300 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 6, NO. 3, SEPTEMBER 2014

Preference Learning for Move Prediction and
Evaluation Function Approximation in Othello

Thomas Philip Runarsson, Senior Member, IEEE, and Simon M. Lucas, Senior Member, IEEE

Abstract—This paper investigates the use of preference learning
as an approach to move prediction and evaluation function ap-
proximation, using the game of Othello as a test domain. Using the
same sets of features, we compare our approach with least squares
temporal difference learning, direct classification, and with the
Bradley-Terry model, fitted using minorization—-maximization
(MM). The results show that the exact way in which preference
learning is applied is critical to achieving high performance. Best
results were obtained using a combination of board inversion and
pair-wise preference learning. This combination significantly out-
performed the others under test, both in terms of move prediction
accuracy, and in the level of play achieved when using the learned
evaluation function as a move selector during game play.

Index Terms— Computational and artificial intelligence, n-tuple,
preference learning, temporal difference learning, Othello.

I. INTRODUCTION

EVELOPING machine learning algorithms that can learn
to play games to a high standard in a largely unsupervised
manner has been a long-standing challenge for Al. More re-
cently Monte Carlo tree search (MCTS) has been enormously
successful on a number of challenging games, with Go being
the preeminent example [1]. MCTS is also the leading approach
in many other games such as Hex [2] and Havannah [3]. At
first glance, the success of MCTS might lead one to expect that
learning evaluation functions would become less important, but
this is not the case, since nearly all leading MCTS programs rely
heavily on knowledge to guide the search. In this case, the eval-
uation function may be used to bias the Monte Carlo rollouts.
Furthermore, for games such as Chess, minimax search with
alpha—beta pruning still produces stronger players than MCTS,
and the quality of minimax players is heavily dependent on the
evaluation function.
As the strength of the evaluation function increases, so the
amount of central processing unit (CPU)-hungry tree search to
achieve the same standard of play decreases. This is significant

Manuscript received December 05, 2012; revised May 02, 2013 and July 20,
2013, and September 18, 2013; accepted December 10, 2013. Date of publica-
tion March 11, 2014; date of current version September 11, 2014. This work was
supported in part by the Engineering and Physical Sciences Research Council
(EPSRC) under Grant EP/H048588/1.

T. P. Runarsson is with the School of Engineering and Natural Sciences, Uni-
versity of Iceland, Reykjavik 101, Iceland (e-mail: tpr@hi.is).

S. Lucas is with the School of Computer Science and Electronic Engineering,
University of Essex, Colchester CO4 3SQ, U.K. (e-mail: sml@essex.ac.uk).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCIAIG.2014.2307272

for strategy game apps for mobile devices, where the CPU can
place heavy demands on the battery when working at peak pro-
cessing power.
For these reasons, learning good value functions is an im-
portant and interesting problem to study. There are three main
approaches to learning evaluation functions:
» use temporal difference learning (TDL) to learn through
self-play (e.g., TD-Gammon [4]);

* use coevolution to evolve an evaluation function (e.g.,
Blondie-24 [5]);

* use some form of supervised learning to learn from a set of
game trajectories (e.g., Logistello [6]).

All of these methods have had some famous successes, as
indicated in the citations above, and also have some important
differences that make for interesting comparisons. TDL uses in-
formation available during game play in an attempt to solve a
credit assignment problem, whereas coevolution normally fo-
cuses only on the end result. Coevolution utilizes less of the
available information [7], but its focus on the end result can lead
to greater robustness than TDL.

Coevolution may learn slowly but eventually achieve higher
performance for simple value functions such as weighted piece
counters [8], [9]. When value functions with thousands of pa-
rameters are used, then the more directed search accomplished
by TDL seems preferable due to its better use of the available in-
formation [7]. A combination of TDL and coevolution can also
work well [10], [11].

In this paper, we investigate learning an evaluation function
for Othello. Othello is interesting for several reasons, including
the way that game states are highly volatile, and the way that
piece difference during the middle of the game is very deceptive,
with stronger positions often showing poor piece difference.

Value function learning for Othello was held as an IEEE
Congress on Evolutionary Computation (CEC) competition!
for several years. The aim of this competition, and of the
work in this paper, is to investigate machine learning in the
context of a challenging game. Note that the aim is not to
design world-class Othello playing programs, since much of
this activity involves the use of opening and endgame databases
together with high-performance tree search algorithms: focus
on this would detract from the machine learning aspects.

In the IEEE CEC Othello competitions, all evaluation func-
tions were played against each other using exactly the same tree
search algorithm: a simple 1-ply minimax, but forced random
moves were also introduced to ensure a varied set of outcomes.
For the game playing performance evaluation in this paper, we

Thttp://algoval.essex.ac.uk:8080/othello/htm1/Othello.html

1943-068X © 2014 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/
redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

RUNARSSON AND LUCAS: PREFERENCE LEARNING FOR MOVE PREDICTION AND EVALUATION FUNCTION APPROXIMATION IN Othello 301

use the same 1-ply search approach, but use a set of 1000 unique
opening positions instead of the forced random moves to ensure
a thorough evaluation of playing ability.

