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Abstract

An exact form of the local Whittle likelihood is studied with the intent of
developing a general purpose estimation procedure for the memory parameter
(d) that applies throughout the stationary and nonstationary regions of d and
which does not rely on tapering or differencing prefilters. The resulting exact
local Whittle estimator is shown to be consistent and to have the same N (0, %)
limit distribution for all values of d.
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1 Introduction

Semiparametric estimation of the memory parameter (d) in fractionally integrated
(I(d)) time series is appealing in empirical work because of the general treatment of
the short memory component that it affords. Two common statistical procedures in
this class are log periodogram (LP) regression and local Whittle (LW) estimation.
LW estimation is known to be more efficient than LP regression in the stationary
(|d| < %) case (Robinson, 1995), although numerical optimization methods are needed
in calculation. Outside the stationary region, it is known that the asymptotic theory
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for the LW estimator is discontinuous at d = % and again at d = 1, is awkward to use
because of nonnormal limit theory and, worst of all, the estimator is inconsistent when
d > 1 (Phillips and Shimotsu, 2001). Thus, the LW estimator is not a good general
purpose estimator when the value of d may take on values in the nonstationary zone
beyond % Similar comments apply in the case of LP estimation (Kim and Phillips,
1999).

To extend the range of application of these semiparametric methods, data dif-
ferencing and data tapering have been suggested (Velasco, 1999, Hurvich and Chen,
2000). These methods have the advantage that they are easy to implement and they
make use of existing algorithms once the data filtering has been carried out. Differ-
encing has the disadvantage that prior information is needed on the appropriate order
of differencing. Tapering has the disadvantage that the filter distorts the trajectory
of the data and inflates the asymptotic variance. In consequence, there is presently
no general purpose efficient estimation procedure when the value of d may take on
values in the nonstationary zone beyond %.

The present paper studies an exact form of the local Whittle estimator which
does not rely on differencing or tapering and which seems to offer a good general
purpose estimation procedure for the memory parameter that applies throughout the
stationary and nonstationary regions of d. The estimator, which we call the exact LW
estimator, is shown to be consistent and to have the same N (0, %) limit distribution
for all values of d. The exact LW estimator therefore has the same limit theory outside
the stationary region as the LW estimator has for stationary values of d. The approach
therefore seems to offer a useful alternative for applied researchers who are looking for
a general purpose estimator and want to allow for a substantial range of stationary
and nonstationary possibilities for d. The method has the further advantage that it
provides a basis for constructing valid asymptotic confidence intervals for d that are
valid irrespective of the true value of the memory parameter. A minor disadvantage
of the approach is that it involves a numerical optimization that is somewhat more
demanding than LW estimation. Our experience from simulations indicates that the
computation time required is about ten times that of the LW estimator and is well
within the capabilities of a small notebook computer.

2 Preliminaries

2.1 A Model of Fractional Integration

We consider the fractional process X; generated by the model
(1-LYX, =wI{t>1}, t=1,2,... (1)

where wu; is stationary with zero mean and spectral density f,(\). Expanding the
binomial in (1) gives the form

> (_]j)kxt_k = u, I {t > 1}, (2)
k=0 ’

where

—(d)(d+1)...d+k—1),



is Pochhammer’s symbol for the forward factorial function and I'(-) is the gamma
function. When d is a positive integer, the series in (2) terminates, giving the usual
formulae for the model (1) in terms of the differences and higher order differences of
X;. An alternate form for X; is obtained by inversion of (1 ), giving a valid represen-
tation for all values of d

t—1
d
Xt = (1 — L)_d UtI {t > 1} = Z @Ut k- (3)
k!
k=0
Define the discrete Fourier transform (dft) and the periodogram of a time series a;

evaluated at the fundamental frequencies as

2ms
we (As) = Zate S_T s=1,...,n, (4)

27rn

I, (As) = w, ()\S)wa As)".

Our approach is to algebraically manipulate (2) so that it can be rewritten in a
convenient form to accommodate dft’s. The following lemma gives an exact expression
that we use for the model in frequency domain form.

2.2 Lemma (Phillips, 1999, Theorem 2.2)
(a) If X; follows (1), then

where Dy, (e;d) = Y7 0 k e and

n—1 n

Y D) —i T i 7 —d)y

Xon (d) = Dy (e AL;d) Xn=) dye PXyp, dyp= >, (k‘)kek’\. (6)
p=0 k=p+1 '

(b) If Xy follows (1) with d =1, then

wy (V) (1= ) =w, () - e

"X, (7)
2mn

Note that JAp = 0 for p > d when d is nonnegative integer, because (—d), = 0 for
any integer k > d.

3 Exact Local Whittle Estimation

3.1 Exact Local Whittle Likelihood and Estimator

The (negative) Whittle likelihood based on frequencies up to A, and up to scale
multiplication is

G ) G Ly ()‘j)
2O F 2 G ®



where m is some integer less than n. As in Phillips (1999) define the new transform
. -1 1 =
vs(As;d) = wy (Ns) — Dy (€P:d)  ——=X,_n(d),
(i) () = Da (¢5d) -~ —o=Fnn(d)
Li(As;d) = va(As;d)va(Asid)",

for which the relationship
vaid) = Dy (6¥5d) " wu(A). L(hsid) = [Dy (M) L ().

holds exactly. Using this exact relationship in conjunction with the local approxima-
tion fy, (As) ~ G, we can transform the likelihood function (8) to be data dependent,
as suggested by Phillips (1999), to give the exact Whittle likelihood

puea)f

1< . 7\ 72 .
Ly, (G, d) m; log (‘Dn (e J,d)‘ G) + I, (\j;d)
Another exact relationship is
AdXt = (1 — L)dXt = Ug,
which leads to ‘
waty (As) = wy (As) = Dy (€2%3.d) va (g3 d). (9)

Use (9) to replace |Dy,(e™;d) 2L, (A\j;d) by Ina, (\;) and approximate |D,(e™; d)|?
by A?d (Phillips and Shimotsu, 2001). Then the objective function is simplified to

1 & 1
p. Z [log (G)\J»_Qd) + EIA% ()\j)] )
j=1

Qm (G.d) =

We propose to estimate d and G' by minimising Q,,, (G, d), so that

(CA?, J) = arg min Qm (G,d),
Ge(0,00), dE[A1,A2]

where Ay and Ag are the lower and upper bound of the admissible values of d. We
impose no restrictions on A; and As except that —oo < A7 < Ay < oco. In what
follows we distinguish the true values of the parameters by the notation Gy = f,, (0)
and dy. Concentrating Q,, (G, d) with respect to G, we find that d satisfies

d = argmin R (d), (10)
de[A1,Aq]
where
=R 1 m =R 1 m
R(d) =1logG (d) — 2d— zljlog N, G(d)= — 21: Inag (N)). (11)

We call d the exact LW estimator of d.

3.2 Consistency

We introduce the following assumptions on m and the stationary component u; in

(1).



Assumption 1

o0 o0

w=CL)e = ciej, Y. 5" |ej] <00, C(1)#0, (12)
§=0 §=0

where E(g|Fy—1) = 0, E(e?|Fy_1) = 1 a.s., t = 0,£1,..., in which F, is the o-field

generated by €5, s < t, and there exists a random variable € such that Ec? < oo and

for all n > 0 and some K > 0, Pr(|e;] > n ) < KPr(le| > 7).

Assumption 2 As n — oo,
3

1 L m (logn)? (logm) n logn

— 0 for any vy > 0.
m n mY

Under (12), the spectral density of u; is fu(\) = 5|C(e**)[? and clearly satisfies
fu(A) ~ fu,(0) € (0,00) as A —0+. (13)

a local condition on f, (A) analogous to Assumption Al of Robinson (1995). Assump-
tion 1 applies to u; rather than X; and does not assume differentiability of f, (A) (c.f.
A2 in Robinson). Assumption 2 is slightly stronger than Assumption A4 of Robinson
(1995).

Under these conditions we may now establish the consistency of d.

3.3 Theorem
Suppose X is generated by (1) and Assumptions 1 and 2 hold. Then, for dy €

A

[A1,Aq], d —p dy as n — 0.

3.4 Asymptotic Normality
We introduce some further assumptions that are used to derive the limit distribution
theory in this section.
Assumption 1’
(a) Assumption 1 holds and also
E@E|F1)=ps3 as, BEED)=p, t=0,+1,...,

for finite constants ps and fiy.
(b) For some (3 € (0,2],

fuN) = fu (0)(1+0(N%)), asA—0+.

