∗ eiλjYn (73)

−m−1∑m
1 ajDnj (θ)∗ w∗

ujλ
−θ
j (1− eiλj )−1 (2πn)−1/2 Ũλjn (θ + 1) (74)

−m−1∑m
1 ajDnj (θ)∗ w∗

ujλ
−θ
j (1− eiλj )−1 (2πn)−1/2 eiλjYn, (75)

and complex conjugates of (73)-(75). For θ ∈ [−1,−1/2] , first note that

(71) + (72) + 2 Re[(73)]
= m−1∑m

1 ajλ
−2θ
j |1− eiλj |−2 (2πn)−1 |eiλjYn + Ũλjn (θ + 1) |2 ≥a.s. 0.

(74) is op (1) by Lemma E. Observe that uniformly in −1 ≤ α < C

m−1∑m
1 ajDnj (θ) jαwuj [1 + O (λj)]

= e−
π
2
θim−1∑m

1 ajj
αwuj + m−1∑m

1 aj [O (λj) + O(j−1/2)]jαwuj

= Op

(
mα−1/2 log m + m−2∆ log m

)
+ Op

(
n−1mα+1

)
. (76)
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Since nθ+1/2Yn = Op((log n)2) from Lemma 5.6 (a), it follows that

|(75)| ≤ C|nθ+1/2Yn||m−1∑m
1 ajDnj (θ)∗ j−θ−1w∗

uj [1 + O (λj)]|

= Op

(
(m−2∆ + n−1m) (log n)2 log m

)
,

giving Pr(infθ D̂(d) − G0 ≤ δG0) → 0. For θ ∈ [−3/2,−1] , from an analogous
argument as before there exists κ > 0 such that

min{m−1∑m/4
1 ajj

α,m−1∑m
3m/4 ajj

α} ≥ κmα, (77)

uniformly in α ∈ [−C,C] . Therefore, (71) is almost surely larger than η|nθ+1/2m−θ−1Yn|2
for some η > c > 0. (72) is almost surely nonnegative, and (74) is op (1) by Lemma
E. We proceed to show that (73) and (75) are dominated by (71). From Lemma A,
(73) is equal to

Cn (θ) nθ+1/2Ynm−1∑m
1 ajj

−θ−1λ−θ−1
j n−1/2|Ũλjn (θ + 1) |

= nθ+1/2|Yn|Op((m−θ−5/4 + m−2∆)(log n)3)

nθ+1/2|Yn|Op(m−θ−1/2n−1/2 log n log m)

= m−θ−1nθ+1/2|Yn|Op(m−2∆(log n)3)

+m−θ−1nθ+1/2|Yn|Op(m1/2n−1/2 log n log m).

¿From (76), (75) is equal to

Cn (θ) nθ+1/2Ynm−1∑m
1 ajDnj (θ)∗ j−θ−1w∗

uj

= m−θ−1nθ+1/2|Yn|[Op(m−2∆ log m) + Op(mn−1)],

Therefore, by the same argument as the one used for Θb
1, we have (71) + 2 Re[(73) +

(75)] ≥ −δG0 with probability approaching one provided n−1m(log n)2(log m)3 → 0.
Hence Pr(infθ D̂(d)−G0 ≤ δG0) → 0. Finally, we consider Θc

2 = {θ : −5/2 ≤ θ ≤ −3/2} .
Applying (70) twice and (47), λ−θ

j wyj is equal to

λ−θ
j (1− eiλj )−2Dn(eiλj ; θ + 2)wuj − λ−θ

j (1− eiλj )−2 (2πn)−1/2 Ũλjn (θ + 2)

−λ−θ
j (1− eiλj )−1 (2πn)−1/2 eiλjYn − λ−θ

j (1− eiλj )−2 (2πn)−1/2 eiλj∆Yn.

Neglecting the op (1) and a.s. nonnegative terms, m−1∑m
1 aj [λ−2θ

j Iyj −G0] consists
of

m−1∑m
1 ajλ

−2θ
j |1− eiλj |−4 (2πn)−1 |(1− eiλj )Yn + ∆Yn|2 (78)

+m−1∑m
1 ajλ

−θ−2
j (2πn)−1 Ũλjn (θ + 2)∗ (λ−θ−1

j Yn + λ−θ−2
j ∆Yn) (1 + O(λj))(79)

+m−1∑m
1 aj [1 + O(λj) + O(j−1/2)]w∗

uj (2πn)−1/2 (λ−θ−1
j Yn + λ−θ−2

j ∆Yn), (80)

and complex conjugates of (79) and (80). In view of Lemma D and (77) we have

(78) ≥a.s. η|m−θ−1nθ+1/2Yn|2 + η|m−θ−2nθ+3/2∆Yn|2.