Clearly, imitating humanlike play is not necessarily optimal,
though it may create players that are more interesting to play
against. This would be especially true if it proved possible to
imitate particular famous players rather than humanlike play in
general. The techniques discussed in this paper are not limited
to game trajectories taken from human games, but could also
be computer generated, for example, using self-play and policy
iteration or MCTS.

An initial investigation by the authors illustrated that pref-
erence learning significantly outperforms TDL when imitating
game play [12]. The key insight is that making the correct choice
is what really matters, which is what preference learning focuses
on. This is in contrast to TDL, which attempts to learn the ex-
pected reward (in this case, the probability of winning) for each
game state.

Results presented in this paper explore the idea in greater
depth by analyzing the differences observed when using a more
sophisticated /V-tuple value function, and also when attempting
to learn the policy directly using classification [13]. We also
compare performance with the leading technique for move pre-
diction in Go, which involves using minorization—maximization
(MM) to fit a Bradley—Terry team model to the move selection
data, as explained below. As before [12], we use game trajecto-
ries taken from human competitions held by the French Othello
Federation? as a source of data. In addition to the inclusion of
N-tuple players and a wider range of algorithms for compar-
ison, this paper extends our previous work [12] by evaluating
the effects of board inversion as a method of preparing the board
for presentation to the evaluation function. Using this technique
in conjunction with preference learning, we were able to pro-
duce one of the strongest 1-ply Othello players known.

The rest of this paper is structured as follows. Section II re-
views the different approaches to learning evaluation functions.
This is followed by a section discussing the Othello game trajec-
tories used in this study, along with a description of the 1-tuple
and N -tuple features used. This section (see Section III-C) also
provides interesting insights into the various ways the move
prediction problem can be presented to the learner. This is fol-
lowed by a description and pseudocode of the least squares tem-
poral difference learning [LSTD(A)] algorithm in Section IV,
direct classification in Section V, and preference learning al-
gorithms employed in Section VI. The MM approach is ex-
plained in Section VII, results of the comparison are presented
in Section VIII, and Section IX concludes.

II. EVALUATION FUNCTION APPROXIMATION

The focus of this paper is on preference learning. Since this is
atype of supervised learning, we first describe a number of ways
in which supervised approaches have been used to learn evalu-
ation functions, either from game logs or from MCTS players,
then motivate our preference learning approach.

2www.ffothello.org

A. Regression

In the regression approach, a function is learned which out-
puts a real number indicating the favorability of a board position
for the maximizing player (and conversely the opposite of this
for the minimizing player). As mentioned above, this approach
was used successfully by Buro to estimate the weights for his
Logistello program [6]. When using regression, the problem
of how to label training examples arises. Buro’s pragmatic ap-
proach was to initially label each game position as a win or loss
in accordance with the outcome of the game. Game positions
were also expanded using game tree search and the values of the
positions were corrected when the terminal states were within
the tree.

The supervised learning method has also been explored in the
context of move prediction for Go, with much emphasis being
placed on the use of Bayesian methods to rank the likelihood
of each available move. Recent work on this includes the full
Bayesian ranking method of Stern et al. [14], and Coulom’s
approach [15] of using MM [16] to fit a Bradley—Terry model
to the move selection data.

A recent study by Wistuba et al. [17] using the same fea-
tures and game data for all methods under test, found Coulom’s
method to perform best, slightly outperforming full Bayesian
ranking and beating the other methods by a larger margin. Due
to the training algorithm used, Coulom’s approach will hence-
forth be referred to as the MM method and is described and
tested in this paper.

TDL can also be used to learn an evaluation function from
a set of game logs, where it is usually applied to minimize the
Bellman residuals [18]. The most effective approaches employ
LSTD(A) [19], [20]. Apart from A, the decay parameter, LSTD
has no control parameters and therefore eliminates the problem
of parameter choice leading to poor performance.

When using LSTD, the evaluation function will have a linear
form in feature space, though the features may be nonlinear
functions of the board state. An example of such nonlinear fea-
tures are the N -tuples [21] applied in this paper. Within the con-
straints of learning a linear function, LSTD aims to approximate
the expected future payoff.

B. Classification

Recently, it has been argued in [22] that minimizing Bellman
residuals is unnecessarily complex, since predicting precise fu-
ture payoffs is not necessary for making optimal moves. Fur-
thermore, they argue that, for the latter approach, the prediction
of single moves neither suggests alternative actions nor offers
any means for proper exploration [22]. In [23], it is argued that
policies may be easier to represent than value functions.