Assumption 2/ As n — oo,

1 1428 1 2 1
—+m (logm) +Ogn—>0 for any v > 0.
m n2p mY

Assumption 1’ is analogous to Assumptions A1-A3’ of Robinson (1995). Robinson
(1995) imposes the assumption on the spectral density of X; and assumes differentiability.
Assumption 2’ is comparable to Assumption A4’ of Robinson. The following theo-

rem establishes the asymptotic normality of the exact local Whittle estimator for
Cl() c (Al, Ag) .



3.5 Theorem
Suppose Xy is generated by (1) and Assumptions 1" and 2’ hold. Then, for dy €

(A1, Ag), ,
12 (7 =

4 Simulations

This section reports some simulations that were conducted to examine the finite
sample performance of the exact LW estimator (hereafter, exact estimator), the LW
estimator (hereafter, untapered estimator) and the LW estimator with two types of
tapering studied by Hurvich and Chen (2000) and Velasco (1999) with Bartlett’s
window (hereafter, tapered (HC) and tapered (V) estimator, respectively) . We
generate I(d) processes according to (3) with u; ~ itdN (0,1). A; and Ay are set
to —2 and 4. The bias, standard deviation, and mean squared error (MSE) were
computed using 10,000 replications. Sample size and m were chosen to be n = 500
and m = n%6% = 56. Values of d were selected in the interval [—0.7,2.3].

Table 1 shows the simulation results. The exact estimator has little bias for all
values of d. The untapered estimator has a large negative bias for d > 1, corroborating
the theoretical result that it converges to unity in probability (Phillips and Shimotsu,
2001). When d < 1, the exact and untapered estimators have similar variance and
MSE. The variances of the tapered estimators are always larger than those of the
exact and untapered estimator. Again this outcome corroborates the theoretical
result that the asymptotic variance of the tapered estimators are larger (3/(8m) and
1/(2m), respectively, for the HC and V tapered estimators). Tapered (HC) estimator
has small bias and performs better than tapered (V) estimator. However, tapered
(HC) estimator still has around 50% larger MSE than the exact estimator due to its
larger variance.



Table 1. Simulation results: n = 500, m = n%% = 56

Exact estimator Untapered estimator

d bias s.d. MSE bias s.d. MSE
-0.7 -0.0024 0.0787 0.0062  0.0363 0.0882  0.0091
-0.3 -0.0020 0.0774 0.0060 -0.0017 0.0776  0.0060
0.0 -0.0020 0.0776 0.0060 -0.0066 0.0773  0.0060
0.3 -0.0014 0.0770 0.0059 -0.0059 0.0771  0.0060
0.7 -0.0024 0.0787 0.0062  0.0088 0.0828  0.0069
1.3 -0.0033 0.0777 0.0060 -0.2102 0.0988  0.0539
1.7 -0.0029 0.0784 0.0061 -0.6279 0.1342  0.4122
2.3 -0.0020 0.0782 0.0061 -1.2632 0.1129  1.6084
Tapered (HC) estimator Tapered (V) estimator

d bias s.d. MSE bias s.d. MSE
-0.7 0.0280 0.0972 0.0102 -0.0070 0.1230  0.0152
-0.3 0.0123 0.0978 0.0097 -0.0106 0.1210  0.0147
0.0 0.0043 0.0983 0.0097 -0.0115 0.1218  0.0150
0.3 -0.0007 0.0975 0.0095 -0.0110 0.1202 0.0146
0.7 -0.0076 0.0982 0.0097 -0.0068 0.1216  0.0148
1.3 -0.0084 0.0974 0.0096  0.0139 0.1243  0.0156
1.7 0.0005 0.0971 0.0094 0.0460 0.1286  0.0187
2.3 0.0525 0.0993 0.0126 -0.1776 0.1419  0.0517

Figures 1 and 2 plot kernel estimates of the densities of the four estimators for
the values d = —0.7,0.3,1.3 and 2.3. The sample size and m were chosen as n =
500 and m = n%%, and 10,000 replications are used. When d = —0.7, the exact
and tapered (V) estimators have symmetric distributions centred on —0.7, with the
tapered estimator having a flatter distribution. The untapered and tapered (HC)
estimators appear to be biased. When d = 0.3, the untapered and exact estimators
have almost identical distributions, whereas the two tapered estimators have more
dispersed distributions. When d = 1.3, the untapered estimator is centred on unity.
In this case, the exact estimator seems to work well, having a symmetric distribution
centred on 1.3. The tapered estimators have flatter distributions than the exact
estimator but otherwise appear reasonable and they are certainly better than the
inconsistent untapered estimator. When d = 2.3, the untapered and tapered (V)
estimators appear centred on 1.0 and 2.0, respectively. In this case, the tapered (HC)
estimator is upward biased. Again, the exact estimator has a symmetric distribution
centred on the true value 2.3.

In sum, there seems to be little doubt from these results that the exact LW
estimator is the best general purpose estimator over a wide range of d values.



Figure 1: Densities of the four

estimators: n =500, m =n
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Figure 2: Densities of the four estimators: n = 500, m =n

5 Appendix A: Technical Lemmas

Lemma AO is provided for reference, and the proof is omitted because it is trivial.
Lemmas 5.1 - 5.3 extend Lemmas 8.1, 8.3, and 8.5 of Phillips and Shimotsu (2001)
to hold uniformly in 6. Since their proofs are almost identical, we refer the reader to
Phillips and Shimotsu for the proofs. In the following arguments, C' and e denote
generic constants such that C' € (1,00) and € € (0, 1) unless specified otherwise.

Lemma A0 As n — oo,
(a) sup_i<acc [n~ (logn) ' S5 | = O (1).
(b) Sup_c<azi |(logn) " Sy 5| = O (1).
(¢) For 1< p<n, sup_ceqey [p~  (logn) ™ X1, i) =0 (1).

5.1 Lemma (Phillips and Shimotsu, Lemma 8.1)
Uniformly in 6 € [-1+¢,C] and in s =1,2,...,m with m = o(n),

D, (ei’\s; 9) = (1 - e“s>9 +0 (nfesfl) . (14)



5.2 Lemma (Phillips and Shimotsu, Lemma 8.3)

Uniformly in 0 € [-1+¢,C] and in s =1,2,...,m with m = o (n),
. [% T
N(1=e™) = eEro0),
2\.'D, (ei)‘s; 9) = e 21 0N)+0 (87170) ,

() = 10(2) +0 ().

5.3 Lemma (Phillips and Shimotsu, Lemma 8.5)

Forp=1,2,...,n and s =1,2,...,m with m = o(n), the following holds uniformly
in 0, pand s:

5 _ ] o(pli"10gn), for 6 € 0,C],

(a) Orp = { O(n=%logn), for 6 c[—1+¢,0], (15)

®) Ox, = O(pl% 'ns™), for 6 e[-14¢,0), (16)
where |z|; = max{x,1}.
5.4 Lemma
Let Uyp 0) = ZZ;& Aﬁ}\pe*"mun_p. Then, uniformly in s = 1,2,...,m with m =
o(n),
(a) Esupyn?~1s1=%0 (log n)76 |ﬁ>\sn @P2=0(@1), 6 €0, %],

-1 ~

(b) Esupy [nl=?s"~1 (logn)* + 0~ (logn)*|  |Un.n (0) 2 =0 (1), 0€[-4,0],
(€) Esupyn® s (logn) ™ [Tn (0) P = O (1), 0 e~4.0

5.5 Proof

When 6 = 0, the result follows immediately because Uy_, (8) = 0. For 6 # 0, applying
the BN decomposition

Uy = C(L) Er = C (1) Et — (1 — L)gt, 5)& = ZEjst*j’ Ej = ZCS, (17)
0 Jj+1

to Uy,n (0) in conjunction with Lemma 5.3 yields (see Phillips and Shimotsu, 2001)
Unon (8) = C (1) Ex,n (6) + 7ns (6).
where

e (6) = O (logn) &, + X1 1 O(p~ P 1E,—p + O(n~flogn)zo, 0>0,
T O logn)E, + O NE,, + O(n P logn)gy, 6 <0,

uniformly in § and E|Z|? < oo for t = 0,...,n. It follows that

E sup |ru (O) =0 ((ogn)*), B sup 0 rus () = O ((logn)?). (18)
0€[0,1/2] 0c[—1/2,0]

10



Since

Orp =T (=0)""> k"1 10 (Z k‘e_z) :

p+1 p+1
we obtain )
B (0) = D Oape ey = Exin (0) + 77,5 ().
p=0
where
1 n—1 n ) n—1 n
Exn (6) = ING) Z Z k_e_lez(k_p)/\sen*p’ Ths (0) = Z o Z 07 eny.
p=0 k=p+1 p=0 p+1
Since

n

n
sup k02 =0 |p|71 , sup n’ k2 =0 |p\71 )
96[0,1/2}; ( * ) fe[—1/2,0] ;; ( * )

it follows that

E sup |, (@) =0 (Gogn)?), E sup 0¥}, (0)]° =0 ((logn)?). (19)
0€[0,1/2] 0e[—1/2,0]

In view of (18), (19) and the fact supge(_1/2,1/9) [T (—=0) ! | < o0, the stated result

follows if )

n—1 n
Esup (A, (0) Y > k07t | =0(1), (20)
0 p=0 k=p+1

where
4, @)= | 7 ogm) ™, 0 € 00,1/2)
n - n971/281/2*0/2 (log n)_2 s 9 € [_1/27 0]7

and we suppress the subscript s from A,, (0) . Before showing (20), we slightly modify
a result in Hansen (1996) and state it as a lemma.