¿From Lemma A, (79) is, for θ ∈ [−2,−3/2],

nθ+1/2|Yn|Op(m−θ−3/2(log n)4) + nθ+3/2|∆Yn|Op((m−θ−5/2 + m−2∆)(log n)4)

= m−θ−1nθ+1/2|Yn|Op(m−1/2(log n)4) + Op(m−2∆(log n)6),
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because nθ+3/2∆Yn = Op((log n)2). For θ ∈ [−5/2,−2], (79) is

nθ+1/2|Yn|Op(m−θ−5/4(log n)3) + nθ+3/2|∆Yn|Op((m−θ−9/4 + m−2∆)(log n)3)(81)

+nθ+1/2|Yn|Op(m−θn−1 log n) + nθ+3/2|∆Yn|Op(m−θ−1n−1 log n). (82)

The first term in (81) is m−θ−1nθ+1/2|Yn|Op(m−1/4(log n)4), and the second term in
(81 ) is {

Op(m−2∆(log n)5), θ ∈ [−9/4 + 2∆,−2],
m−θ−2nθ+3/2|∆Yn|Op(m−1/4(log n)3), θ ∈ [−5/2,−9/4 + 2∆].

(82) is m−θ−1nθ+1/2|Yn|Op (mn−1 log n) + m−θ−2nθ+3/2|∆Yn|Op(mn−1 log m). Fi-
nally, (80) is

nθ+1/2|Yn|Op(m−θ−3/2 log m) + nθ+3/2|∆Yn|Op((m−θ−5/2 + m−2∆) log m)

+nθ+1/2|Yn|Op (m−θn−1 log n) + nθ+3/2|∆Yn|Op(m−θ−1n−1 log m).

Therefore, (79) and (80) are either op (1) or dominated by (78), and from the same
argument as above we have Pr(infθ D̂(d) − G0 ≤ δG0) → 0. For smaller d, we use
(47 ) repeatedly and the expression of λ−θ

j wyj will contain ∆2Yn, ∆3Yn, . . . , but the
same reasoning gives the required result and completes the proof.

6.2 Proof of asymptotic normality

Theorem 3.3 holds under the current conditions and implies that with probability
approaching 1, as n →∞, d̂ satisfies

0 = R′(d̂) = R′ (d0) + R′′ (d∗) (d̂− d0), (83)

where |d∗ − d0| ≤ |d̂− d0|. From the fact

∂

∂d
w∆dxs =

∂

∂d

1√
2πn

n∑
1

eiλst (1− L)d Xt =
1√
2πn

n∑
1

eiλst log (1− L) (1− L)d Xt,

∂2

∂d2
w∆dxs =

1√
2πn

n∑
1

eiλst (log (1− L))2 (1− L)d Xt,

we obtain

R′′ (d) =
Ĝ2 (d) Ĝ (d)− Ĝ1 (d)2

Ĝ (d)2
=

G̃2 (d) G̃0 (d)− G̃1 (d)2

G̃0 (d)2
,

where

Ĝ1 (d) =
1
m

m∑
1

∂

∂d

[
w∆dxjw

∗
∆dxj

]
=

1
m

m∑
1

2 Re
[
wlog(1−L)∆dxjw

∗
∆dxj

]
,

Ĝ2 (d) =
1
m

m∑
1

∂2

∂d2

[
w∆dxjw

∗
∆dxj

]
=

1
m

m∑
1

Wx (L, d, j) ,

Wx (L, d, j) = 2 Re
[
w(log(1−L))2∆dxjw

∗
∆dxj

]
+ 2Ilog(1−L)∆dxj ,

G̃0 (d) =
1
m

m∑
1

j2θλ−2θ
j Iyj , G̃1 (d) =

1
m

m∑
1

j2θλ−2θ
j 2 Re

[
wlog(1−L)yjw

∗
yj

]
,

G̃2 (d) =
1
m

m∑
1

j2θλ−2θ
j Wy (L, 0, j) .
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Fix ε > 0 and let M = {d : (log n)4|d− d0| < ε}. Pr (d∗ /∈ M) tends to zero because
supΘa

1
|A (d) /B (d)| = op((log n)−8). Thus we assume d ∈ M in the following discus-

sion on G̃k (d). Now we derive the approximation of G̃k (d) for k = 0, 1, 2. For G̃0 (d) ,
from a similar decomposition as (49) along with (50), we obtain

sup
θ∈M

∣∣∣λ−2θ
j Iyj − Iuj

∣∣∣ = Op

(
j−∆ (log n)6 + jn−1

)
.