This has motivated a number of researchers to model the
policy directly as a classifier: instead of estimating the value of
each game state, states are partitioned into selected and nonse-
lected sets, i.e., they are given different class labels [13], [23],
[24]. These methods use Monte Carlo rollouts to estimate the
value of alternative moves at a given board position. Then, if a
move has a statistically greater value than all other moves, it is
added to a training set with a positive label, while the rest are
also added to the training set with a negative label [13]. Labeling
moves as selected versus nonselected will also be investigated

302 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 6, NO. 3, SEPTEMBER 2014

in this paper, a method we refer to as the direct classification ap-
proach. However, we derive the class labels from the game logs
and do not use Monte Carlo rollouts to filter these.

C. Preference Learning

The classification approach described above has recently
been put into a preference-based reinforcement learning frame-
work [25]. The classifier is essentially replaced by a label
ranker. Each possible move is ranked, where statistically equal
moves, according to the rollouts made, have the same rank.
Preference pairs can then be created between the different
ranks. This scheme also makes better use of the information
provided by the rollouts.

The classification and preference learning approaches essen-
tially approximate a utility function, which assigns a utility de-
gree to each move. The one with the highest degree corresponds
to the move chosen, or in the case of preference learning, the
highest ranked move. This function is different from the value
function of TDL, which represents the expected future payoffs
received, for example, the probability of winning a game.

Preference learning has created much attention recently in the
machine learning literature [26]. For games, the principles of
preference learning have been applied in tuning heuristic evalu-
ation functions in the work on maximizing concordance [27]. In
[28], preference learning was used to model entertainment pref-
erences of children when playing games. Pairwise preference
learning has also been used to predict affective states in a 3-D
prey/predator game [29].

In our application of preference learning, we are learning
from game logs, where the only information supplied is the
single move chosen for each state by the human player. Using an
Othello game engine, we can also generate all possible moves
available from that game state, and hence generate the nonse-
lected moves. Our preference learner is, therefore, limited to the
version called pairwise approximate policy iteration presented
in [25], though, in that work, each pair of vectors is given a pref-
erence label indicating which one is preferred.

When learning a linear function, one approach that is com-
monly adopted in preference learning, and one we adopt here,
is to form feature differentials, where the nonpreferred feature
vector is subtracted from the preferred feature vector. We call
this differential preference learning.

In a two-player game, such as Othello, both players may use
the same utility function. One player will choose moves that
maximize this function while the other chooses moves which
minimize it. In this case, one can label the feature differential
as positive for the maximizing player and negative for the min-
imizing player. This way of creating training data is quite dif-
ferent from that of the direct classification approach and will
result in a different evaluation function, even when the same
linear architecture is chosen.

An alternative to minimizing the utility function would be
to let each player learn its own separate utility function. A dis-
advantage of this approach is that it makes limited use of the
available information, since it has to learn the same things sep-
arately for each player. On the plus side it means that it can also
potentially learn subtle nuances, where black and white should

[S]

=
®

®
o0 o0
OO

a b c d e f e h

Fig. 1. Othello game in progress with seven possible legal moves for black
(dashed circles). Capturing corners is one key strategy in playing Othello, so
“al” is probably the best move.

genuinely follow different policies given very similar circum-
stances.

The direct classification methods are unable to use output
negation and must therefore use board inversion (or color re-
versal) in order to learn common policies for each player. In-
terestingly, the board inversion approach can also be applied in
conjunction with differential preference learning, and this ap-
proach leads to the best results of all methods under test. Details
of how each approach is applied are given in Section III-C.

III. OTHELLO GAME TRAJECTORIES

The game of Othello is played on an 8 x 8 board, with a
starting configuration of the middle four squares occupied by
two white and two black discs. Black plays first and the game
continues until the board is full (after 60 nonpassing turns), or
until neither player is able to move. Note that a player must
move if able to; passing only happens when a player has no legal
moves available.

Fig. 1 shows a game in progress and the seven feasible moves
for black. The best move is almost certainly “la” since once
a piece has been placed in a corner it can never be flipped,
and in this case would remain black for the duration of the
game. Each player’s objective is to maximize the number of
disks of their own color at the end of the game.3 Othello, like
many boardgames, fits the model of a two-player, turn-taking,
zero-sum game, where the utility values for each player at the
end of the game are equal in magnitude and opposite in sign.

The strongest Othello program is Logistello.# The eval-
uation function used by Logistello also has an essentially
linear architecture (but with a sigmoid squashing function at
the output) based on 1.5 million pattern-based features using
different evaluation functions at 13 different game stages,
gs = max(0, |#discs — 13)/4]). The training data used
by Logistello are based on some 80000 games generated by

3To win a single game, it is only necessary to have more disks than one’s
opponent, but winning margins can be important for player satisfaction and for
tournament tie breaks.

