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Abstract

Should two issues be decided jointly by a single committee or in separately by different com-

mittees? Similarly, should two defendants be tried together in a joint trial or tried separately

in severed trials? Multiplicity of issues or defendants introduces novel strategic considerations.

As in the standard Condorcet Jury Theorem, we consider large committees with common val-

ues and incomplete information. Our main result is that the joint trial by a single committee

can aggregate information if and only if the severed trials by separate committees can aggre-

gate information. Specifically, suppose that either for the joint trial or for the severed trials

there exists an sequence of equilibria that implements the optimal outcome with probability

approaching one as the number of voters goes to infinity. Then a sequence of equilibria with

similar asymptotic efficiency exists for the other format. Thus, the advantage of either format

cannot hinge on pure information aggregation with many signals.

1 Introduction

In United States law, the decision to join multiple related counts or defendants in a single trial

before one jury or to sever these decisions into different trials before different juries. A large body

of legal scholarship studies the many rules and precedents that govern when joinder and severance.

Not just an academic topic, joinder and severance have important implications in practice for

particular agents in the courts:

A basic understanding of the law regarding joinder and severance is essential for any

lawyer practicing in the federal criminal courts. Whether a defendant is tried singly or

jointly with co-defendants can play a vital role in whether that defendant is convicted

or acquitted. Likewise, an acquittal may turn upon whether or not a defendant is tried

for one offense at a time or for multiple offenses jointly (Decker 1977–1978).
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For the court system in general, in Richardson v. Marsh (1987) the Supreme court points out

the frequent incidence of joint trials, and argues for their potential efficiency and coordination

advantages.

Joint trials play a vital role in the criminal justice system, accounting for almost one-

third of federal criminal trials in the past five years. . . . It would impair both the

efficiency and the fairness of the criminal justice system to require, in all these cases

of joint crimes where incriminating statements exist, that prosecutors bring separate

proceedings, presenting the same evidence again and again, . . . Joint trials generally

serve the interests of justice by avoiding inconsistent verdicts and enabling more ac-

curate assessment of relative culpability – advantages which sometimes operate to the

defendant’s benefit. Even apart from these tactical considerations, joint trials generally

serve the interests of justice by avoiding the scandal and inequity of inconsistent verdicts

(Richardson v. Marsh 1987, 209–210).

In this paper, we scrutinize the Court’s argument that joinder “generally serves the interests

of justice.” In particular, we examine how joinder or severance aggregates private information in

the standard environment of the Condorcet Jury Theorem, where information is independently

distributed and the size of juries becomes large. A large literature on the Jury Theorem studies

when large juries can aggregate information to reach the optimal outcome. These insights are

limited to settings with a single issue or defendant. This paper takes first steps in developing our

theoretical knowledge of joint versus severed trials or committees in environments with common

values. Our main result is that joinder will aggregate information if and only if severance will

aggregate information. That is, under the classic assumptions of the Condorcet Jury Theorem,

neither format enjoys an informational advantage over the other.1

The equivalence of the two formats with common values contrasts with earlier findings for

private-value environments. In a prior paper, we studied private-value elections for multiple is-

sues and found joint elections can be sharply worse than separate elections. For example, the

simultaneous election of two issues can fail to enact an overwhelming Condorcet winner (Ahn and

Oliveros 2012, Example 1). The inefficiency is related to the wedge between the unconditional belief

that the second issue will pass and the conditional belief that it will pass when a voter is pivotal for

the first election. Holding a separate election for each issue eliminates this wedge and provides a

potential solution. In fact, with private values it is straightforward to show that separate elections

always yield limit equilibria that implement the Condorcet winner.

In contrast, this paper proves that with common values the performance of joint and severed

elections converge. Specifically, information aggregates in the joint trial if and only if information

aggregates in the severed trials. This undercuts information aggregation, at least in the standard

environment of the Condorcet Jury Theorem, as an argument for superiority of either format. The

design of joint or separate elections has important implications for the aggregation of preferences

1For finite committees, the relationship is ambiguous. Examples at the end of the paper show that joinder can
strictly outperform severance, and vice versa.
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but not for the aggregation of information. While the current paper and our prior work introduce

this contrast, they are limited to extreme environments of purely common or purely private values.

