
ISSN 1755-5361 

  
      

        
 

 Discussion Paper Series 
 
    

   
    
 

Evaluating the Economic Cost of Strategic Storage 
of Natural Gas 

 
João Miguel Ejarque 

 
 
 
 

Note : The Discussion Papers in this series are prepared by members of the Department of 
Economics, University of Essex, for private circulation to interested readers. They often 
represent preliminary reports on work in progress and should therefore be neither quoted nor 
referred to in published work without the written consent of the author. 

                                University of Essex 
 
 
 
       Department of Economics 
 
 
 

No. 658 July 2008 



Evaluating the Economic Cost of Strategic
Storage of Natural Gas

João Miguel Ejarque∗

July 22, 2008

Abstract

The European Comission wants to implement a single market for gas.
One of the components of this market is a regulated provision for "security
of supply" which consists of rules for the implementation and use of a
given reserve stock of gas. We investigate the impact of this policy on the
profitability of a storage operator, using data from Denmark and Italy.
Keeping storage capacity constant, the costs of the strategic stock are
around 20% of the value of the storage market for Denmark, and 16% for
Italy. This cost is due to the inability to extract arbitrage profits from
the captive stock.
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1 Introduction
The European Commission wants to implement a single market for gas. One of
the components of this market is a regulated provision for "security of supply"
which consists of rules for the implementation and use of a given reserve stock
of gas. This paper investigates the impact of this policy on the profitability of a
storage operator, and therefore indirectly on the incentive to invest in storage.
In order to implement the creation of strategic storage the policy maker

regulates the use of the existing stocks owned and managed by commercial
operators. This regulation takes the form of a penalty on the “improper” use of
the last x% of total capacity in any storage facility. Proper uses are determined
by the regulator. The policy analysis here is the comparison of optimal behavior
and profits in a market with and without the penalties.
Regulatory intervention is justified in the presence of externalities. Just

like the European Commission, this paper assumes that market failures and
externalities exist in the market for natural gas, such that it is important for
the policy maker to complement the commercial supply of gas storage with an
extra stock to be released in case of emergency. In this line Wright and Williams
(1982,a,b) note that one of the reasons why storage is needed is because political
economy motives will force the prices down (and therefore increase demand)
during peak season or during disruptions. In this way, (some) storage arises as
a secondary distortion to correct an original, polically motivated one. On the
other hand Le-Coq and Paltseva (2008) suggest that storage can induce Moral
Hazard as agents consume gas and use their infrastructure in a less than prudent
way. These issues are absent from the current analysis.
Another maintained assumption in this paper is that the storage part of

the market for natural gas can be unbundled from production and distribu-
tion activities and function in a competitive environment. Storage facilities are
investments with large initial fixed costs, but casual observation reveals that
nevertheless a large number of agents participate in the market.1

These assumptions allow us to write a model of optimal storage of gas where
the agent (a storage firm) buys gas and stores it when prices are low, and
sells gas when prices are high. The model is calibrated to match Italian and
Danish storage data. Both of these countries have restrictions on the use of
stored gas. Italy sets apart around 38% of its stored gas on a permanent basis,
while Denmark imposes that stored gas must at all times be enough to cover the
following sixty days of normal consumption. While large, Italy’s storage capacity
is smaller relative to total consumption than Denmark’s, which comfortably
meets its sixty day restriction.2

We want to know the impact of these policies on the behavior of storage
operators and on market outcomes. It is useful to compute a back of the enve-

1This is true in germany and the UK. Denmark and Italy data are both monopoly storage
countries for most of the sample but they are linked to the international market.

2Possibly a better way to implement a strategic storage policy is for the regulator to be a
client and buy gas for its specific purpose, storing it in existing commercial sites. This may
be the least distortionary way of pursuing the policy goal, but we do not examine it here.
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lope example to understand the potential magnitude of the problem. Suppose a
country has around 40% of its total storage capacity reserved for strategic pur-
poses. Suppose also that summer prices are on average around half of winter
prices (as is the case for the UK National Balancing Point price). Consider a
storage site with unit capacity that fills up with gas at the beginning of time
and then buys (low) and sells (high) every half year the 60% available capacity
it has to trade. Therefore in period one the firm buys the entire stock at price
1/2. Then one semester later sells the fraction (1 − λ) at price one, and then
alternates buying and selling the fraction (1−λ) at prices 1/2 and 1. The value
of this firm is then given by:

V (λ) = −1
2
+ (1− λ)

β

1− β2

µ
1− β

2

¶
With a six-month discount factor of β = 0.96, we obtain V (0) = 5.87 and
V (0.4) = 3.32, a difference of 44%. As a rule of thumb in this example the
percentage difference is identical to the fraction λ if we ignore the initial expen-
diture:

V (0)− V (s)

V (0) + 1/2
= λ

This is the cost of the forced savings imposed on this market. To have an
idea how this number compares with normal precautionary behavior, we can
think of the required reserve ratio imposed on commercial banks by a central
bank, or on the fraction of income families save due to precautionary reasons.
These are numbers far smaller than 40%. This back of the envelope exercise
suggests a potential inefficiency is being imposed on the gas market.3

Clearly, the actual cost of this restriction is not given by these numbers and
a more accurate solution to this problem requires a better model. That is the
purpose of the model developed in this paper. Our calibration for Italian and
Danish data yields a cost of regulation of around 16% and 20% of discounted
net present value of profits for the respective storage markets. These costs are
due to the loss of seasonal arbitrage profit associated with the captured stock.
The current paper is a measurement and policy evaluation exercise on natural

gas storage, and to our knowledge there is no close exercise in the literature.
The model draws on work by Byers (2006), Thomson, Davidson and Rasmussen
(2007), Hall and Rust (2000) and Chaton, Creti, and Villeneuve (2007a,b).
These last authors study a problem where storage agents face the possibility of
a large disruption and therefore build up a precautionary stock up to a given
level and then optimally maintain it. They do not study seasonal arbitrage nor
do policy evaluation which is the main focus of this paper. Casassus, Collin-
Dufresne and Routledge (2005) study a general equilibrium model of oil as an
intermediate input with storage aimed at replicating the asset pricing properties
of commodities, but again the seasonal component is absent from the continuous
time framework.

3A different way to think of this is that if storage equals normal savings for the gas market,
a λ of 0.4 implies we force people to increase savings by a factor of 2/3. A λ equal to 0.2
implies a forced increase in savings of a factor 1/4.
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2 Data
The model is calibrated to match Italian and Danish data. Figure 1 shows
the large positive monthly Italian gas consumption and imports, and closer
to zero, production and storage flows (measured as consumption less imports
and production). The data is in millions of cubic meters from January 2002
to December 2006, from the OECD.4 Production is flat and steadily declining
while imports and consumption are increasing and seasonal. The seasonality
of imports shows that a big part of the adjustment to the large consumption
swings is met this way rather than by storage. In Figures 1 and 2, storage
flows are positive when injection is taking place, which is generally from April
to October.

Figure 1: Italian Gas Data, OECD
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One of the key assumptions used in the paper is that of a competitive market.
It is useful to look at Danish data to support this assumption:

Figure 2: Danish Gas Data, OECD
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The key difference is that Denmark exports gas, while Italy imports it. Gas
production is here the upper most series with consumption closely following its
cycle. Exports are also seasonal and increase a little over the sample. Denmark
explores its share of the Ormen Lange field, which in turn is connected to
the U.K. market by pipeline. Since the U.K. market has a well functioning

4The year 2002 has a significant (unaccounted for) difference between flows computed as
stock differences, and flows computed as consumption less production and imports. They
should be the same as Italy exports almost zero gas.
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spot market for gas, and is further connected to the continental one via the
interconnector, and since Denmark also has pipelines to the continent, it is safe
to assume that competitive spot prices affect the marginal unit of gas stored in
Denmark. The final logical step here is that, while we do not have information
on spot trading in either Denmark or Italy, the behavior of flows in and out of
storage is broadly similar in both countries, justifying the use of a competitive
assumption to look at the data.
We will make use of this monthly data from the OECD as well as of daily

data available directly from storage operators STOGIT (Italy), and DONG and
Energinet (Denmark). There is one additional reason to look at both Danish and
Italian data: they both have strategic storage requirements. These requirements
are different from each other which suggests a policy comparison in itself.
It is useful to isolate the annual cycles in this data. Figure 3 shows the annual

cycle of Italian and Danish gas consumption. These are monthly relative values,
January through December, and months are numbered one through twelve on
the horizontal axis.5 Consumption has a single peak in January, and the two
series are similar. Denmark has its lowest consumption in July (month 7).