“http://skatgame.net/mburo/log.html

RUNARSSON AND LUCAS: PREFERENCE LEARNING FOR MOVE PREDICTION AND EVALUATION FUNCTION APPROXIMATION IN Othello 303

an earlier, less tuned version of the program playing against
another Othello program (Kitty). Toward the end of the game,
the positions are labeled perfectly since an endgame negamax
search is used. Values of middle and opening game positions
are approximations based on the game outcomes that followed
those positions.

Logistello then uses a gradient-descent algorithm to estimate
the model’s parameters. Logistello’s approach [30] corresponds
more closely to the supervised learning approach, or LSTD(1),
using linear regression to learn the value of positions labeled
with the final disc differential estimate. This approach yields
significantly better performance than Buro’s previous work [6]
where the positions were labeled by the probability of winning.
Clearly, labeling on the probability of winning or the outcome
of the game is a more general approach, and valid for all board
games.

In this work, Othello game logs taken from the French Othello
League are used to create game trajectories. A linear evaluation
function (linear in feature space) is then used to approximate
the expected outcome of the game in terms of a win or loss.
When choosing a move, a one-step-lookahead is performed. The
resulting board (afterstate or postdecision state) is evaluated and
the move with the best corresponding evaluation is chosen. Two
different sets of features applied by the linear function will now
be described, followed by discussion of data preparation.

A. Weighted Piece Counters as 1-Tuples

The traditional form of weighted piece counter (WPC) for
Othello is where an 8 x 8 board is unwound as a 64 element
vector ¢. Each element of ¢ is 0 for an empty square, +1 for
a black counter, and —1 for a white counter. This WPC has a
vector w of 64 weights, one for each square on the board. The
evaluation of a board is then calculated as the scalar product
wa. Black will then select the move resulting in a board with
the highest evaluation, while white would select the one with the
lowest evaluation. Alternatively, the white player could reverse
the colors on the board and maximize the evaluation function.

As an alternative form of a WPC, we give each square on the
board three weights, one each for whether the square is empty, is
occupied by black, or is occupied by white. We call the resulting
192-element feature vector ¢, and note that each element is bi-
nary valued. Having binary valued features is a requirement for
the MM algorithm (see below), so this form of WPC can be used
directly by all algorithms without further transformation.

Interestingly, we found that this slightly outperformed the
more traditional 64-weight WPC in its ability to predict expert
moves and had similar performance in head-to-head matches
given the training methods used in this paper. Given that we had
some strong 64-weight WPCs readily available from previous
research, these will be used to provide additional players for the
round-robin evaluation. We will, however, use the 192-weight
version for all the learning experiments in this paper. This type
of WPC can be implemented as a form of NV -tuple network (see
Section I11-B), where 64 1-tuples cover the board.

B. N-Tuples

N -tuple networks (also called N-tuple systems) date back
to the late 1950s with the optical character recognition work

of Bledsoe and Browning [31]. A more detailed treatment of
standard N -tuple systems can be found in [32].

An N -tuple network operates as an ensemble of simple clas-
sifiers. Each individual /N -tuple samples the input space at a set
of n points. The points may be chosen randomly or according
to some selected pattern or design. If each sample point has m
possible values, then the sample point can be interpreted as an
n digit number in base m, and used as an index into an array
of weights. This array indexing approach is of course very effi-
cient, and independent of the size of the array.

N -tuple networks work in a way similar to the kernel trick
used in support vector machines (SVMs), are related to Kan-
erva’s sparse distributed memory model, and are also closely re-
lated to random forests [33]. The low-dimensional pattern space
(i.e., the Othello board in this case) is projected via a highly non-
linear projection into a high-dimensional feature space by the
N-tuple indexing process. A linear function is then learned in
this high-dimensional space. Hence, the training process does
not suffer from local minima, and usually converges quickly.

The weights of an N-tuple system may be set by using ei-
ther a one-pass training scheme, such as maximum-likelihood
estimation, or linear regression (as used in this paper), or may
alternatively be trained incrementally using backpropagation.
The backpropagation rule has a particularly simple form. Each
N -tuple is treated independently. If an /V -tuple index ¢ occurs b
times for a particular board (game state) 5, and the backpropa-
gated value is 6, then

Tli] = T[i] + b6 (1)

where 7 is the weights table for the N-tuple. For a given Oth-
ello board, an index may occur between zero and eight times,
since each N-tuple configuration has eight symmetries. Note
that weights are only modified for all the indexes that actually
occur. Hence, the update speed is independent of the size of the
table. If the address space is very large, then hashing can be used
to store the entries which occur in a more memory-efficient way.