The disparity between pure private and common value environments suggests the importance of

further work to understand more realistic settings with mixed values where payoffs have both

private and common components.

Our findings also relate to work on strategic models of judgement aggregation, which constitute a

prominent class of common-value environments. A recent literature studies judgement aggregation

from an axiomatic perspective, see a recent symposium introduced by List and Polak (2010). Some

papers consider judgment aggregation with strategic agents. For example, de Clippel and Eliaz

(2012) compare strategic equilibria across a setting where voters decide premises and a setting

where voters decide the implied conclusions of these premises directly. Bozbay, Dietrich, and Peters

(2011) and Bozbay (2012) consider optimal voting rules for judgment aggregation from a mechanism

design perspective. While not part of our original motivation, one interpretation of our main result

for judgment aggregation is that having different committees deciding separate logical premises is

asymptotically equivalent to having a single committee decide all premises simultaneously.

The rest of the paper proceeds as follows. Section 2 introduces the voting model and the two

election formats. Section 3 presents examples that illustrate the different strategic considerations

in the joint trial and the severed trials. As with a single issue, conditioning on being pivotal for

the outcome is essential to equilibrium behavior. As observed by Austen-Smith and Banks (1996),

being pivotal often eliminates the strategic incentive to vote sincerely. But deciding multiple issues

introduces additional complications, which depend on whether the issues are joined or severed. In

some situations, voting sincerely based on one’s private signal is efficient and an equilibrium for the

joint trial, but fails to be an equilibrium for the severed trials. In other situations, sincere voting

is efficient and an equilibrium for the severed trials, but not for the joint trial.

The examples illustrate the strategic subtlety of voting over multiple issues. Nonetheless, Sec-

tion 4 establishes an equivalence between weak information aggregation in a joint trial and in

severed trials. Specifically, suppose that there exists a sequence of equilibria for one format such

that the probability of correct verdicts goes to one as the number of voters goes to infinity. Then

there exists an analogous asymptotically efficient sequence of equilibria for the other format.

2 Model

There is a set X = {1, 2} of two up-down issues to be decided, for example, the passage of two

referendums or the guilt of two defendants. The set of possible outcomes is the power set of

bundles: X = {{1, 2}, {1}, {2}, ∅}. In the referendums setting, each bundle corresponds to the

set of approved initiatives. In the jury setting, each bundle corresponds to the set of convicted

defendants.

Let Ω denote a finite set of states of the world. The prior probability of state ω ∈ Ω is denoted

P (ω). Let U(A|ω) denoted the common utility for all voters for outcome A when the state of the
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world is ω. Assume a unique best outcome Aω ∈ X maximizes U(A|ω) for each state of the world.

We normalize utilities so U(Aω|A) = 1. For any set A ∈ X , let A1 = A ∩ {1} and A2 = A ∩ {2}
denote the projections onto the first and second issues.

The finite set S is a set of possible signals.2 The conditional probability of signal s ∈ S given ω

is denoted F (s|ω). Given the state of the world ω, each voter receives a conditionally independent

signal from the distribution F (·|ω). The conditional product distribution of the signal profile

s = (s1, . . . , sI) is denoted F (s|ω).

We consider two voting games. The first is a joint election on both issues, where a single

committee of I voters decides both issues using q-majority rule. The set of possible ballots for each

voter is X = {{1, 2}, {1}, {2}, ∅}, where submitting ballot A means voting for every issue in A and

voting against every issue outside A. If more than qI of the voters support an issue, that issue

passes. The final outcome is the set of issues that are supported by more than q fraction of the

voters. Formally, the aggregation rule F(A1, . . . , AI) is defined by

F(A1, . . . , AI) = {x : #{i : x ∈ Ai} ≥ qI}.