Figure 3: Consumption Cycle
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Figure 4 shows the annual cycle of Italian and Danish gas storage flows,
normalized. We can see that the largest withdrawal months are January and
February, and the highest injection month is July.6

Figure 4: Cycle of Storage Flows
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5Average the 5 observations for each month. Divide the 12 averages by the max average.
6 Stocks peak in late October (October 24, 2006 for Denmark) bottom late March or April.
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We want the model to generate this pattern of flows. The model takes as
driving shock the price of gas to generate endogenous quantity flows. We will
make use of the fact that competitive spot prices behave similarly to quantities in
our construction of the price process. In Figure 5 we can see the cyclical behavior
of the National Balancing Point price data from the UK. One measure averages
monthly prices in the years 2002, 2003 and 2004, another averages prices in
the years 2005, 2006, 2007, and the third one has the overall average price for
each month using all six years. The first three years are much smoother than
the last three years. But the relative variations in price are not that different.
Given that the UK market is the most liquid market for gas in Europe it is not
surprising to see this price vary over the calendar year. The fourth line in this
graph (highest at 1 and lowest at 12) shows the seasonal cycle of storage flows
for the UK. It is normalized to be between 0.5 and 1, but its pattern resembles
that of the Danish data. Importantly, it also resembles the price data.

Figure 5: NBP Gas Prices, 2002 to 2007
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If we are successful, quantitatively and qualitatively, in generating this cycli-
cal behavior then we can use the model to experiment with different policies to
evaluate their impact.
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3 Model
This is a model of physical storage operation. The main features of this problem
are studied in the large literature on inventories. The problem of the storage
operator (henceforth labelled interchangeably as firm or agent) is to decide how
much to buy (inject, or add to inventory) and/or sell (withdraw, or take from
inventory) each period, in order to maximize the expected present value of
profits.7

We consider a period to be one month since we aim to study annual seasonal
variations. In each period the firm has profits given by:

πt = Ptxt − h (xt, St)− k(St+1)

In this expression Pt denotes the realization of the random spot price of gas in
month t and xt denotes purchases or sales of gas in month t. The firm cannot
both buy and sell gas in a given month. Therefore x denotes net purchases each
period. If x takes a positive value the firm is selling gas and therefore stocks
are falling.
The function h(x, S) specifies arbitrarily large costs of exceeding physical

injection and withdrawal limits (x̄). This is a practical way of imposing this
technical constraint on the computational problem.

h (xt, St) =Mp × (xt > x̄) +Mn × (xt < −x̄)

The last element of the profit function, k (St+1), is the penalty function
imposed by the regulator for the misuse of strategic gas:

k (St+1) = [k0 + k1 (λ− St+1)]× (λ > St+1)× (1− INt)

Since we normalize the capacity of the facility to S̄ = 1, we define the fraction
of gas regulated by the value λS̄ = λ. The policy parameters are k0 and k1.
The regulation takes the form of a penalty function for the use of gas in excess
of (1−λ), and this penalty function is a two part (linear) tariff with a fixed and
a proportional component. We will look at two specifications for λ. In the case
of Italy this is simply a constant, while in the case of Denmark, this varies over
the year and must be enough to always cover the expected gas consumption of
the following sixty days.
The timing of k (St+1) is important here. The penalty is not always enforced,

since it is lifted in case of extreme events detailed in the policy description. Such
events are modelled by setting the indicator function INt to take the value one.
This is also the event when prices increase sharply in our model.8 Now, if a
catastrophe state does not occur today, you need to worry about how much
stock you leave for next period. But if a catastrophe state occurs, the penalty

7Even though gas storage operators are subject to third party access regulations, selling
the storage service to a third party should be equivalent to buying and selling gas.

8 It is possible to study scenarios of regulatory uncertainty, whereby (k0, k1) are random
variables with given distributions. We do not examine this case at the moment.
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is lifted so that you are allowed to start next period with a smaller stock than
the normal strategic requirement. Here the nature of shocks and the penalty
interact to affect the decision of how much of the strategic stock to sell. If the
penalty for illegal selling is very large the firm will never sell too much to be in
a position of violating the constraint two periods ahead, by an inability to build
the stock back up.
The sale or purchase of gas each period determines the evolution of inventory.