Lemma H (Corollary of Hansen (1996) Theorem 2) Let {X,; : i < n;n =
1,2,...} be a triangular array of random vectors defined on a probability space (Q, F, P).
Let {Fpni} be an array of sub-o-fields of F, such that, for each n, {Fn;} is nonde-
creasing in i. Let F be a class of parametric functions fni(x,0), where 6 € ©, and
© is a bounded subset of R®. The elements fn; € F satisfy the Lipschitz condition

| fri(2,0) = fi(,0")] < bni()|0 — 6|2, (21)

for some function byp;(-) and some X\ > 0. Define the empirical process operator v,
by
vaf (8) =02 S0y (fni(Xnis 0) = B fi(Xni, 0)),
and let ||Z||, denote the L™ norm for a random matriz Z, i.e. ||Z||, = (E|Z|")Y/".
Suppose for some q > 2 with ¢ > a/\ and each 0 € O, {fni(Xni,0), Fni} is a
martingale difference array satisfying

. 1w 1/2
timsup (n~! Sy |l fus(Xar 0)[17) < oo, (22)

n—oo

11



and
1/

2
limsup (n~! 20y (b (Xai)l[2) T < oo (23)

n—o0o

Then, for any 61 € © there exists a constant C' < oo such that

limsup [|supgee [vaf (6) = vaf (0] lly < C: (24)

Proof The stated result follows from Theorem 2 of Hansen (1996) and its proof.
First, Lemma 1 and Theorem 2 of Hansen (1996) still hold if we replace his f(Xp;,6)
with fp,;(Xni,0). Let C be a generic positive finite constant. Then, from equation

(27) of Hansen (1996), for n sufficiently large and a sequence of integers k(n) that
satisfies \/n2 kWA 0,

[Isupgee [vnf (0) = vaf Okl llg < C, (25)

where 0,y is defined on page 356 in Hansen (1996). Furthermore, from equations
(29) and (31) in Hansen (1996) and Minkowski’s inequality it follows that, for a finite
constant A,

18 supgee 1Vl (0k) — vnf (-1 | Il

k(n
SE | supgeo 1vnfO) — vaf Or-1)| Ilq
S, A2/ Vk ¢ (26)

|Isupgeo [Vnf(Orm)) — vaf (01)] llq

ININIA

because ¢ > a/A. The stated result follows from (25) and (26). W
We proceed to show (20). Let

n

fnp (9) _ \/ﬁAn (9) Z k—@—lei(k—p))\s’

k=p+1
so that
ot SN i(k—p) A _ an _ 1 ¢
A, (0) g p; k=% le = p; fop (0) en—p = 7 ; fran—r (0) &
(20) holds if
limsup E ]n—1/2 S £ (0) en_pf < o0, (27)

n—oo

and we can apply Lemma H to n~1/2 Yorei(fan—r (0)er — Efnn—r (0)e,). Because

E fnn—r () e, =0 for any 6, in order to apply Lemma H with ¢ =2,a =1and A =1,
it suffices to show

|fnp(9) - fnp(el)| < bnpw - 9,’3 (28)
. 1 1/2
lim sup (n 5 OP) T < oo, (29)
1/2
lim sup (n_l ol ]bnp\g) / < (30)

n—oo

First we show (27) and (29). Observe that

N
Z ei(k_p))\s

n
Zk—G—lei(k—p)As < (p_|_ 1)—9—1 max
N p+1

p+1

=0 (lply"'ns™").  (31)

12



and
pl3%logn), 0 €[0,1/2,
n_elogn) , 0e[-1/2,0],

zn: 01 gilk=p)As — 0
0]

p+1
uniformly in 6. Then, for 6 € [0,1/2],

Fup OF = O (n®s'=|p|7 (logn)™)

O (nlplz* (slpl+ /n)' ™ (logn)™*) = O (nlply"* (logm) ™) p < n/s,
Fap OF = O (n®s' 2 p| " ns™! (logn) °)

O (nlpl7* (slpl+/n)~> <logn>*5)=0(n|pr;1<logn>*5),pzn/s,

and for 0 € [—1/2,0],

| frp O = O(n2931*9|p];9_1ns*1n*9 (logn)_g)
= O (nlpl3" (slpl+/n) ™ (logn) ™) = O (nlp|;* (logn) ™), p < n/s,
fp OF = O (n?s'~|p| 32"~ 2n?s 72 (logn) ™)

= O(nlpl3" (slpls/n) """ s (logn) ™) = O (mlpl3* (logn) ™), p > n/s.
It follows that, for any 6 € [—1/2,1/2],

V2SR fu (B 2| =limsup 0 S5 [ fu (B < o0,

limsup E ‘n
n—oo

n—oo

giving (27) and (29).
We proceed to show (28) and (30). For 6 € [0,1/2], observe that

%fnp (0) = v/nA, (9) Z; 01 llog (n/k) — log s] cilk=p)Xs

Similarly as above, we have

Z k=0 Nog (n/k) e FPAs < (p+ 1) log (p > max

Zez(k D)A ‘

p+1 p+1
= 0 <|p|jre*1ns_1 log n) , (32)
and
O (|p|3°(logn)?), 6 <€0,1/2],
e O (n~%(logn) ), 0 €[-1/2,0],

uniformly in 6 € [-1/2,1/2]. The same bounds hold for logs> 274 k=0 1ei(k=p)As
Then, proceeding as for | fp, (0)*, we obtain uniformly in 6

2

fup (9)

e O (nlpl* (10g ).

13



Now we consider the case 0 € [—1/2,0]. First observe

B nooo .
%fnp (0) = VnAns (0) >k =1 log (n/k) — 0.51og 5] e’ F—P)As
pil

Similarly as above, from (32) and (33) we obtain
2

_ ~1 -1
o ) =0 (ol (0gm) ")
Since f,p (0) is a differentiable function, the mean value theorem gives
o0l0) = @] = | 5550 0,)] 10 =

where 6, € [0,0']. Define by, = Bn!/? ]p\; (log n)~1/2 for some large B, then by,
satisfies (28), and

limsup n~ ' 071 |byp|? =B%limsup S5t p|3 (logn) ™! < oo,
n— 00 n—0o0
giving (30) to complete the proof. W

5.6 Lemma

(a) Esupgn'~2(logn) X2 =0 (1), de[1/2,C],
(b) Esupy(logn)~*X2=0/(1), de|-C,1/2].
5.7 Proof
(From the proof of Lemma 8.11 of Phillips and Shimotsu (2001), we have

X, —c( ienkm(d)—((;i et (d) + 7 (d),
0 1

where

n—1 n—1

ra (@) = 3 0 (IK52) i+ 0 (0% 20, 7 (d) = 300 (142 e
0 0

It follows that

Esupgn®—** |, ( )+ 75, () = O((logn)®), d e [1,C],
Esupy |rn (d) + 17, (d)* = O((log n)?), de[-C1].
We proceed to show
n—1 2 1/2—d -2 1
N logn) dels,C]
E A ke, | —om: A, @= ™ ’ 2~
Sljlp ; ( ) En—k ( )’ ( ) { (logn) 27 de[—C,%],
(34)
then the required result follows. In view of the proof of Lemma 5.4 , (34) holds if
sup‘An (d) kdil‘ = O(kfl/2 (logn)_l/z) , k=1,...n—1
d
9 4 d—1 ~1)2 —1)2 B
sup 9 A, (d)k O(k (logn) ), k=1,...n—1,