A strategy for juror i is a function σi : S → ∆X that assigns a distribution over ballots σi(s) to

each signal s. When σi(s) is a degenerate point mass on the ballot A, we slightly abuse notation

and write σi(s) = A. A profile (σ1, . . . , σI) of strategies is symmetric if σi = σj for all i, j. When

referring to symmetric strategy profiles, we drop the subscript. The common expected utility for

the strategy profile σ(s) = σ1(s1), . . . , σI(sI) is

EU(σ) =
∑

Ω

∑
S

∑
X I

U (F(A1, . . . , AI) |ω) σ(s)F (s|ω)P (ω).

In the jury setting, this corresponds to a single trial for both defendants, where qI of the jurors

must find each defendant guilty to reach a guilty verdict for that defendant. We refer to this game

as a joint trial. We will study symmetric Nash equilibria of the joint trial.3 We consider the limit

of symmetric equilibria as the number of voters goes to infinity and let the subscript denote the size

of the electorate rather than a specific individual voter. We are interested in whether a sequence

of strategies (σI) will enact the optimal outcome Aω in large elections. In particular, we say that

the probability of error goes to zero if, for every ω,∑
S

∑
X I

U (F(A1, . . . , AI) |ω) σI(sI)F (sI |ω)→ U(Aω|ω),

as I goes to infinity. The probability of error goes to zero if and only if the probability of the

optimal outcome Aω goes to one for every state of the world.

2The assumption of finite signals is for expositional convenience and all results would hold with a continuum of
signals. We thank a referee for pointing this out.

3All symmetry assumptions are for expositional convenience. Suitable analogs of the results hold for possibly
asymmetric strategies.
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In the second game, a total of 2I voters are divided into two disjoint committees of I voters

that decide each issue separately using q-majority rule. Let the first 1, . . . , I voters constitute the

first committee and the last I + 1, . . . , 2I voters constitute the second committee. The voters in

the first committee can either vote up or down on the first issue X1 = {{1}, ∅} and the voters in

the second committee can vote up or down on the second issue X2 = {{2}, ∅}. The outcome of the

first committee is

F1(A1, . . . , AI) =

{1} if #{i : Ai = {1}} ≥ qI

∅ otherwise
.

The outcome of the second committee F2(AI+1, . . . , A2I) is defined analogously. The outcome of

the game is F1(A1, . . . , AI)∪F2(AI+1, . . . , A2I). A strategy for a member i of the first committee

is a function σ1
i : S → ∆{{1}, ∅} and for a member j of the second committee is a function

σ2
j : S → ∆{{2}, ∅}. A profile of strategies is semi-symmetric if σi = σi′ for all voters i, i′ in the

first committee and σj = σj′ for all voters j, j′ in the second committee. The common expected

utility for the strategy profile (σ1(s),σ2(s)) = (σ1
1(s1), . . . , σ1

I (sI), σ2
I+1(sI+1), . . . , σ2

2I(s2I)) is

EU(σ1,σ2) =
∑

Ω

∑
S

∑
[X 1]I×[X 2]I

U
(
F1(A1

1, . . . , A
1
I) ∪ F2(A2

I+1, . . . , A
2
2I) |ω

)
σ(s)F (s|ω)P (ω).

In the jury setting, this corresponds to having a separate trial for each defendants. We refer to this

game as severed trials. We will study semi-symmetric Nash equilibria of the severed trials. For a

sequence of semi-symmetric strategies (σ1
I , σ

2
I ), we say the the probability of error goes to zero if,

for all ω:∑
S

∑
[X 1]I×[X 2]I

U
(
F1(A1

1, . . . , A
1
I) ∪ F2(A2

I+1, . . . , A
2
2I) |ω

)
σ(s)F (s|ω) → U(Aω|ω),

as I goes to infinity. As in the joint trial, the probability of error goes to zero if and only if the

probability of both trials reflecting the optimal outcome Aω goes to one.

3 Examples

The following examples illustrate some of the strategic subtleties in deciding multiple issues with

common values. In all the examples, sincere voting is informative and asymptotically efficient.

However, sincere voting is incentive compatible in either the joint trial or the severed trials, but

not incentive compatible in the other format. Note that we do not mean to suggest that sincere

voting is interesting per se, but rather to use sincere voting as a sharp illustration of the distinct

strategic considerations in joined and severed trials.