This is given by

St+1 = min

⎧⎨⎩ S̄

max

½
St − xt
0

where 0 ≤ (St+1, St) ≤ S̄, and x takes values in the interval [−x̄, x̄]. This bound
on flows is not necessarily symmetric around zero.
We are now ready to write the dynamic programming problem in terms of

the Bellman equation:

V (Pt, St) = max
xt
{πt + βEtV (Pt+1, St+1)}

where Et denotes the expectation operator given time t information and β is
the discount factor.
The firm chooses xt to maximize the value of entering the period with a

given stock St and facing a price realization Pt. The decision xt is taken after
observing Pt and knowing all parameter values and the stochastic process for
prices, but not knowing future price realizations. This is a well behaved problem.
It is a bounded problem with both x and S bounded above and below. Profits
are continuous in x and S. Therefore there is an optimum and it is unique.
The model ignores financial hedging. This is not a large limitation since

futures contracts are effective against short term price variability. If agents
contract in the summer period for deliveries in winter, they effectively trade
away short term future variability, but cannot trade seasonal variability. These
contracts are therefore written on the conditional expectation of market con-
ditions, which is the low frequency seasonal variability behind large capacity
storage. We consider the model as representing the economics of storage over
and above hedging.9

3.1 The stochastic process for prices.

The price process is modelled as a Markov process with three components:
temporary shocks, catastrophe shocks, and seasonality.
Seasonality is modelled as a deterministic change in the average price from

month to month. Prices are low in summer months and high in winter months.
We specify a given value for the seasonal price in each month and the tran-
sition from month to month (and average price to average price) occurs with

9Hedging may be important in our context of large disruptions. The insurance market
does trade in catastrophe bonds.
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probability one. Specifically, this process has a 12 × 12 transition matrix with
ones in the non main first diagonal, a one in the bottom left corner, and zeros
elsewhere: the element ai,i+1 = 1, i = 1 : 11, on row (i) and column (i+1) is
the probability of going from month (i) this period to month (i+1) next period.
The bottom left element, a12,1 = 1, is the probability of going from state twelve
(December) this period, to state one (January) next period.
The temporary process is a discretization of a first order autoregressive

process included to generate small price variations each period. This process
has an unconditional mean of one and multiplies the seasonal price such that
observed prices are realizations around the seasonal average. For a variety of
reasons storage operators may not hedge their entire gas stock with futures
contracts, implying they are subject to some short run price variability. By
changing the standard deviation of this shock we can proxy for the degree of
hedging the storage facility is able and/or willing to obtain.
The final component of the price process is a catastrophe shock. In this

paper this consists of the very small probability of a very large increase in price
(relative to the normal seasonal average).

3.2 Discussion

The optimal decision has a simple "bang-bang" benchmark: buy as much as
possible when prices are low until storage is full, then wait inactive (if necessary)
until prices rise enough to sell, and then sell as much as possible until storage is
empty. After that, wait again until prices fall enough to buy. Actual behavior
will deviate from this pattern for two reasons.
First, in case the price process is not monotonic. If there are short periods of

high prices during the buying season, the optimal decision is to sell in those short
periods. With a daily frequency in the model we would be able to replicate the
data almost exactly. Daily data would then aggregate into a smooth monthly
cycle. Solving the model with a monthly frequency implies any non monotonicity
will deliver an entire month of selling during the buying season or vice versa,
which clearly we do not see. Nevertheless, a weekly calibration of this model
aggregates into a reasonable monthly pattern, suggesting the model can indeed
be used for its purpose of policy evaluation.
Second, deviations from this pattern can occur for precautionary reasons.