Trivially the above two conditions are met, thereby giving the stated result. W
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5.8 Lemma
Define J, (L) = Y1 +L* and D, (L;d) = 34 %Lk. Then

() Jn (L) = Ju (™) + Jon (e7AL) (AL — 1),

(6) T (L) D (L;d) = Jy (€2) Dy (€5d) + Dy (¢¥d) T (L) (7L — 1)

+J,, (L) Diy (e*”‘L; d) (e*“‘L - 1) ,
where B N N
JM () = Vg e L oy = e e
Do (€7 Lsd) = X028 dape L2, dy = Sy Sfee™,

5.9 Proof

For part (a), see Phillips and Solo (1992, formula (32)). For part (b), from Lemma
2.1 of Phillips (1999) we have

D, (L;d) = D, (ei)‘; d) + Dy (efML; d) (eii)‘L - 1) i

and the stated result follows immediately. W

5.10 Lemma

Uniformly in p=1,...,n and s =1,...,m with m =o(n),
i i 2 -1
(a) Jn<e )— log)\s+2(7r )\s)—i-O()\s)—i-O(s ),
®) G =0(lplFns™),
(c) 3,\32, = O (logn).
5.11 Proof

For (a), first we have
( ) zn: 1k, _ i}eikxs B i Lk (35)
K — % K

The first term is (Zygmund, 1977, p.5)
cos kA

o e.¢]
2 tix

1 1

sin kA

= —log

| 1
QSin2’ —I—z§ (m—Xs) -
Since 2sin (As/2) = As + O(A3) = X\;(1 + O()\2)), it follows that

i:: %eik”\s = —log A—log (1+0 ()\2))+z% (= Xs) = —log As+0O (/\g)% (T — ).

For the second term in (35), from Theorem 2.2 of Zygmund (1977, p.3) and the
ordinary summation formula, we obtain

[e's) 1 . n+N )
S e < lmax| Y e =0 (571,
n+1 N n+1
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giving (a). (b) and (c) follows from the fact that |jy_,| < (p+1)"! max,41<n<n | ZéV_H ethAs

and Jy,, = O (zg |k;|;1). m

5.12 Lemma
Suppose Yy = (1 — L)e u¢. Then, uniformly in 0 and s =1,...,m with m = o(n),
(CL) — Wiog(1-L)y ()\s) =Jn (GMS) Dy, (60\85 9) Wy, ()\s) + n_1/2vns (‘9) >
where
Esupyn?~1s1727 (logn) ® Vs (0)? = 0 (1), 0 €[0,1/2],
Esupyn2~1s (logn) % [Vis (0))* = O (1), 0 el—1/2,0].
(0) = Wioga—ryu (As) = Ju (™) wu () = € (1) (270) /2 Ty, (€75 L) £ + 7,

where E |rs|* = O(n~! (logn)?).

. 2 .
(©) Wiog(r—ry)2y (As) = Jn (eMS) Dn (e%; ‘9) wy (As) + 0700 (0),

where
Esupyn®~1s172 (logn) 10|10, (9))* = 0 (1), 6€0,1/2],
Esupyn® s (logn) Uy )2 =0(1),  0€[-1/2,0]
5.13 Proof

Recall that Y; = D,, (L;0) u; and

log (1— L)Y = (L= L%/2= L3/3— ..} Yy = —J, (L) Y.

For part (a) and (b), from Lemma 5.8 (b) we have for all t < n
—log(1=L)Y: = Ju (L) Dy (L;0)uq
- J, (e“s) Dy, (e“s; 9) w (36)
+Dp (€450 Jux, (e7™L) (™ L—1)u,  (37)
+Jy (L) Dy, (e‘i’\sL; 0) (e_MSL - 1) w. (38)

Since 74 s (™AL — 1)uy = —uy, taking the dft of (36) - (38) leaves us with

g, (6“5) D, (eiA57 9) Wy (As) — \/217r7nDn (ems; 9> jms (e—iAsL) Uy
_ ¢217nﬂ’" (L) Trn(6). (39)

Applying the BN decomposition to J,y, (e~ L)u, yields

n—1 n—1
Inr (671A3L> Un = Z jkspeilp)\sun—P = Z jkspeizp)\s [C(1)en—p— (1= L)&nyp]
0 0
n—1

= C)Ju, (™L) 0= Y Dape™™ (1= L)Zuy.  (40)
0
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For the first term in (40), from Lemma 5.10 we have

E ’jn,\s (e*i)‘sL> an’2 =0 ((log n)2 + Zpilnsfl log n) =0 (ns’l (log n)Q) .

1
The second term in (40) can be rewritten as follows:

n—1

> e (1= L) &y
0

n—1

- 3A505"+ ng\spe A, -p ZJ,\ (p—1)€ p=DAsg, —p EAs(n—l)e_i(n_l)Ang
1
n—1 ) B ' B N
= Z [jAspe*Zp)\s _ ]‘,\S(p71)€71(p71))\5} gn—p +j)\sogn _ j/\s(nfl)e i(n— 1)/\380 (41)
1

Tan0s }As(n:l) = O (logn) from Lemma 5.10 (c), and from Lemma 5.10 (b) and the

-1 zp)\s

fact that jy,, — ]A (p—1) =D we obtain

—ipAs —i(p—DAs _ —ipAs _ ,—i(p— 1)/\3] + e Hp=DAs []

;)\sp [6 N — ;}\s(p_l)}

Since E|g;|? < o0, it follows that Esup; |[(41)]? = O((logn+Y7 p~H)?) = O((logn)?).
Therefore, in view of the order of D,,(e**s;#) given by Lemma 5.1 we have

JAsp€ — D(p-1)€

, - . 2
Esupn??~1s1-% ‘Dn (e“\s; 0) Inr. (e_MsL) un‘ =0 ((log n)2) , (42)
0
uniformly in s. Now we evaluate (39). Let

n?=1s1=20 (logn)™®, 6 € [0,1/2],
ans () = 20—1 —6 .
n’~ts(logn)™", 0 e[—1/2,0].

In view of the proof of Lemma 5.4, LUy, (0) has the same order as Uy, (). Thus

. 2
Esuelp ans (6) ‘Jn (L) UASH(H)‘

n—1ln—1
< B Y p'a sup (ans ()2 [ L7000 (0) | sup (ans (0))/* | L9050 (0)]
1 1 0 0
n—1ln—1 " 911/2 _ 911/2
< Z Zp_lq_1 {E sup ans (0) ’LPUASn(é’)‘ } {E Sup ans (0) ’LqU)\Sn(Q)‘ }
1 1 0 0
= 0(1). (43)

Combining (42) and (43) gives part (a). If d = 0, (39 )= 0 and D,,(¢"*+;0) = 1, and
part (a) follows immediately.
For part (b), observe that

~Wog—ryu As) = Jn (€2 ) wa () = C (1) (27n) 2 T, (7 L) &,
+ 2mn) 2 e P (1 - L) By,
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and finding the order of the last term gives the stated result.
For part (c), first from Lemma 5.8 and Lemma 2.1 of Phillips (1999) we have

Tn (L) = Jn (L) [Ju(e?) + Jur(e L) (e L = 1)]
= Jn (L) Jn(€™) + Jn (L) Jpa(e L) (e 7L — 1)
= Jn(€7)? + Jn(€M) Tun(e T L) (e L — 1)
+Jn (L) Jur(e L) (e L = 1),
Dy (L;0) = Dp(e?;60) 4+ Dpr(e ™ L; 0)(e™ L — 1).

It follows that

(log(1— L)Y = Ju (L)’ Dy (L;0)u
= J(eM)?Dy(e; 0)uy
+ D, (2;0)[Jn(e™) + T (L)) Jpx (e L) (e ™ L — 1)uy
+Jp (L) Dpr(e™L; 0) (e 7L — 1)uy.
Taking its dft gives
Jn(eMS)ZDn(ei)‘S;H)w (As)
1 ) ~ )
— =D ("5 0)[Jn (™) + Ty (L)) Jn, (e L)uy

V27mn
T (L D ().
In view of (42) and (43), we obtain
Esgp n20—1g1=20 ‘Dn(ei)‘s; 0)[Jn () + J,, (L)]jm\s(e_i)‘sL)un‘2 = O((logn)*),
Esupa (0) |4 (L) Onn (0)] = O(Clogn)?).

for s=1,...,m, and the stated result follows. W

6 Appendix B: Proofs

6.1 Proof of consistency
Define G(d) = Go1 TN 2d=do) and S (d) = R(d)— R (dp) . Rewrite S(d) as follows:
S(d) = R(d)—R(d)

G (d) G (do) ad—ad, ,  MAI7H0)
log Grgy o8¢, Tl ;‘7 /(d do) + 1

—(2d — 2dy) [;L i logj — (logm — 1)]
j=1
+(2d — 2dg) — log (2(d — do) + 1).