With a single issue, being pivotal for the outcome provides additional information regarding

the state of the world. This conditioning often precludes sincere or informative voting from being

an equilibrium (Austen-Smith and Banks 1996). Since incentive compatibility is maintained in one

5



format but not the other, the strategic reasoning in the following examples is necessarily distinct

from the standard story. In the first example, sincere voting is not an equilibrium in the joint

trial because each voter can deviate on both issues simultaneously. This deviation is precluded by

severing the trials, where sincere voting is an equilibrium. In the second example, sincere voting is

an equilibrium in the joint trial but fails to be an equilibrium in the severed trials. There, the joint

trial allows voters to coordinate across issues, while this coordination is not possible in the severed

trials.

In the first example, two defendants are accused of the same crime and exactly one is guilty.

The sincere strategy profile is efficient and incentive compatible in the severed trials. However,

it is not an equilibrium in the joint trial. This is because the space of deviations is larger in the

joint trial: when she is pivotal for either defendant, any juror is better off finding both defendants

innocent, an option that is not available to her in the severed trials.

Example 1 (Too many actions in joint trial). Let q = 1
2 . Suppose Ω = {{1}, {2}} and P (ω) = 1

2

for every ω.

U(A|ω) =


1 if A = ω

2
3 if A = ∅, {1, 2}

0 if A = {1, 2} \ ω

.

Exactly one of the defendants is guilty. Jurors are risk averse in the number of correct verdicts:

the marginal utility for deciding at least one of the verdict correctly (which can be guaranteed by

finding both innocent) rather than none of them correctly, U(∅|ω)−U(ω{|ω) = 2
3 , is greater than the

marginal utility for deciding both rather than only one of the verdicts correctly, U(ω|ω)−U(∅|ω) =
1
3 .

Each juror gets a correct signal with three-fifths probability. Let S = Ω and

F (s|ω) =

3
5 if s = ω

2
5 if s 6= ω

First consider severed trials. The sincere strategy profile σ1(s) = s ∩ {1} and σ2(s) = s ∩ {2}
aggregates information and is also incentive compatible. To see this, consider a juror in the first

trial who assumes she is pivotal for the first defendant and whose private signal indicates that the

first defendant is guilty. When she is pivotal for the first trial, the other jurors’ signals for the first

trial cancel each other, so her posterior is based on her private signal, namely that the probability

of the state ω = {1} is 3
5 .There are two cases to consider for the second trial. In the first case, the

second jury decides the second verdict correctly. Then, conditional on being pivotal, her expected

utility after seeing the signal s = {1} of convicting the first defendant is 3
5 × 1 + 2

5 ×
2
3 . On the

other hand, her expected utility after seeing the signal {1} of acquitting is 2
5 × 1 + 3

5 ×
2
3 . The

first quantity is larger. Similarly, in the second case where the second jury incorrectly decides the

second verdict, the pivotal juror is better off following her signal. Since voting sincerely is better
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in either case, she should certainly do so.

Now consider the joint trial. The sincere strategy σ(s) = s again aggregates information, but is

not incentive compatible. To see this, suppose a juror’s private signal indicates the first defendant

is guilty. Now suppose she is pivotal for some issue. Then half of the other voters submitted the

ballot {1} and the other half submitted the ballot {2}, so she is pivotal for both issues. Moreover,

the other voters’ signals cancel themselves and her posterior based on her private signal {1} is that

the probability ω = (1, 0) is 3
5 . Then voting to convict the first defendant alone, i.e. submitting the

ballot {1}, provides an expected utility of 3
5U({1}|{1}) + 2

5U({1}|{2}) = 3
5 . On the other hand,

voting to acquit both defendants, i.e., submitting the ballot ∅, provides a strictly greater (sure)

expected utility of 2
3 . So the suggested strategy is not incentive compatible.

In the second example, sincere voting is efficient and incentive compatible in the joint trial,

but fails to be incentive compatible in the severed trials. In this environment, the two issues are

substitutes: it is best to pass one issue or the other, but it is very bad to pass both issues together.