Here the catastrophe shock is important. Perhaps counter intuitively, a shock
during the high winter months (November, December, January, February) has
little or no effect on optimal behavior, and that shock is not what should worry
policy makers. The reason is that storage is typically full at the end of October
and then withdrawal starts. The problem is not whether we will freeze in the
winter, because storage is usually full in those months. The problem is the
occurrence of a large shock in late March or April when stocks are at their lowest.
Unless we have the possibility that prices in March will be, for example, ten
times higher than very high prices in January, withdrawal will take place at full
capacity during the winter months, since that is when prices are normally high.
Still the model has scope for a change in behavior because prices are observed at
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the beginning of the period, and then withdrawal (selling) decisions are taken.
If there is no price spike in November, perhaps a full capacity withdrawal will
not be optimal. But if the probability of a large disruption is very small (as is
the spirit of these disaster scenarios) it is unlikely that optimal behavior will
change significantly.
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4 Calibration
Before we use the model we need to define values for its parameters.10 Our
discount rate implies a required rate of return on investment which we set at
10%. This is relatively high but we assume higher returns are required for
investments with very large fixed costs such as gas storage sites. The monthly
discount factor is β = 0.901/12. The cost function parameters (Mn,Mp) are
arbitrarily large and so are easy to implement. The parameters (k0, k1) are also
unclear from the data. We do not know how much the legal process from a
March 2006 illegal gas sale is costing the storage companies in Italy, so we set
(k0, k1) high enough so that the constraint is never violated.
The total storage capacity is the numeraire parameter, S̄ = 1. The strategic

storage lower bound is a constant λ = 0.378 for Italy. The maximum gas stock
over the STOGIT sample is 529.2 million gigajules, recorded on in October 10,
2006. Of these, 200 million are permanent strategic stock. The lower bound
for Denmark is given by a function of the cycle, λ (n). The Danish government
has a security of supply goal of 60 days because this is an estimate of how long
it would take to repair a major failure in the underwater pipeline coming from
Norway.11 This is a time varying strategic stock requirement, as 60 days of
summer consumption differ from 60 days of winter consumption. It is not clear
that 60 days is optimal in any way, as private agents may have efficient ways of
dealing with scarcity which will be undiscovered if supply is secured at all costs.
Using the OECD data we compute the maximum stock level over the entire

sample and compare it to the realized consumption of the current and following
month. Then we average these for each month over the years in the sample.
We also compute this function λ (n) for Italy to compare this policy variant to
the status quo. One other experiment is to consider only a restriction of the 30
day-ahead consumption, rather than 60 days.
Table 1 has the measure of how the 60-day ahead consumption compares

with the maximum stock (capacity).12

Table 1: Seasonal Strategic Constraint (60 days)
J F M A M J J A S O N D

DK 0.53 0.51 0.45 0.35 0.28 0.22 0.22 0.25 0.31 0.40 0.46 0.51
IT 0.99 0.89 0.72 0.55 0.49 0.50 0.46 0.46 0.56 0.69 0.87 0.99

The (deservedly) much vaunted Italian system cannot cope with this policy
10Any fixed payment per period from the policy maker is indistinguishable from a fixed

operating cost and we set it all to zero.
11From the website of ENERGINET: "The two storage facilities are dimensioned and placed

such that they can supply the firm gas market with natural gas for a period of approximately
60 days which is the estimated time required to repair the gas pipelines in the North Sea."
12This takes the data on consumption for the current plus next month, and divides it by

the max over the series of the "opening stock level". For DK it uses data from January 2003
to December 2006. The 2002 and 2007 seems to be less reliable and affects this computation
more than others. For consistency the same period was used in Italian data. Each monthly
value in the table is then the average over four years ( four values) of the same month.
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measure, much less a 90 days constraint being vented in the European Union. At
the start of January, 99% of Italy’s total storage capacity would not be allowed
to be used as prevention for the catastrophe shock. This does not leave much
gas to handle the seasonal cycle.
We now need to define injection and withdrawal capacities. For this purpose

we use the daily storage data from STOGIT, DONG and Energinet. Everything
is measured relative to total capacity. The maximum level of the stock recorded
in the Italian data is of 329.2 MGJ, and the minimum is -45.07, recorded in
March 17, 2006. Negative values are recorded when stocks fall below the max-
imum volume of strategic storage which is 200 MGJ. Therefore, while some of
the strategic stock was sold, it was by no means the entire amount.
Injection and withdrawal flows are not symmetric. This is true of the 1461