For arbitrary small A > 0, define ©f = {d : do— +A§d§d0+%}, e =
{d:do+ 1 <d< A} and O = {d: AlSdgdo—%—i-A},@l{and@gbeing
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possibly empty. Without loss of generality we assume A < % hereafter. In view of
the arguments in Robinson (1995), d —,, dy if

sup [T (d)] — 0,
o1

and

(me(d) < > — 0, Pr <ié12fS(d) < 0> — 0,

Sl

as n — 0o, where

G (d G(d m2d—2do
T() = tog S ~log (g s (mZJ” "/ (ddo)+1)

+(2d — 2dy) [nl% f:logj — (logm — 1)] .
1

Robinson (1995) shows that the fourth term on the right hand side is O (logm/m)
uniformly in d € ©¢ U ©% and

sup 2(d — dp) +1§:< >2d 2d0_1’20(1m). "
oruet m 1 m
Note that
G (d) — G(d) B m=13m A ‘d do))\j(do )IA% (\;) — Gom=1 32 A 2(d do)
G (d) B Gom=15 A 2(d—do)

mL S (j fm) 2 A2 )IM (Aj) — Gom™ o7 (j /m)24=0)
Gom =L 1" (j /m)> =)
[2(d — do) + 1] m~" 7 (j,/m)>@%) {/\3( Dpag () — Go}
[2(d — do) + 1] Gom=L X" (j /m)*“@ %)
A(d)

= B (45)

Therefore, by the fact that Pr (Jlog Y| > €) < 2Pr(|Y — 1| > ¢/2) for any nonnegative
random variable Y and & < 1, supga |1 (d)| — 0 if

supga |A (d) /B (d)| — 0. (46)
Define Y; = (1 — L)? X;. Then
Vi=1-L)* %1 -0)%x,=01-L)wI{t>1},

where 6 = d — dy. Hereafter, we use the notation Y; ~ I (o) when Y; is generated by
(1) with parameter a.. So Y; ~ I (—0). Note that

de0l e -LiAa<gc<

l\')\H

Applying Lemma 2.2 (a) to (Y}, u;) replacing the role of u;, we obtain

wy (N) = wy (A) Dy (€50) = ——=Tx, (6), (47)

1
V21
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and A (d) can be written as, with g =2 (d — dp) + 1

0= 23 (1) o -l

Hereafter let I,;; denote I, (\;), wy; denote wy, (A;), and similarly for other dft’s and
periodograms. From a sunllar argument as Robinson (1995, p. 1636), supea |A (d))|
is bounded by

m—1 r 2A 1

Z — ") sup
m T

r=1

o1

r P\j_ﬁlyj _ GO}
j=1

(48)

i A 21,5 — Gol |

Jj=1

1
+ —sup
m et

Now
A1, — Go
= XLy = X D0 1+ [\ D0 - £,0) /2 0| B
t [Lug = 1O P L] fu (0) [ fu (V) + £ (0) (2L = 1) (49)

JFrom Lemma 5.2 and arguments in Phillips and Shimotsu (2001, pp. 18-19), for
any n >0

> (5 )L saup 3|32 [Dute0) = £2(0) /12 0]
+[ —|C(e M)Weg] 0) /fu (A ‘— (+mn +m’2A+n*1/2>.

Robinson (1995) shows that >°7* (r/m)*2 r—2 I>1(2nl; —1)| —p 0. From (47), the
fact that ||A|? — |BJ?| < |A+ B||A — B| and the Cauchy-Schwartz inequality we have

FE sup

@a

2 1/2 ~
< FE sup FE sup )\ 0 Urin ©)
o ch o V2mn

In view of Lemmas 5.2 and 5.4 (a) and (c), (50) is bounded by

. 2
A1y = A7 | Da(e™:0)| 1

Uy (0
2)\ 9D ( ’L)\’e)wuj_AJ—Q >‘J ( )

o\ 1/2
50.
2mn ) (50)
j_1/2 (log n)3 +j_1 (log n)G +]_A (log n)2 +j—2A (log n)4 — O (j_A (log 7’],)6) .
It follows that

m—1 2A
1
> () P
m T

1

=0, (m_A (log n)ﬁ) ,

Z [)\jzalyj _ )\;29 ‘Dn(eikj;e)f Iuj]
1

hence the first term in (48) is o, (1) . Using the same technique, we can show that the
second term in (48) is oy, (1) , and supga [A(d)| —p 0 follows. (44) gives supg, |B(d) —
Go| = O(m™22), and (46) follows.
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Next we take care of @0 = {d:do+ 5 <d < As} ={0:5 <0< Ay—dy}. Note
that

S(d) = logG(d)—1logG (do) —2(d — dp) Zlog)\
1 m
= 1ogEZIAdzj ZIMOW 2(d — dg)log——Qd do) Zlog]
1

1 &K | 2(d—do)  2(do—d
= log — Y AHITH) 3D )IAdxj—log—ZIAdOzj
m m

2
—2(d—d0)log%—2(d—do)logp
1 & . _ 1 &
= 10%*2(]/17)26 )‘j %IAdmj—lOg*ZIAdo:pj
mey me
= log D (d) —log D (d) .

where p = exp (m~! Y1 log j) ~ m/e as m — oco. Since
~ 1™
log D (dp) — log Go = log (1 - Ggl(a > Iy - G0)> =0, (1),
1
Pr(infgg S (d) < 0) tends to 0 if, for § € (0,0.01),

Pr (infezl, log D (d) — log Go < log (1 + 5)) =Pr (infeg D(d)— Gy < (5G0) — 0,

as n — 0. Because

infep (j/p)* > (j/p)*22 2%
inf@'{('/l?) 2]

it follows that, for d € ©%

M/—\

ﬁ(d) >m 121 CL] IAdz]a

where, for a number M > max {2Ay — 2A4,2}

Lot 1<is<p, (51)
T i/ p<ji<m
Therefore, for d € ©% we have

D(d) - Go =m ™' Y1 a;(A;%1,; — Go) + Gom™ X" (a; — 1). (52)

Before proceeding, collect the results concerning ) aj;, a , etc.

B > e = p™M> Mypt > j=0m

1<j<m 1<j<p p<j<m
) Y @ = pM Y PMep? Y P=00m)
1<j<m 1<j<p p<jsm
m 2 _ .2 2 (.2 _ 1 2 1
(iii) Z aj; ~ p_l/ pdp="—"F P (c ) = m > 1.1m,
pejom p 2p 2p 2e
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where the last inequality holds because (62 —1) /2e = 1.17. It follows that
Gom™ X1 (a; = 1) > Go (m™ T a; — 1) > 106G,
as n — oo. In addition, for —M —1/2 < a < C,
(iv)  sup, [m T T a5
< sup, |(p/m)™ pt Y (/p) M|+ sup, |(p/m)  m g (i/p) |
= 0P NG/ T Iy /) ) =0,
and there exits £ > ¢ > 0 such that
(v min{m S ag m e S8 0% 2
uniformly in « € [-C, C]. This is because

oo T  agi > )M S G ) 2w S m) M > s,
e S g >y S ()T = m S /m) >
We proceed to derive the limit of infgm =t 37" aj()\;%ij — Gy) for subsets of 6%,

For O = {0 : § <0 < 3}, first define Dy; (0) = A;%(1 — ) Dy (e?;6 — 1). Since
6 —1>—1/2, from Lemma 5.2 we have

Dpj (0) = e 2% + O ()\;) +O(;7Y/%), uniformly in § € O%. (53)

Thus, we can easily show that supy [m = Y1 a; [|Dy; (0) [* L — Go]| —p 0. Now we
evaluate m~ > 1" a; [A;Zalyj — |Dpj (0) |*1j]. From Lemma 2.2 (b) we have

wyj = (1 — e )w,; + (27‘("0)71/2 e 7, (54)
where Z,, =Y 11 Yy ~ I (1 —0). ;From this and (47) we obtain
A wy; = Dij (0) wuy — X701 = e) (2mn) 2 Uy (0 = 1) + A0 (20n) 72 e Z,,.
It follows that m=' 31" a; [)\j—ze[yj — |Dypj (0) |*1,,4] consists of

m” T a A L= e P (2mn) T U (0 - 1) (55)
+m S a A (2mn) T 2 (56)
—m S a4y Do (0) wip A0 (1= €9) (2mn) "2 Uy, (0 - 1) (57)
—m T S a A (1 =€) (20n) T U (0 — 1) e 2, (58)

(59)

+m ™t a;Dpj (0)* w;;j)\;e (27m)_1/2 e Z,,

and complex conjugates of (57)-(59). First, we state some results as lemmas, which
will be used repeatedly. Lemma A is an immediate consequence of Lemma 5.4 (a)
and (b) and its proof.
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Lemma A For de[-1/2,1/2],

A7 (2mn) T2 Uy (d) = Aj(d) + Buy(d),

where
Esupy|An;(d) + Bnj(d)|* = O (log n)°), d >0,
Esupy |An;(d)|* = O(j =12 (log n)*), Esupy |Bn;(d)|* = O(jn~'(logn)?), d<0.