The joint trial provides a way for voters to coordinate their votes, but this coordination is broken

when the trials are severed.

Example 2 (No coordination in severed trials). Suppose Ω = {{1}, {2}} and S = {{1}, {2}}. Let

U(A|ω) =



1 if A = ω

3
4 if A1 6= ω1 and A2 6= ω2

1
2 if A = ∅

0 if A = {1, 2}

Suppose

F (s|ω) =

3
5 if s = ω

2
5 if s 6= ω

For example, suppose that a state that faces excess traffic can either build a new highway or a new

high speed railway. One of the options is better than the other. Conditional on the state of the

world, the best outcome is to build the better option, but even the inferior option is better than

doing nothing at all. However, the worst possible outcome would be spending the money to build

both the highway and the railway.

The sincere strategy profile σ∗(s) = s is an equilibrium of a joint election, and takes the

probability of an error to zero. To see that it is an equilibrium, consider a voter who sees the signal

{1}. If she is pivotal for either issue, then she is pivotal for both issues. Moreover, the other voters’

signals have canceled and her posterior puts probability 3
5 that the state is {1}. Then her expected

utility for submitting the ballot {1} is

3

5
U({1}|{1}) +

2

5
U({1}|{2}) =

3

5
× 1 +

2

5
× 3

4
.
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Her expected utility for submitting the ballot {2} is

3

5
U({2}|{1}) +

2

5
U({2}|{1})) =

3

5
× 3

4
+

2

5
× 1.

This is strictly worse than submitting {1}. Finally, when she is pivotal, her (sure) expected utility

for submitting the ballot {1, 2} is 0, and her (sure) expected utility for submitting the ballot ∅ is
1
2 . These are both worse as well. So sincere voting is incentive compatible in the single election.

However, the associated strategy profile σ1(s) = [σ∗(s)]1 and σ2(s) = [σ∗(s)]2 is not an equi-

librium if the issues are decided separately by disjoint committees. To see this, consider a voter

i in the first committee and observes the signal si = {1}. When she is pivotal, the other voters’

signals cancel each other and her posterior probability is simply based on her private signal. So,

the posterior probability of ω = {1} is 3
5 . With probability approaching one, if ω = {1}, then the

second committee playing strategy σ2 will vote against the railway, while if ω = {2} it will support

the railway. So, for sufficiently large I, her expected utility for voting for the highway can be made

arbitrarily close to
3

5
U({1}|{1}) +

2

5
U({1, 2}|{2}) =

3

5
.

Her expected utility for voting against the highway can be made arbitrarily close to

3

5
U(∅|{1}) +

2

5
U({2}|{2}) =

3

5
× 1

2
+

2

5
× 1 =

7

10
.

So, for a sufficiently large I, her best response to this strategy profile is to vote down on issue 1.

Hence, the associated strategy (σ1, σ2) in the split juries game is not an equilibrium.

4 Asymptotic equivalence

The examples in Section 3 suggest that the strategic considerations are different in joint and severed

trials. Nonetheless, we demonstrate that if there exists an efficient sequence of equilibria in either

format, then there exists an efficient sequence of equilibria in the other. Therefore, an argument

for the superiority of either format cannot hinge on information aggregation with many voters, but

must appeal to other considerations.

Proposition 1. There exists a sequence of symmetric equilibria (σ∗I ) in the joint trial such that the

probability of error goes to zero if and only if there exists a sequence of semi-symmetric equilibria

(σ1∗
I , σ

2∗
I ) in the severed trials such that the probability of error goes to zero .

Proposition 1 is a corollary of the following two lemmata. The first adapts an insight of McLen-

nan (1998) for common value elections: if any strategy profile aggregates information, then there

exists a Nash equilibrium that aggregates information.

Lemma 1 (McLennan 1998). The following are true:
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(i) If there exists a sequence of symmetric strategies (σI) in the joint trial such that the probability

of error goes to zero, then there exists a sequence of symmetric equilibria (σ∗I ) such that the

probability of error goes to zero.