days of observation from STOGIT: 919 days (or 63% of observations) have
positive flows (injections), 6 days have a zero flow, and 536 (or 37%) have a
negative flow (withdrawal). To have an idea of what this implies in terms of
capacity, we take the daily data on net flows and compute the moving sum of
the past 30 days of flows. This is not a calendar month total net flow, but a daily
measure of the flows in the preceding 30 days, and we have 1432 observations
of these sums for Italy, while we have only 48 months in STOGIT data. We
then compute the maximum and the minimum of these moving sums. This
maximum and minimum are then divided by the maximum daily stock over the
entire sample (529.2 in the case of Italy). This maximum stock attained over
the sample is a proxy for maximum capacity which in the model is normalized
to one. We use the same procedure on the Danish data. The ratios we compute
then give us a measure of maximum injection and withdrawal capacity in a given
month as a fraction of total storage capacity.13

Table 2: Injection and Withdrawal Constraints
x̄ Injection Withdraw

DK 0.3694 0.2426
IT 0.1687 0.2199

It seems to be harder to inject than to withdraw in Italy, but the reverse
in Denmark. In fact daily Italian injection capacity is listed as being of 5.122
MGJ per day while withdrawal capacity is listed as being slightly higher at 5.910
MGJ per day. These numbers suggest higher withdrawal and injection than
what we observe.14 One reason we observe less than full capacity injection and
withdrawal when we look at monthly data is the time aggregation of short run

13 If we multiply these numbers by 7/30 we obtain the equivalent values for weekly frequen-
cies. We use a weekly calibration to see if it improves the fit of the model. It does. However,
the fit of the model in the monthly experiments presented below was quite reasonable and so
we report only this frequency. The weekly calibration is quite time consuming in the computer.
14Multiplying by 30 these numbers imply a total injection capacity of 153, and withdrawal

capacity of 177 per month but we never see such numbers in monthly data. On the other hand,
in daily data the biggest observed injection day is of 6.58 MGJ and the biggest withdrawal is
of -6.38, higher than the listed capacity limit.
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arbitrage which sees injection days during withdrawal months and vice versa.
In the end, due to the numerical difficulty of working with daily frequencies, we
impose a capacity limit based on what is observed.

4.1 Calibration of the Stochastic Process

The model is a filter that takes exogenous stochastic prices and generates en-
dogenous behavior for quantities (stocks and flows). Our aim is to replicate the
behavior of stocks and flows. The price process has three components, seasonal,
catastrophic, and short run shocks:

Pt = PS
t P

C
t P s

t

Short run variations, P s
t , are modelled as a log normal process P

s
t =

exp {zt} , with zt = ρzt−1 + ut and ut ∼ N(0, σ).
This shock process depends on the frequency used in the model. Using the

gas flows series from the OECD data up to December 2007 we get six cycles. We
run an OLS regression of the 72 observations of monthly gas flows (normalized
by their max) against a constant, a trend, and eleven monthly dummies. For
Italy the R squared is 0.85, the F test for the seasonal dummies is 29, and
the residual is relatively small and flat. Nevertheless it has a significant first
order serial correlation (ρ) of 0.40. The standard deviation (σ) of this residual is
0.1645. For Denmark this regression procedure yields an R squared of 0.79, an F
test of 20, a residual standard deviation of 0.20 and a residual serial correlation
of 0.11.

Table 3: Short run shock process
zt ρ σ

Month Month

DK 0.11 0.20
IT 0.40 0.16

The seasonal process, PS
t , has the transition matrix detailed above. We

now need to define its support. Our seasonal price is normalized to reach a
maximum of 1 but we need to know how this unconditional expectation evolves
over the year.
We saw earlier that competitive prices behave over the cycle in a way similar

to quantities. We use this fact to justify taking the actual behavior of quantities
to compute the seasonal cycle for the price to be fed to the model. We also
want prices to fluctuate within the boundaries of the NBP price. Therefore we
use a simple process of normalization for annual average cycles using monthly
aggregates. Denote the raw series of monthly net gas storage flows by

©
z0t
ª
. This

can take positive as well as negative values. Construct z1t = z0t + abs(min(z0t )).
The resulting series

©
z1t
ª
, is now bounded below by zero. Then construct z2t =

z1t +max(z
1
t ), and finally z3t = z2t /max(z

2
t ). The final series

©
z3t
ª
, is bounded
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below by 0.5 and above by 1. This is similar in behavior to the NBP price but
also to consumption flows. This series is then fed to the model as the seasonal
average cycle of the price.
One problem is that the data may include exceptional circumstances, and

so we are not aggregating the "normal" cycle. But if we look only at Italian
gas consumption in 2002-2004, which did not have extractions from the strate-
gic stock, this is indistinguishable from the 2002-2006 period, which did. The
"exceptional" events of 2005 and 2006 have no expression in final consumption,
so using the data should not be a problem.