Lemma B For d € [-1/2,1/2], a; defined in (51), and a function C (\;;d) such
that |C (X\j;d) | < oo uniformly in A; and d, we have

Esupd‘m 21" a;C (Njid) wyi A (27m) 1/2U)\n ‘—>0

Proof ;From Lemma A, the above quantity is bounded by

¥

= 0 (m_1/2 (logn)® +m~Y* (logn)? + m'?n=1/?log n) ,

m Y 455712 (logn)®), d>0,
m~ ! supy 1" a; {j‘l/ﬂ‘ (log n)2 + j1/2p—1/2 lognD , d<0,

giving the stated result. W

Lemma C For any aj = {(j/p)“for 1 < j < p; (j/p)’for p < j < m}, where
p~mje and v € [-C,C],

[ S 4w | < mT S a2l for large m.
where E|(;| < oo for j=1,...m

Proof As in Robinson (1995, p.1636), use summation by parts to obtain

1 p 1 p—1 p’Y p
. app "
El a;j wy; = E [arr? —apy1 (r+1 E wuj El Wy

r=1

For 1 <r <p-—1, we have
arr? —apy1 (r+ 1) = a7 {1 —(1+ 1/7‘)0‘4“7} =0 (arﬂ*l) ,

because | (1 + z)* — 1| < Cz uniformly in 0 < x < 1. The same result holds for
p<r<m— 1. It follows that

1 p
E Z ajj'ywuj
Z CL]] wuj

p+1

122
< C— Zaﬂ 1/2

P
app'y '
wuj
m
aymm”
E Wy

p+1

)

2
Fom

S\

BEE SRR

m p+1

)

giving the required result. W
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(55) is almost surely nonnegative, and Lemma B gives (57)—, 0. We proceed to
evaluate (56), (58) and (59). For (56), from (v) there exists n > ¢ > 0 such that

(56) _ (277')_29_1 77,207127%77’171 E’in ajj729 Za.s. n|m79n971/2Zn‘27
uniformly in 6. (58) is equal to
Co () n® =2 Zym ™ S5 ay =N T 2 Uy (0 — 1) (60)

where C), (0) is a generic function with sup, |Cy, (8)] < oo for all n. First we consider
0 € [1,3/2]. Let Q be the sample space with typical element w and © be the domain
of 6. From Lemma A, (60) can be written as

m~ %2\ Z,| Ry, (0,w), (61)

where
sup [Ry, (8,w)| = Op(kyn); kn = m~ /2 (log n)3. (62)
0

Define
Q) = {(w,@) €Qx0:mIni-1/2 | Zn| < kn, logm},
A = {(w,@) eQx0:m V2|2, > ky logm},

so that Q1 U Qs = Q x O. Now for any € > 0 we have
2
{(w,@) i ‘m_ene_lﬂZn’ +(61) < —5}
2
= {(w,H) : (17 ‘m_ene_l/QZn‘ + (61) < —5) U Ql}

U {(w,@) : (17 ‘m_9n9_1/2Zn‘2 + (61) < —5) UQQ}

N

2
{(w,@) i ‘mfanefl/QZn‘ + kplogm - R, (0,w) < —8}

U {(w, 0) : m~On=Y2 | Z,| [nknlogm + Ry, (0,w)] < —z-:}
C {(w,0):kplogm- R, (0,w) < —c}U{(w,0) : nkplogm + R, (0,w) < 0}.

It follows that
2
Pr <il;f’l’] ’m_9n9_1/2Zn‘ +(61) < —6)

= Pr (Ug {(w, 0):n ‘m_ane_l/zan +(61) < —6})

IN

Pr (ilelf knlogm - Ry, (0,w) < —5) + Pr (i%f nkplogm + R, (0,w) < 0) — 0,
because k2 logm — 0 and R, (0, w) is Op(k,,) uniformly in 6 by virtue of (62 ). Hence,
(56) + (58) > —e with probability approaching one. For 6 € [1/2,1], from Lemma A,
(60) is

m= 02| Z,| Op(m™ Y4 (logn)?) + m™nf=Y2 | Z,| O, (m**n=1 /2 1log n).
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For 0 € [1/2,3/2], (59) is equal to, from Lemma C,

uj
0—-1/2 —Z0i, —1 —0
= Cn(0)n? Y27, 3% m L Y a5 (T

Cr ()02 Z,m ™ Y7 a5 [0 () +OG12)| 50w

)
Co (0)n® =12 Zym ™" S5 a; Doy (0)" 5Pl
)
( Wyj
=m0V 2, [0p(m™?) + Op(mn )],

_l’_

Therefore, provided that mn~!(logn)?logm — 0, (56) + 2Re[(58) + (59)] > —dGo
with probability approaching one. It follows that Pr(infezF D(d) — Gy < 6Gy) — 0
as n — o0o.
For ©%2 = {0 : 2 <0 < 3}, from applying (54) twice and (47), )\j_ewyj is equal to
A1 = €9)2Dy (930 — 2w,y — A0 (1 — )2 (2mn) "2 Uy, (0 - 2)
A1 =) (2mn) TP N 0 2+ A0 (2mn) TR e Z,.

First we state a useful result as a lemma.

Lemma D For large n, the following holds either for j = 1,...,m/4 or j =
3m/4,...,m

1—e™)5p 20+ 2| = (1/2) [0y 50 20+ 22).
Proof Note that
(1 — M) S Z + Zn|? = (1 — cos \j) S8 Zy + Z)? + (sin \; 37 Z,)2.
Since sin A ~ A for A ~ 0, for large n we have
(sin Xy 321 Z2)% > (1/2)(\; 3 20)*. (63)
Since 1 — cos A > 0, if sgn(3-1 Z¢) = sgn(Zy,), then
(1= cos Aj) 321 2t + Zn| = (1 — cos \j)| 21 Zi| + [ Zn| = | Znl, (64)

and the required result follows immediately. When sgn(}7 Z;) # sgn(Zy), without
loss of generality assume > 7 Z; > 0 and Z, < 0. Then (1 — cos\;)> 7 Z; is an
increasing function of j. Now suppose (1 — cos A, /2) 21 Z¢ + Z, > 0. Then, since
1 —cosA~ N\ for A ~ 0,

(Amy2)? 31 Ze = (3/4)| Znl,
and it follows that
(1 —cos Az a) 21 Zt > (8/9)()‘3771/4)2 Y7 = 2(>‘m/2)2 S0 Z > (3/2)|Znl,

giving
(1 —cosX\j) >V Zy + Zy, > (1/2)|Z,| for j =3m/4,...,m. (65)
Now suppose (1 — cos A, 2) 31 Zt + Z, < 0. Then,

(Amy2)? 21 Zi < (3/2)| Znl,

25



and it follows that

(1 —cosAya) 21 Zt < (4/3)()‘171/4)2 Y1 Z = (1/3)()‘m/2)2 Y1 Ze < (1/2)] 2],
giving
(1= cos ) S0 Zs + Zn < —(1/2)| 20| for j=1,...,m/4. (66)

The stated result follows from (63)-(66). W
JFrom Lemma D and (v), there exists 7 > ¢ > 0 such that

(2mn) ™t m Tt T @A (1= €)XY Zi + Zaf?