Lucas [21] showed how N-tuples could be used as a high-
performance function approximator for Othello. Note also that
N -tuples are closely related to the pattern-based tables used
with great success in Logistello by Buro [30]. There is further
evidence that they perform well as function approximators in the
online Othello Position Evaluation Function League, previously
mentioned, that has been run by the second author for several
years. All the leading entries are N -tuple networks, followed by
spatial multilayer perceptrons, then standard multilayer percep-
trons, then weighted piece counters. N-tuples have also found
success in other games, for example, learning to play Connect-4
near optimally at 1-ply [34].

When applying N -tuple networks as Othello position value
functions, it makes sense to model the natural symmetries in the
game. Hence, each distinct N -tuple samples the board in eight
different ways, accounting for all possible reflections and ro-
tations, but all eight samples are mapped to the same weights
table. When applying an N -tuple network in this way, the de-
sign process consists of choosing the number and the size of
N -tuples to use, then choosing the sample points for each one.

304 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 6, NO. 3, SEPTEMBER 2014

TABLE I
SAMPLE POINTS FOR THE PRB N-TUPLE. SYMMETRIC
EXPANSION NOT INCLUDED

(25, 34, 27, 19, 28]
(43, 44, 60, 53, 6, 7]
[56, 48, 40, 9, 1, O]
(48, 49, 5, 63]

[58, 2, 3, 20, 12]

(46, 38, 22, 45, 29]
(17, 16, 31, 24, 39, 32]
(3, 4, 13, 21]

[5, 60, 12, 3, 2, 57]
[0, 56, 49, 57, 50, 43]
(46, 37, 45, 36, 52, 43]
(14, 6, 5, 12, 4, 3]
(63, 48, 40, 7]

[15, 9, 16, 8, 0]

[51, 50, 43, 42, 34]

We use a particular N -tuple network [referred to as evolved
TDL-Ntuple (ETDL-N -tuple)] found by Burrow using evolu-
tion [35]. This consists of 15 distinct /V-tuples and was evolved
on the basis of its Othello playing ability when trained using
TDL, with the weights being updated in accordance with the
TD(0) error being applied via (1). Evolution was via a (5 + 5)
evolution strategy (ES) run for 150 generations, with a total of
30000 games being run each generation for the TDL training.
Note that any reasonable set of N-tuples would be fine for the
current work, such as those described in [10] and [11], and
players based on [10] and [11] were used for comparative eval-
uation in our round-robin league.

The ETDL-N-tuple network has 6561 weights (fea-
tures)—approximately 100 times as many as the standard
weighted piece counter. Although this is listed in third place
in the Othello League previously mentioned,’ it showed very
similar performance to the players above when competing
against them in a round-robin league, and it requires fewer
weights. We use ETDL-N-tuple to refer to that exact player
in the league with those 6561 weights, but we use the same
15 N-tuple system for all the N-tuple learning experiments
described in this paper. For clarity and repeatability, these are
listed in Table I, and shown with and without the symmetric
expansion in Fig. 1.

N -tuple systems for Othello can work well and efficiently
with thousands or even hundreds of thousands of weights, but
the LSTD algorithm involves inverting a matrix based on the
number of features (/V-tuple indices) which occur during the
training set. This places a limitation on the size of N-tuple
system that can be used with this algorithm.

C. Posing the Problem

When applying the learning algorithms and feature types to
the move preference learning problem, there are some inter-
esting choices that arise. These choices can significantly affect
the efficiency of the training process and the accuracy of the
trained classifier.

The first choice is whether the algorithm will learn a board
state value function or a direct move predictor, which we refer
to as a move rater. The second choice is how to pose the classi-
fication problem.

STt is “prb_nt15_001” in the online league.

1) State Evaluation Function Versus Move Rater: When
learning a state evaluation (value) function, each possible move
is applied to the current board state to generate an afterstate
of the board; the feature extraction algorithm is then applied
to each board state to create the set of features for each move.
These features are then input to the value function.

A move rater works by directly extracting features associated
with each move; this need not consider future game states and,
therefore, may operate with greater efficiency, depending on the
nature of the features. Due to its efficiency, this approach is typ-
ically used when the aim is to learn a function to guide MCTS
rollouts. One way this can operate is by applying a pattern filter
to each possible move, with the move square at the center of the
filter. The surrounding board squares are then used to provide
contextual features for the move.

In the case of both the move rater and the state value function,
each move is used to produce a set of features, but it is worth
making the distinction as to whether the function applies to the
entire afterstate of the move, or just to the context of the move
in the current board state. Although it would be interesting to
investigate using the move-rater approach in Othello (and we
are not aware of any previous work where this has been done),
for this paper we restrict our attention to learning evaluation
functions.