Thus, in view of the fact that

|j2θ − 1|/ |2θ| ≤ (log j) n2|θ| ≤ (log j) n1/ log n = e log j on M,

we have

sup
M

∣∣∣G̃0(d)−G0

∣∣∣ = sup
M

∣∣∣∣∣ 1
m

m∑
1

j2θIuj −G0

∣∣∣∣∣+ op((log n)−2) = op((log n)−2).

For G̃1 (d), from Lemma 5.12 we have

λ−2θ
j wlog(1−L)yjw

∗
yj + Jn

(
eiλj

)
Iuj

= Jn

(
eiλj

) [
1− λ−2θ

j

∣∣∣Dn(eiλj ; θ)
∣∣∣2] Iuj

−Jn

(
eiλj

)
λ−θ

j Dn(eiλj ; θ)wuj · λ−θ
j (2πn)−1/2 Ũλjn (θ)∗

−λ−θ
j Dn(eiλj ; θ)∗w∗

uj · λ−θ
j (2πn)−1/2 Vnj (θ)− λ−2θ

j (2πn)−1 Ũλjn (θ)∗ Vnj (θ) .

Then, using a similar line of argument as above, we can easily show

1
m

m∑
1

sup
M

j2θ
∣∣∣λ−2θ

j wlog(1−L)yjw
∗
yj + Jn

(
eiλj

)
Iuj

∣∣∣ = op

(
(log n)−1

)
.

It follows that

sup
M

∣∣∣∣∣G̃1(d) +
1
m

m∑
1

2 Re
[
Jn

(
eiλj

)]
Iuj

∣∣∣∣∣
= sup

M

∣∣∣∣∣ 1
m

m∑
1

(
1− j2θ

)
2 Re

[
Jn

(
eiλj

)]
Iuj

∣∣∣∣∣+ op

(
(log n)−1

)
= op

(
(log n)−1

)
.

For G̃2 (d) , the same line of argument as above with Lemma 5.12 (c) gives

sup
M

∣∣∣∣∣G̃2(d)− 1
m

m∑
1

[
2 Re Jn

(
eiλj

)2
+ 2Jn

(
eiλj

)
Jn

(
eiλj

)∗]
Iuj

∣∣∣∣∣
= sup

M

∣∣∣∣∣G̃2(d)− 1
m

m∑
1

4
{
Re
[
Jn

(
eiλj

)]}2
Iuj

∣∣∣∣∣ = op (1) .

Therefore, with probability approaching one,

R′′ (d∗) =
[
G̃2 (d∗) G̃0 (d∗)− G̃1 (d∗)2

] [
G̃0 (d∗)

]−2

=

[{
1
m

m∑
1

4
{
Re
[
Jn

(
eiλj

)]}2
Iuj + op (1)

}{
G0 + op

(
(log n)−2

)}
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−
{
− 1

m

m∑
1

2 Re
[
Jn

(
eiλj

)]
Iuj + op

(
(log n)−1

)}2
 [G̃0 (d∗)

]−2

=
G0

1
m

∑m
1 4

{
Re
[
Jn

(
eiλj

)]}2
Iuj −

{
1
m

∑m
1 2 Re

[
Jn

(
eiλj

)]
Iuj

}2
+ op(1)

G2
0 + op((log n)−2)

= 4m−1∑m
1

{
Re
[
Jn

(
eiλj

)]}2
− 4

{
m−1∑m

1 Re
[
Jn

(
eiλj

)]}2
+ op (1) .(84)

¿From Lemma 5.10 (a) we have

Re
[
Jn

(
eiλj

)]
= − log λj + O (1/j) + O

(
j2/n2

)
,{

Re
[
Jn

(
eiλj

)]}2
= (log λj)

2 + O
(
j−1 log n

)
+ O

(
j2n−2 log n

)
.

It follows that

m−1∑m
1

{
Re
[
Jn

(
eiλj

)]}2
= m−1∑m

1 (log λj)
2 + o (1) ,{

m−1∑m
1 Re

[
Jn

(
eiλj

)]}2
=

(
m−1∑m

1 log λj

)2
+ o (1) .