> (2rn) " S T )a A T (L - ) S 2+ Zof?
> n[m729+2n2973(z711 Zt)Q + m720n2071272L]’ (67)

uniformly in 6. The terms involving the cross products of wy;, U A (0 —2) and
)\;9(1 — M)V Zy + )\]79Zn are dominated by (67). For instance,
m I a A (1= €)2 Dy (€50 — 2wy A7 (2mn) T2 e
x[(1 = e™™) 327 Zy + Zn]
= (m~"n" R Z 4+ m 00 Z0))[0p(mT ) + Op(n )],

and Pr(infy D(d) — Go < 0Gy) — 0 follows. For larger values of 6, applying (54)
repeatedly and the same argument establishes Pr(infy D(d) — Gy < 6Go) — 0, albeit
the expression of )\Jewyj will contain Y p_; Zle Zy, etc.

Now we consider O = {0 : Ay —dy <0 < —% + A}. Since

. . 0 . A— )
infe, (J/P); > (J/p)iA 127d 1<j<p,
infe, (j/p)” = (j/p)"" ", p<ji<m,

it follows that D (d) > m™' Y7 a;A;* Ina,; for d € ©,, where

G/p)**7t,  1<j<p,
a; = ] _ ] 68
’ { (/p)>M 2 p<j<m. (68)

Therefore, for d € ©5 we have
D(d) - Go >m ™' Y a;(A;%1,; — Go) + Gom™ X" (a; — 1).

As m — oo, p ~ m/e, and we can also show that m™! 37" (a; — 1) > 2§ when
A<1/(2e),> 1" a; =0(m)and > 1" aJQ- = O(m* *2). Furthermore, m~1 37" a;j* =
O(m®logm + m~22logm) uniformly in o € [-C, C] because

sup,, ‘mf max{a,f2A}m71 2117 ajjoz‘
_ . N2A—1 OA_
= O (supuzoam '3 (/p)" 2 Fsupac_pn Y A7) = O (logm),
e . _ ) \2A;-2d
SUPy<C ’m *mt ajja‘ =0 (Supagcm Ly (3 /p)* 0+a> =0(1).

We proceed to derive the limit of m~=! 37" aj()\j_zelyj — () for subsets of O9. First,
for @5 = {0 : —% <6< —% + A}, supg [m~ Y aj[/\J._%]Dn(e“‘j;G)PIuj — Gol| —p 0
can be shown as above, and from (47) A;Qelyj - )\;29|Dn(ei’\j;0)|21uj is equal to

A7 20(2mn) U (0) |2 — 2Re[A; 2 Dy (€™ 0)wy;(2mm) =20 0 (0)7]. (69)
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The contribution to m= 31" a; [A;Qelyj - )\;29|Dn(ei>‘i ;0)|21,,;] from the first term is
almost surely nonnegative. Before proceeding to evaluate the contribution from the
second term, we state a general result analogous to Lemma B.

Lemma E For d € [-1/2,1/2], a; defined in (68), and a function C (A\j;d) such
that |C (Aj;d) | < oo uniformly in A\; and d, we have

Esupd‘m 121 aj ()\J,d)wu])\ (2mn)~ 1/2[7}\].” (d)‘ — 0.

Proof ;From Lemma A, the above function is bounded by
m~ S ;572 (logn)? d>0,
m=1 31 a; [j_l/‘l (log n)2 + 1212 og n} , d<0,
= O(m™ 22 (logn)* + m?n=21logn),
giving the stated result. W
The contribution from the second term in (69) is op (1) by Lemma E. Therefore,
Pr(infeg D(d) — Go < 6Gp) — 0 as n — oo.
We move to 04 = {#:-3/2 <60 < —1/2}. Note that ¥; ~ I(—6) and AY; ~
I(—6—1). Since
wy; = (1 — ™) Lwpy; — (1 — )7 (2mn) 2 ey, (70)

)\j_awyj is equal to

)\j_e(l — )T, (e 0 + 1)wy;
X1 = @) @2an) TV Oy (0 4+1) = A0 (1 — )7 (2mn) T2 e,
Since 6 +1 > —1/2, with a slight abuse of notation we have

AL — M) T 0 4 1) = Dy (0) = e 2%+ 0 (X)) + O ).

Therefore, apart from o, (1) terms, m~1 31" a; [)\j_zefyj — G| consists of

m- P aj)\j_%]l — e 72 (27n) T Y2 (71)
+m T @A 21— €72 (2mn) T Uy (04 1) 2 (72)
+m S a1 = e (2m )tanw+n*MW’ (73)
=m0 a3 D (0)" w25 (1 =€) 2mn) Uy (041) (74)
=m0 0 Dnj (0)" wi; A0 (1= e)H (2mn) T2 e, (75)
and complex conjugates of (73)-(75). For 6 € [—1,—1/2], first note that
(71) + (72) + 2 Re[(73)]
= m'yr aj)\j_%\l — |72 (2mn) 7 €N, + U')\jn (O+1)12 >, 0.
(74) is 0, (1) by Lemma E. Observe that uniformly in —1 < o < C
m~! erl a;Dnj (0) j%wu;[1 + O (A))]
= e 2%t 21 i Wy +m v a;10 (Aj) + O(j71/2)]jawuj
= 0O, ( =1/21o0g m 4+ m=28 logm) + O, (n_lm"‘H) : (76)
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Since n?t1/2Y,, = O,((logn)?) from Lemma 5.6 (a), it follows that
(75)] < Cln"2Yallm™ Yo7 a;Dyj (6)" 570 g [1+ O ()]
= 0, ((m_2A +n~tm) (logn)? log m) ,

giving Pr(infg D(d) — Gy < 6Go) — 0. For § € [-3/2,—1], from an analogous
argument as before there exists x > 0 such that

min{m ZTM a;j* m D imya 0"} = km®, (77)

uniformly in a € [~C, C]. Therefore, (71) is almost surely larger than n|n?+/2m=0=1y,, |2
for some 1 > ¢ > 0. (72) is almost surely nonnegative, and (74) is o, (1) by Lemma
E. We proceed to show that (73) and (75) are dominated by (71). From Lemma A,
(73) is equal to
Cr (0) 0T 2Y,m ™ S a0 N T T R (04 1) |
= "0, ((m™0 7 4 m T2 (log n)?)
n9+1/2|Yn|O][,(m_6_1/2n_1/2 lognlogm)
_ m7971n9+1/2‘Yn’Op(mfZA(logn)S)
+m 01t/ \Yn|0p(ml/2n_1/2 lognlogm).

(From (76), (75) is equal to
Co (0) Y2y, m™ L S 4Dy (0) 570w

uj

= m 2y, [0, (m 22 logm) 4 O, (mn Y],

Therefore, by the same argument as the one used for ©%, we have (71) + 2 Re[(73) +
(75)] > —6G) with probability approaching one provided n~tm(logn)?(logm)® — 0.
Hence Pr(infg D(d)—Go < 6Go) — 0. Finally, we consider 05 = {0 : —=5/2 < 0 < —3/2}.
Applying (70) twice and (47), A;Hwyj is equal to

A1 = €M) 72D, (€50 + 2wy — AT — )72 (2mn) TP Uy (0 4+ 2)
—)\;9(1 — )71 (2mn) Y2 MY, — )\;9(1 — M) 72 (27n) V2 N AY,,.

Neglecting the o, (1) and a.s. nonnegative terms, m~' 31" a; [)‘]‘_QHij — G| consists
of

m~ P aj)\;29|1 — |7 (2mn) T (1 = €N)Y, 4+ AY)? (78)
+m T a A 7 (2mn) T U e (04 2)° (071 4+ AT T2AY,) (1 + O(A079)
+m YT a1+ O() + O ) wi; (2mn) "2 (A7071Y,, + AP T2AY,), (80)
and complex conjugates of (79) and (80). In view of Lemma D and (77) we have
(78) Zas. 7m0~ 1012, 2 4 glm =020 +3/2AY, |2,
(From Lemma A, (79) is, for 6 € [-2,-3/2],
RO 2,0, (m =032 (log n)4) + n®+3/2|AY;|0p((m =05/ + m~22)(log n)%)
= m TR, |0, (mT 2 (log n)!) + O, (m ™ (log n)®),
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because n?*t3/2AY;, = Op((log ”)2) For 6 € [-5/2,-2], (79) is
n?T121Y, |0y (m =075/ log n)?) + n /2| AY, |0, (m ™07/ 4+ m=22) (log n)(81)
+n0+1/2|Yn]Op(m_6n_1 10g n) + n9+3/2\AYn]Op(m_9_1n_1 log TL) (82)

The first term in (81) is m~~1nf+1/2|y, |0, (m~1/4(logn)*), and the second term in
(81 ) is
O,(m~22(logn)®), 6 € [-9/4+2A,-2],
m~972n0%3/2| AY, |0, (m ™4 (logn)?), 6 € [~5/2,-9/4 + 24].
(82) is m~ 0~ nf*1/2|Y, |0, (mn~'logn) + m~ 0" 2nf*3/2|AY,|0,(mn" logm). Fi-
nally, (80) is
n9+1/2]Yn\Op(m_9_3/2 log m) + n9+3/2\AYn]Op((m_9_5/2 + m—QA) log m)
+n 12,10, (m~n " logn) + nP+3/2|AY; |0, (m ™0 tn " og m).