The catastrophe shock is the most wide open of the three processes. The
sale of strategic stock which occurred in 2006 in Italy only required a small
inversion in the relative price of electricity between Italian prices and European
exchange prices to take effect. The agents selling gas took a light view of the
3.5 euro penalty per GJ "illegaly" sold. The opposite case was an accident at
the Rough facility in the UK on March 16, 2006 which closed it for the rest of
the year. NBP gas prices spiked immediately, but even so this episode - which
constitutes a legitimate shock - was not too severe due to an average winter and
to the existence of alternative supplies from the continent.15

If we compute ratios of winter to summer spot prices, they vary signifi-
cantly across markets where such prices are available, but a value above 2 is
unusual. However a ratio around 2 is not what worries EU policy makers.
They worry more about politically motivated disruptions or severe damage to
pipelines which are harder (if not impossible) to predict. Accordingly they de-
fine security of supply as a minimum amount in storage able to service demand
for a given period of time.16 The European Council Directive 2004/67/EC of 26
April 2004 — “concerning measures to safeguard security of natural gas supply”
— is in fact not totally clear about what security of supply means. It is worried
about a “major supply disruption” which it defines as:

“a situation where the Community would risk losing more than 20
% of its gas supply from third countries and the situation at Com-
munity level is not likely to be adequately managed with national
measures”.

The expression “would risk” makes it an appropriately vague definition. The
absence of an exact quantification - losing the supply for how long? - further
increases its vagueness. Without a clear indicator of what a large disruption is,
we set as a benchmark an event that doubles the winter maximum price from
1 to 2 (which implies the winter price would be 4 times the summer price).
Finally, we must define the likelihood of such an event. Since the higher its

probability, the less it can be defined as unusual - and frequent disruptions are
likely to be well internalized by commercial operators - we set the probability
of this disruption to a benchmark of once every five years (59/60) at monthly
frequencies. The shock is iid.

15Winter 2007 sees a low NBP price due to the introduction of new pipelines from Norway.
16Curiously, prices are absent from this definition.
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5 Simulations of Policy Impact
We are now ready to examine the behavior of the model with and without the
k(S) constraint. We look at both the Italian and Danish cases. The model is
simulated at monthly frequency. The artificial sample is of 1200 periods, which
is 100 years. In every experiment (every row) the same exact realization of
shocks is used.

Table 4: Policy Experiments
λ q p̄ V0 V1 (V1 − V0) /V 0 n

IT 0.378 59/60 2 3.545 2.966 -0.163 26
IT 0.378 95/96 2 3.475 2.879 -0.171 17
IT 0.378 59/60 1 3.349 — — 26
IT 0.378 59/60 3 3.805 3.237 -0.149 26
IT 0.189 59/60 2 3.544 3.355 -0.053 26

DK λ (n) 59/60 2 4.963 3.970 -0.200 26
DK λ (n) 95/96 2 4.873 3.861 -0.208 17
DK λ (n) 59/60 1 4.725 — — 26
DK λ (n) 59/60 3 5.267 4.330 -0.178 26
DK λ (n) /2 59/60 2 4.964 4.583 -0.077 26

The first column describes the policy being evaluated. The second column
of Table 4 shows the iid probability of a catastrophe shock each month, (q).
We look at two values, 59/60, which is once every five years, and 95/96, or
once every eight years. The third column shows the value of the catastrophe
price. Columns 4 and 5 show the value of the firm, first with k(S) = 0, then
with an active penalty/policy. Column 6 shows the cost of this policy in terms
of the value of the firm. Column 7 shows the number of catastrophes actually
occurring in the artificial sample.
Column five deserves special attention because V1 is the "factual" value when

policy is active. This value is of course conditional on our scenario assumptions
for prices and probabilities of a catastrophe, which, for example, in the first row
are that p̄ = 2 and q = 59/60.
We computed also the pure option value for the firm. This is calculated

by imposing the same time series of shocks on the model’s optimal decision,
but shutting down the realization of the catastrophe shocks. In all cases the
resulting value of the firm is about 0.25% different from what we show here.
This means that the impact of the catastrophe shock on the value of the firm
is essentially an option value. It is the fact that high prices may occur in the
distant future that creates value.
Figure 6 shows the fit of the model (constrained and unconstrained) for Italy,

shown in the first row of Table 4. The fit of the unconstrained model is relatively
worse as one would hope.