(ii) If there exists a sequence of semi-symmetric strategies (σ1
I , σ

2
I ) in the severed trials such that

the probability of error goes to zero, then there exists a sequence of semi-symmetric equilibria

(σ1∗
I , σ

2∗
I ) such that the probability of error goes to zero.

Proof. We will prove the first claim, the proof of the second claim is nearly identical. Consider a

fixed I. A straightforward adaptation of the proof of Theorem 2 of McLennan (1998) demonstrates

that if σ̄I maximizes the common expected utility of the agents among all symmetric strategy

profiles, then it is a symmetric equilibrium. The common expected utility EU(σ1, . . . , σI) is a

continuous function on the compact space of symmetric strategy profiles, so the maximizing σ̄I

exists and is an equilibrium.

Now suppose some sequence (σI) take the error probability to zero, i.e. the common expected

utility goes to one. Then the sequence of equilibria (σ̄I) must also take the error probability to

zero. If it did not, then there would be a state of the world ω where the probability of an error is

strictly positive for arbitrarily large juries. Then the common expected utility of (σ̄I) strictly less

than the common expected utility achieved by (σI), which would contradict its optimality over all

symmetric strategy profiles.

The standard application of McLennan’s observation is to argue for efficiency within a fixed

voting institution: for example, McLennan (1998) shows that if sincere voting aggregates infor-

mation, then there exists some equilibrium that also aggregates information. In contrast, we use

McLennan’s observation to argue across institutions: we show that information aggregation under

one mechanism implies information aggregation under another mechanism. In particular, if (σI)

aggregates information in a joint trial, then the corresponding strategies in the separated trials

where each juror in trial x plays the marginal distribution of σ(s) for issue x also aggregates infor-

mation. Conversely, if (σ1
I , σ

2
I ) achieves full efficiency in the separated trials, then the strategies in

the joint trial defined by the product distribution of σ1
I and σ2

I also achieve full efficiency.

Lemma 2. There exists a sequence (σI) of symmetric strategies for the joint trial that takes the

probability of error to zero if and only if there exists a sequence (σ1
I , σ

2
I ) of semi-symmetric strategies

for severed trials that takes the probability of error to zero.

Proof. We first prove the “only if” direction. Suppose there exists a sequence (σI) of symmetric

strategies for the joint trial that takes the probability of error to zero. Now consider the following

semi-symmetric strategies for the split trials:

[σ1
I (s)]({1}) = [σI(s)]({1, 2}) + [σI(s)]({1})

[σ2
I (s)]({2}) = [σI(s)]({1, 2}) + [σI(s)]({2})

9



Without loss of generality, consider a state ω where the optimal outcome is Aω = {1, 2}. The vote

count on issue 1 in the joint trial when voters use strategy σI follows a binomial distribution of I

draws with a success probability equal to the probability of including issue 1 in the ballot:∑
s∈S

F (s|ω) ([σI(s)]({1, 2}) + [σI(s)]({1})) .

By construction, this is exactly the distribution of the vote count in the first trial when voters use

strategy σ1
I . By assumption, the probability that the vote count on the first issue is greater then

or equal to qI goes to one in the joint trial, so the probability that vote count in the first of the

severed trials is greater then or equal to qI also goes to one. Similarly, the probability the vote

count on the second issue is greater than or equal to qI also goes to one.

To prove the “if” direction, suppose there exists a sequence (σ1
I , σ

2
I ) of semi-symmetric strategies

for severed trials that takes the probability of error to zero. Consider the following symmetric

strategies for the unified trial:

[σI(s)](A) = [σ1
I (s)](A ∩ {1})× [σ2

I (s)](A ∩ {2}).4

Without loss of generality, consider a state ω where the optimal outcome is Aω = {1, 2}. Then the

conditional probability that both issues will pass in the severed trials goes to one. The vote count

in the first of the severed trials follows a binomial distribution defined by I draws with a success

probability of ∑
s∈S

F (s|ω)[σ1
I (s)]({1}).