Therefore, (79) and (80) are either o, (1) or dominated by (78), and from the same
argument as above we have Pr(infy D(d) — Gy < 6Gg) — 0. For smaller d, we use
(47 ) repeatedly and the expression of )\j_ewyj will contain A%Y;,, A%Y,, ..., but the
same reasoning gives the required result and completes the proof. W

6.2 Proof of asymptotic normality

Theorem 3.3 holds under the current conditions and implies that with probability
approaching 1, as n — oo, d satisfies

0=R'(d) =R (doy) + R" (d*) (d — do), (83)
where |d* — do| < |d — do|. From the fact

0 At ( 1 o d
— ¢ CX, = ——S eMtlog (1 — L) (1 — L)% Xy,
aded 8d\/ﬂ21: t Nz 16 og ( ) ( )" X
872'lUAdIS = ! 3 Z/\ t (log (1 — L)) (1 — L)dXt,
Od? V2mn 5
we obtain
R (d) = G2 (d) G (d) — G (d)° _ Ga2(d) Co(d) — 1 (d)
G (d)? Go (d)°
where
_ 1 &9 . 1 & .
Gi(d) = m 21: ad [wAdzijdxj] ~m 21: 2Re [wlog(l—L)Adxijdxj} ’
N 1 & o2 . 1 & .
G2 (d) = E 21: 67 [wAdzijdxj} = E 21: Wy (L7 da]) )
Wx (L, d,j) = 2Re [w(log(lfL))QAdxjw*Adxj} + QIlog(lfL)Adx]W
- 1 & o ~ 1 = 29— .
Go(d) = ™ ZJ%)\J' 29ij= Gi(d) = m 2320)‘3' 2Re {wlog(l—L)ijyj ’
1 1

I & o :
Ga(d) = o Z]QGAJ *Wy (L,0,5).
1
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Fix ¢ > 0 and let M = {d : (logn)*|d — do| < €}. Pr(d* ¢ M) tends to zero because
supga |A (d) /B (d)| = op((logn)~®). Thus we assume d € M in the following discus-
os P

sion on G}, (d). Now we derive the approximation of Gy, (d) for k = 0,1, 2. For Gy (d)
from a similar decomposition as (49) along with (50), we obtain

sup )\j_%lyj — Ly
oeM

=0, (j_A (logn)® —i—jn_l) .
Thus, in view of the fact that
7% =11/ 120] < (log ) n** < (log j) n'/1#" = clogj on M,

we have

+ 0p((logn) ™) = op((logn) ™).

1 m
— > %1 — Go
m

sup ‘éo(d) - GO’ = sup
M M
For G (d), from Lemma 5.12 we have
A 2 01— Lyyiwy; + T (ew) Iuj
. , 2
= o (e™) [1 =272 | Du(e™;0)| }Iuj
— T (€™) A7 D€ 0wy - Ay (27m) "M Uy (0)°
=X/ Dy (€295 0) w); - AT (2mn) Y2V, (0) — A2 (2mn) " U (0)* Vi (6)

Then, using a similar line of argument as above, we can easily show

1 & .20 |\ —20 A
m > supj? ‘Aj Pi0g(1- 1)y W5 + I (ez ]> L
1T M

= 0p ((log n)_l) .
It follows that

sup
M

G (d) + % ij: 2Re [, (™) L

55 1) 2me ()]

+ op ((log n)*l) =0y ((log n)*1> .

1
m

= sup
M
For G (d), the same line of argument as above with Lemma 5.12 (c) gives
~ 1 m . 2 . . *
Go(d) — = |2Re J, (e 2, (€9) T, (e ]Iu-
- 3 e (64 2 (62 0, ()|

Ga(d) — % iél {Re [Jn (eiAj)} }2 I,

Therefore, with probability approaching one,

sup
M

= sup =op(1).
M

R'(d) = |G
_ Hnll §:4{Re [Jn (eiAj” }QIW. + 0p (1)} {Go + 0p ((log n)—2)}
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Go )]

RS a1 () 1 ()

]
Gt s (e[ ()] s~ (A2 ()] )+ ot
Go—l—op((logn) %)
= 4m™ Y7 {Re [J, (eMﬂ')]} —4{m ™ S Re [Jn ()] }2 +0,(1).(84)
;From Lemma 5.10 (a) we have
Re[J, (¢™)] = —logh;+0(1/)+ 0 (2/n?),
{Re [Jn (eiAj)}}Z = (log)))? +O( 1logn)+0(j2n*21ogn).
It follows that
m 27 {Re [, (™ )}} = m 'Y (log )2 +o(1),
{m ' S Re [y (e )}} = (mflz’;llogAj)QjLo(l).

Therefore, (84)/4 is, apart from o, (1) terms,

2
m ST (log \g)? = (m ! ST log )
2 2 2 2
= miyr (log % + logj> — (m_l T (log % + logj>)
-1 <m N2 -1 m 2
= m 37 (logj)” — (m 21 logj) -1,

and R” (d*) =4+ o, (1) follows.

Now we find the limit distribution of m'/2R’ (do) . Since wys = C (e )wes + s
where E |r,s|* = O(n~!) uniformly in s (Hannan, 1970, p.248), in view of Lemma
5.12 (b) and its proof we obtain

~Wiog(1—L)usWys = Jn(eMS)IuS — \/an)\s (eMsL> EHC(eMS) wl, + Rps,

2mn

where E|Ry,s| = O(n~2logn) uniformly in s. It follows that m*/2G; (do) is equal to
———Y 2Re|J, ()| I 85
Jm ; e [Jn ()] 1y (85)
+— Z2Re {jm (e“‘jL> %C(ei)‘f)*w*} +0 <m1/2n71/2 log m) (86)
vm ’ Vorn & P
(From Lemma 5.10 (a),

(85) = f: (log Aj) Ij + Oy (m5/2n72) +0, (mil/Q log m) :
1

EN

For the fist term in

—~

86), in view of the fact that

1 n—-1
we (Aj e g, = eNig,
- %) mz avoeP P

q=0

31



we obtain the decomposition

I &5 2F En IA\ %,
ﬁ;JnAJ (e JL) \/%C(e ) w;
_ 1 - C(el)\])* = D = igA
= \/mzlj Sy zojj)\ e Pen_p zO:e Ien—q (87)

1 m m n—1 _ ~ 92 m m n—1
mnZ Z Z Z ‘j/\Jp Iaep| T 2 Z Z Z ’])\Jp Z ‘] AkT (88)
j=lk=1 0 J=lk=1 0
1 m m n—1 _ ~ ]
+mnz~zlkzl§’fw J-xip| D €T (89)
j=lk=

(88) is bounded by

m m [n—1 . ) . 4
Zl:z [Z (logn)? + Z el > Z k’T‘Jr] (mn (logn)” +m™" (logn) ),

b

mn 1

and in view of the fact that >/ e 1N =M) = nT {j = k}, (89) is bounded by
1

1 m n—1 1 m n—
222 | =0 (mn >3 i el nlog n> =0 (m™" (logn)*),
1 0

giving (86)= o, (1) . Therefore, we obtain m2Gy (dy) = 2m~1/2 T (log Aj) I +
op (1), and it follows that

m'?R' (dy) = m'/? [(g( QZlog)\]

2m =2 S (log \g) Luj + 0, (1) = (35 X' log Ay ) 2m~ V2 7" I

m—1 Zm wj

B 2m_1/22m(10g)\ —*ZTIOgA ) uj+0p( )

N Go +0p (1)

_2mTVA(ET logj — £ 01 og ) (271 — 1) + Op(m* 1 2n =P log m) + 0, (1)
- 140, (1)

—d N (07 4) )

where the last line follows from Robinson (1995), to complete the proof. W
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