2) Classification: Once a set of features is obtained for each
alternative move, we can then learn which ones are associated
with the chosen move, as opposed to those for the moves which
were not chosen. There are interesting choices to be made re-
garding the way in which the data are presented to the learner.

a) Label the feature vector of each selected move as class
one, and of each nonselected move as class two. Create
two separate two-class classifiers: one for when black is
to move, and one for when white is to move.

b) As for a), except create a single classifier. If it is white’s
move, then invert all the colors (so black becomes white
and vice versa) In this way, the board is always seen from
black’s perspective (i.e., it is always black’s turn to move
in the data presented to the learner), and we train a single
classifier to learn which moves should be selected.

¢) Base classifications on pairwise difference vectors as ex-
plained in more detail in Section VI on pairwise prefer-
ence learning. This can be used with or without the board
inversion technique mentioned above, and interestingly
this turns out to be a critical choice.

IV. LEAST SQUARES TEMPORAL DIFFERENCE LEARNING

The essence of TDL is to learn that states that are close in
game trajectories (i.e., tend to occur sequentially) should have
similar values. In traditional TDL, a state’s value is updated on-
line as a game is played. After the update is calculated, it is re-
duced by a factor « (the learning rate) before being used to up-
date the state. If «v is too high, then learning can be unstable. If «
is too low, then learning can be too slow. Tuning « to achieve ac-
ceptable performance is a significant problem in TDL. Hence, in
recent years, there has been interest in more sophisticated TDL
algorithms that do not require a step size to be set. This is the

RUNARSSON AND LUCAS: PREFERENCE LEARNING FOR MOVE PREDICTION AND EVALUATION FUNCTION APPROXIMATION IN Othello 305

approach taken by least squares TDL, LSTD(}), which elimi-
nates all step size parameters and improves data efficiency. Re-
sults for this algorithm on toy problems such as the Boyan chain
are impressive [20].

Our implementation is based on [20] but adapted for a two-
player game, as shown in Algorithm 1. The algorithm is com-
plicated by the fact that the two players both update the same
value function. Once a move is played, the resulting board fea-
ture vector for the player p is found and is denoted by ¢,,. This
feature vector is kept as ¢; and applied by the algorithm in the
player’s following move. The number of features is 7 and the
purpose of the algorithm is to find the weight vector w that min-
imizes the TD error. There are no intermediate rewards, how-
ever, when the game terminates, both players receive a reward
of 4+ 1 when black wins, — 1 when white wins, and 0 for a draw.

The eligibility trace z, is a convenient way of implementing
LSTD(A), and produces a family of methods spanning a spec-
trum that has Monte Carlo® methods at one end with A = 1 and
one-step TDL methods at the other with A = 0 [36]. The ma-
trix A should not be updated until the second move is made by
a player. This is achieved by setting the eligibility trace z, to
zero at the start of a game trajectory. The terminal feature vec-
tors are, by definition, all zeros.

There is a simple case where the matrix A and the vector b
have a direct interpretation: this is when A is set to zero [hence
TD(0)] and the features implement a direct lookup table such
that, in the kth state feature, & is one and all other features are
zero. In this case, the leading diagonal of A counts the number
of times the corresponding state was visited, while off-diagonal
elements A;; count the number of transitions from state ¢ to state
4. The vector & records the total reward received in each state.
This simple case is not applicable here but nonetheless provides
some insight into the nature of A and b; for more details refer
to [20].

Note that when N -tuple features are used, the matrix A may
have rows and corresponding columns that are all zeros. This
happens when particular NV -tuple features were not encountered
during game play. These rows/columns must be removed before
the pseudoinverse of A is found.

V. DIRECT CLASSIFICATION

Lagoudakis and Parr [13] proposed that policies may be ap-
proximated directly using binary classification. This is achieved
by labeling moves selected as positive and those not selected as
negative. Their labeling is based on Monte Carlo rollouts, where
moves are only labeled negative if they are statistically signifi-
cantly worse than the best move (or moves), and labeled as posi-
tive only if a single move is statistically significantly better than
all other moves available from the considered position.

We experimented with a similar form of Monte Carlo fil-
tering, but found that it made no significant difference. There-
fore, we adopted the simpler approach of labeling all selected
moves as positive and all nonselected moves as negative. In this
case, there is a possibility that a move is labeled negative in one
game trajectory and positive in another. However, this type of
noise is present for all linear classifiers studied.

®In the reinforcement learning sense of the term.

Algorithm 1: LSTD()\). Matrix A has dimension n X n
and ¢, gi);, Zp, b, w are vectors of dimension n X 1.

input : Game trajectories and parameter A
output : weights vector w

1 Set A+ 0,b+0; // initialize

2 for each game trajectory do

3 Zp < 0,¢p <0 // for players p = 1,2

4 p+1; // set player to start

5 while ¢, is not terminal do

6 qS;) — dp; // keep player previous state

7 ¢p < the next board position’s features ;

8 A A+zy(¢),— ¢p)T 3 // note initially z, < 0, so A is
not updated

9 Zp — AZp + Pp ; // “eligibility vector” update

10 p < next player to move ;

11 end

12 for p=1,2 do

13 b < b + (winner)z, ; // winner is either +1,0, or —1

14 A+ A+ zp(:’D)T ; // terminal feature vectors are all zeros

15 end

16 end

17w+ A 1lb; // use SVD.