The first five rows of Table 4 examine Italy. The first row takes as
benchmark a shock frequency of one month every five years. This results in
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Figure 6: Model Fit, Italy
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a value loss from being constrained of 16% relative to the unconstrained case.
This is less than the value of λ and shows the initial impression from the back
of the envelope example used in the introduction is both wrong (because the
value loss is about half of λ) and right (because it is still a very large portion
of the value of the firm).
Changing the frequency of the shock from once every eight years (row two)

to once every five years (row one) has a negligible effect on the value of the firm,
again stressing that what really matters is the possibility of using the strategic
stock during normal times. In row 3 we compute the unconstrained value for a
world without catastrophes. This generates a value difference with respect to
the unconstrained value in row one of 5.5%. In row 4 we raise the catastrophe
price to 3 times the normal price and the value of the firm increases by about
7%. The value difference from the constraint is roughly the same. Row 5, on
the other hand, shows the impact of reducing the strategic stock requirement
by a half. This reduces the cost of regulation more than proportionately.

Rows six to ten examine Denmark. Here the value loss from the cycli-
cal constraint is around 20%, whereas in Italy it was around 16%. All other
qualitative results are replicated here. Figure 7 shows the model fit for Den-
mark, in the two simulations corresponding to row 6 in Table 4. Here the fit is
better when we actually shut down policy. We experimented with the quarterly
data calibration and the fit improves significantly for the "factual" constrained
benchmark.

Figure 7: Model Fit, Denmark
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Our final experiment, shown in table 5, is to transform Italy into Denmark.
We impose on Italy a cyclical constraint with the pattern of their 60 day-ahead
consumption, but normalized so that it is on average 0.378 of the stock.

Table 5: Italy with a cyclical constraint
λ q p̄ V0 V1 (V1 − V0) /V 0 n

IT 0.378 59/60 2 3.545 2.966 -0.163 25
IT λ (n) 59/60 2 3.546 2.813 -0.207 25

This alternative actually reduces the value of the firm because it increases the
strategic stock above 0.378 during the winter when prices are high, and reduces
the strategic stock during summer when prices are low. But this is actually worse
for the firm than the constant level of the constraint. The constant constraint
provides less insurance but gives the firm higher profits.

6 Conclusion
In this paper we construct a model of storage of natural gas that replicates the
behavior of stocks and flows in the Italian market. The model is then used to
evaluate the impact of strategic storage policy on the value of the firm. Our
experiments suggest the impact of strategic storage policy on the value of the
firm is very large. Our calibration for Italian and Danish data yields a cost of
regulation of around 16% and 20% of discounted net present value of profits for
the respective storage markets. Furthermore, imposing a danish-type cyclical
constraint on the Italian market that preserves the average size of the strategic
stock provides higher insurance but at a higher cost per unit insured, as more
gas is withheld in the winter when it is more valuable, and in turn more gas is
released in the summer when it is less valuable.
The percentage loss is not as sensitive to the catastrophe price as it is to

the size of the constraint (37.8% of stocks for Italy) or to the normal variation
of the price from summer to winter. The reason is that the biggest part of the
loss comes from the inability to exercise the seasonal arbitrage on a significant
fraction of the gas in stock.
Finally, the exogeneity of the price and the assumption of a fixed capacity

clearly condition the quantitative findings in this paper. Modelling the demand
for gas and including it in the model is not an impossible task and is a useful
extension to the present exercise. As for endogeneizing capacity, given that
investments in gas storage are long projects with very large fixed costs, it is
acceptable to assume a constant capacity in the medium run. Endogenizing
capacity is a more daunting task than modelling demand.
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