Therefore, (84)/4 is, apart from op (1) terms,

m−1∑m
1 (log λj)

2 −
(
m−1∑m

1 log λj

)2

= m−1∑m
1

(
log

2π

n
+ log j

)2

−
(

m−1∑m
1

(
log

2π

n
+ log j

))2

= m−1∑m
1 (log j)2 −

(
m−1∑m

1 log j
)2
→ 1,

and R′′ (d∗) = 4 + op (1) follows.
Now we find the limit distribution of m1/2R′ (d0) . Since wus = C(eiλs)wεs + rns

where E |rns|2 = O(n−1) uniformly in s (Hannan, 1970, p.248), in view of Lemma
5.12 (b) and its proof we obtain

−wlog(1−L)usw
∗
us = Jn(eiλs)Ius −

C (1)√
2πn

J̃nλs

(
eiλsL

)
εnC(eiλs)∗w∗

εs + Rns,

where E|Rns| = O(n−1/2 log n) uniformly in s. It follows that m1/2Ĝ1 (d0) is equal to

− 1√
m

m∑
1

2 Re
[
Jn

(
eiλj

)]
Iuj (85)

+
C (1)√

m

m∑
1

2 Re
[
J̃nλj

(
eiλjL

) εn√
2πn

C(eiλj )∗w∗
εj

]
+ Op

(
m1/2n−1/2 log m

)
.(86)

¿From Lemma 5.10 (a),

(85) =
2√
m

m∑
1

(log λj) Iuj + Op

(
m5/2n−2

)
+ Op

(
m−1/2 log m

)
.

For the fist term in (86), in view of the fact that

wε (λj)
∗ =

1√
2πn

n∑
p=1

e−ipλjεp =
1√
2πn

n−1∑
q=0

eiqλjεn−q,
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we obtain the decomposition

1√
m

m∑
1

J̃nλj

(
eiλjL

) εn√
2πn

C(eiλj )∗w∗
εj

=
1√
m

m∑
1

C(eiλj )∗

2πn

(
n−1∑

0

j̃λjpe
−ipλjεn−p

)(
n−1∑

0

eiqλjεn−q

)
. (87)

Because εt are iid, the second moment of (87) is bounded by

1
mn2

m∑
j=1

m∑
k=1

n−1∑
0

∣∣∣j̃λjp

∣∣∣ ∣∣∣j̃λkp

∣∣∣+ 2
mn2

m∑
j=1

m∑
k=1

n−1∑
0

∣∣∣j̃λjp

∣∣∣ n−1∑
0

∣∣∣j̃−λkr

∣∣∣ (88)

+
1

mn2

m∑
j=1

m∑
k=1

n−1∑
0

∣∣∣j̃λjp

∣∣∣ ∣∣∣j̃−λkp

∣∣∣ n−1∑
0

eiq(λj−λk). (89)

(88) is bounded by

1
mn2

m∑
1

m∑
1

[
n−1∑

0

(log n)2 +
n−1∑

0

n

j|p|+

n−1∑
0

n

k|r|+

]
= O

(
mn−1 (log n)2 + m−1 (log n)4

)
,

and in view of the fact that
∑n−1

q=0 eiq(λj−λk) = nI {j = k}, (89) is bounded by

1
mn

m∑
1

n−1∑
0

∣∣∣j̃λjp

∣∣∣2 = O

(
1

mn

m∑
1

n−1∑
0

j−1|p|−1
+ n log n

)
= O

(
m−1 (log n)3

)
,

giving (86)= op (1) . Therefore, we obtain m1/2Ĝ1 (d0) = 2m−1/2∑m
1 (log λj) Iuj +

op (1) , and it follows that

m1/2R′ (d0) = m1/2

[
Ĝ1 (d0)
Ĝ (d0)

− 2
1
m

m∑
1

log λj

]

=
2m−1/2∑m

1 (log λj) Iuj + op (1)−
(

1
m

∑m
1 log λj

)
2m−1/2∑m

1 Iuj

m−1
∑m

1 Iuj

=
2m−1/2∑m

1 (log λj − 1
m

∑m
1 log λj)Iuj + op (1)

G0 + op (1)

=
2m−1/2(

∑m
1 log j − 1

m

∑m
1 log j)(2πIεj − 1) + Op(mβ+1/2n−β log m) + op (1)

1 + op (1)
→d N (0, 4) ,

where the last line follows from Robinson (1995), to complete the proof.
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