Here one classifier will be created for both black and white
players. To achieve this, board inversion is applied when the
white player makes a move, as discussed previously. The aim
of the linear classifier is then to satisfy

wo; > 1 VieS and wo < —1 vke N (2)

where S and N are the selected and nonselected board states,
respectively. The training data are unbalanced but may be com-
pensated by weighting the positive labeled data in proportion to
the game’s branching factor. We used the LibLinear” machine
learning package to find w, using its default settings which are:
L2-regularized L2-loss support vector classification, cost pa-
rameter C' = 1, and no bias term.

VI. DIFFERENTIAL PREFERENCE LEARNING

The aim of preference learning is to make the correct choices
rather than minimize some surrogate of this, such as the mean
square error. As for the direct classification method, each move
is made by considering all the afterstates reachable by the set of
legal single moves from the current board. The one chosen in the
current game log is labeled as the correct move, and all others
are labeled as incorrect. This is done in a pairwise manner: the
selected move is paired in turn with each nonselected move,
hence we arrive at a set of feature vector pairs. In the differential
approach, these features are subtracted from each other.

In an effort to make the decisions more clear-cut, we for-
mulate the constraint to give the correct decision with a clear
margin, arbitrarily chosen to be 1.0. In other words, the learner
aims to satisfy this constraint for the maximizing player

[W(d; — ¢dp)] >1 VjeSt, ke Nt 3)
and similarly for the minimizing player
w(¢;j—gu)l <-1 VieS, keN (4

where S and N are the selected and nonselected board states,
respectively, with the superscript indicating whether the player

Thttp://www.csie.ntu.edu.tw/~cjlin/liblinear/

306 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 6, NO. 3, SEPTEMBER 2014

is maximizing or minimizing. Note that taking the pairwise dif-
ference between the features of each move tends to make the
feature vectors more sparse and Section VIII-D provides some
statistics on this. As with the direct classification approach, we
use the LibLinear machine learning package to find w, using its
default settings.

In general, it is impossible to perfectly satisfy these con-
straints, since the same positions will certainly occur in dif-
ferent games with different choices having been made, other-
wise every game would be the same. This is especially true in
the very early stages of the game. This presents a similar poten-
tial problem for all learners, though the algorithms under test
are sufficiently robust to be unaffected by this.3

With differential preference learning we also have the option
of using board inversion (as was used with the direct classifi-
cation and MM approaches) so that the moves are always seen
from the perspective of the maximizing player. Using the board
inversion approach we now only use (3), with the aim of con-
tinually learning that the weighted feature difference between
the chosen move and each nonchosen move should always be
positive. This technique of using board inversion together with
preference learning leads to the best results of all methods under
test and is one of the contributions of this paper.

VII. MINORIZATION—MAXIMIZATION

Coulom [37] used the Bradley—Terry (BT) model [38] for
move prediction. The BT model models the strength of player ¢
with a single value v; (where «y; > 0 Vi). Then, the probability
that player 4 beats player j is given by

i
Yi + Vi

P(i beats j) = (%)

Hence, the log probability that player ¢ beats player j is propor-
tional to the difference in their v values.

This is the basic BT model, and forms the basis of the widely
used Elo rating system [39]. The BT model can also be applied
to games of more than two players, and games where each par-
ticipant is a team. Coulom used a model extended in both these
ways to estimate the probability that a particular move would
be selected in preference to the alternative moves. He modeled
a “game” in the BT model as being a competition between the
set of the features associated with each possible move available
in the current position (as mentioned in Section III-C1), where
the winner is the state reached by the winning move and the
losers are all other states. The competition is modeled as being
between teams of board features, where the ith feature has a
strength ; and occurs either zero or once in a given move con-
text.

To give a simple example, suppose there were three possible
moves from a given position and that the chosen move (i.e., the
winner) leads to a state with features 1, 2, and 3 active, denoted
by ¢123, while the other moves (i.e., the losers) lead to states
with features ¢34 and ¢pss56.

8We investigated the impact of this by estimating confidence bounds for the
success of all moves using Monte Carlo methods and removing from the training
set all positions where the chosen move was not significantly better than the next
best move, but this did not improve test set prediction accuracy.