The vote count on the first issue in the joint trial follows a binomial distribution with success

probability of ∑
s∈S

F (s|ω) {[σI(s)]({1, 2}) + [σI(s)]({1})}

=
∑
s∈S

F (s|ω)
{

[σ1
I (s)]({1})× [σ2

I (s)]({2}) + [σ1
I (s)]({1}) · [σ2

I (s)](∅)
}

=
∑
s∈S

F (s|ω)
{

[σ1
I (s)]({1})×

(
[σ2

I (s)]({2}) + [σ2
I (s)](∅)

)}
=
∑
s∈S

F (s|ω)[σ1
I (s)]({1}).

So, the probability that the vote count on the first issue in the joint trial will be greater than or

equal to qI hereditarily goes to one. Similarly, the probability the second issue passes in the joint

trial also goes to one.

One useful implication of Proposition 1 is that it translates sufficient conditions for information

4It is straightforward to verify that this is a well-defined mixed strategy.
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aggregation from the severed trials into the joint trial. Any existing sufficient condition for infor-

mation aggregation in the standard Condorcet Jury Theorem for a single defendant can therefore

be imposed for each issue to guarantee information aggregation in the joint trial. For example,

if the information structure can statistically distinguish whether the optimal outcome acquits or

convicts either defendant, then the optimal joint outcome can be attained at the limit.

The basic logic for establishing Proposition 1 is quite general. A simple extension of the argu-

ment shows that the same result holds with the possibility of abstention. Another extension shows

that, with three or more defendants, information aggregation under any segregation of defendants

into different trials, e.g., five defendants tried in one trial and three defendants tried in another,

implies information aggregation for all formats.

We should mention what Proposition 1 leaves open. It only maintains the equivalence of the

existence of an asymptotically efficient sequence of equilibria across formats. There could exist an

additional inefficient sequence of equilibria in one format, but with no analogous sequence in the

other format, leaving miscoordination as a potential disadvantage of one format. In cases where

information fails to aggregate, Proposition 1 provides no guidance regarding which environment is

superior.

Finally, the result leaves open the welfare comparison for finite juries, which is in fact am-

biguous.5 One case where the joint trial is superior assumes the parameters of Example 2 and

compares a joint trial with a single juror with severed trials, both decided by different jurors. The

welfare-maximizing strategy for the juror in the joint trial is to vote {1} if the signal is {1} and to

vote {2} if the signal is {2}, yielding an expected utility of 3
5 × 1 + 2

5 ×
3
4 = 9

10 . On the other hand,

in the severed trials, having each juror vote the projection of her signal yields an expected utility

of 3
5 ×

3
5 × 1 + 2

5 ×
3
5 ×

1
2 + 3

5 ×
2
5 × 0 + 2

5 ×
2
5 ×

3
4 = 3

5 .6 So, here the joint trial is superior to severed

trials.

On the other hand, the following example shows that sometimes the severed trials can improve

welfare. Let Ω = S = {{1, 2}, {1}, {2}, ∅}. Let F (ω|s) = 1
2 if ω = s and F (ω|s) = 1

6 if ω 6= s. Let

U(A|ω) = 1 if A1 = ω1 or A2 = ω2 and U(A|ω) = 0 otherwise, that is, the only way to not get full

utility is by getting both issues wrong.7 Then the maximal expected utility in the joint trial with

a single juror is 5
6 , since the probability of getting both issues wrong is getting the opposite signal

which happens with probability 1
6 . Now suppose each juror in severed trials votes the projection

of her signal on her issue. This will yield expected utility 8
9 , since the probability that each juror

will get a compatible signal on her issue is 1
2 + 1

6 = 2
3 , so the probability that both jurors get the

incompatible signal is 1
3 ×

1
3 = 1

9 .8

5We thank a referee whose comments led to the following examples.
6In contrast to the case with large juries, the probability of an error on the other issue is nontrivial when juries

are small. Ironically, in this example, the possibility of an error by the other jury promotes sincere voting because
missing both issues is better than getting only a single issue right.

7There is more than one optimal outcome Aω here, but assuming that getting exactly one issue correct provides
utility 0.99 will yield identical predictions.

8In both of these examples, the assumption that there is a single juror in each trial is only for convenience.
Analogous examples with several jurors in each trial can be constructed.
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