The probability of this chosen move being selected according
to the model is given by

V17273
P(¢123 beats ¢34, Pp3z6) =

Y1273 + ¥3Ya + V356

(6)

In general, if move m available in board position B leads to
feature set ¢,,,, then the strength of this move s(m) is given by
the product of the associated gamma values

s(m) =gy, vi- (7)

Then, according to the BT model, the probability that this

move will be selected is given by
o 8(m)
P(m) Srens(); (8)

Note that, in this model, an individual feature can appear
in many teams during a single competition, but may appear
only once in each team. It is, therefore, a natural model for bi-
nary-valued features, but is problematic for features which are
inherently continuous or multivalued. For example, the sym-
metric IV -tuples used below are multivalued, since each distinct
N -tuple is replicated for all its eight symmetries, which means
the associated feature values may occur between zero and eight
times in a single board state.

Coulom also derived an MM algorithm for adjusting the ~
values to maximize the probability, given the model, that all
the expert moves were selected. This is similar to the expecta-
tion—maximization (EM) algorithm used to train hidden Markov
models (EM is a special case of MM). The algorithm starts with
an initial guess of the parameters, then iterates until conver-
gence. Each iteration of the algorithm is guaranteed to either
increase the likelihood of the data, or keep it the same. The algo-
rithm stops once the improvement falls below a specified value.

Each « is updated as follows:

w;

Nt = — ©)
S
7

where W; is the number of times that ¢»; was a member of a win-
ning team, Cﬁj is the sum of the products of the gamma values of
its team mates (not including itself) involved in match 7, and Ejt
is the sum of the gamma values of all the participants (including
itself) in match 7. Note that the £ and ¢ + 1 superscripts indi-
cate that the new value for +; is based on the previous values of
all v values. Hence, the above formulation suggests that each
value must be updated serially rather than in batch mode, though
Coulom shows how the Ej calculation can be shared between
mutually exclusive v values that belong to the same feature and
never occur together in the same team.

When the model has been trained, the relative value of each
move m is given by its strength s(m), the product of its gamma
values, since the denominator is common for all moves available
in a given board position. Hence, moves can be ranked based
only on (7).

Note then that although the MM training algorithm and the
motivation for the MM approach is substantially different from
our preference learning model, once either model has been
trained it can be applied in a very similar way. There are two

RUNARSSON AND LUCAS: PREFERENCE LEARNING FOR MOVE PREDICTION AND EVALUATION FUNCTION APPROXIMATION IN Othello 307

differences. One is that the preference approach ranks each
move based on the sum of feature weights. If we take the
logarithms of the gamma values in the MM approach, then the
move ranking algorithm used in each case can be identical.
The second difference is that the model used by Coulom only
works with binary-valued features, and so some preprocessing
of the feature values may be needed before applying MM. We
ran some experiments ignoring this detail, i.e., using MM to
train a BT model with multivalued features, but the results were
significantly worse than when binarizing them.

It is worthwhile appreciating the similarities in the classi-
fication model, since now the main question that remains is:
Which conceptual framework and hence which training algo-
rithm is most appropriate for training the parameters of the move
ranking model?

Given that the true aim is to correctly predict moves, we
suggest that the most appropriate approach is the preference
learning one where we attempt to directly model which move
should be preferred, rather than maximize the likelihood of the
training set or minimize the Bellman residuals. However, the
question of which approach performs best in practice and by
what margin can only be answered through empirical investiga-
tion, and a priori it is hard to predict whether preference learning
would work better with or without board inversion. Postinves-
tigation, it was surprising to us just how poorly the direct clas-
sification approach performed.

VIII. EXPERIMENTAL STUDY

The experimental study examines the difference in perfor-
mance of all the methods under test in two ways: their ability
to predict expert moves, and their ability to play Othello when
deployed in a 1-ply minimax search engine.

To recap, and give the abbreviations used in the results tables,
the methods under test are as follows:

* Pref: preference learning with negation of outputs to play

as black or white;

+ iPref: identical to Pref, except using board inversion in-
stead of output negation to play as black or white;

« LSTD(A): least squares TDL, applied in the standard way
with negation of outputs;

* MM: minorization—-maximization, using board inversion to
play as black or white;

+ Classify: two-class classification problem (selected versus
nonselected moves), using board inversion to play as black
or white.

Each of these is used with both 1-tuple (the weighted piece
counter with 192 weights, three weights for each square) and
N -tuple features as described above, leading to a total of ten
players developed for this paper.

Additionally, to provide a wider context, we have also in-
cluded the following three players from previous studies which
are known to have high performance for their type of architec-
ture.

* Heur-WPC: The “standard” Othello heuristic weighted
piece counter with 64 weights (though only ten unique
values due to symmetry). The weights for this player were
published in [40] and can be found conveniently in [9].

55_1

4 4

Fig.2. The NV -tuple system used in this study comprising 15 N -tuples, ranging
between four and six inputs. Depicted without (left) and with (right) the sym-
metric expansions.

e Coev-WPC: The coevolved WPC from [41], with 64
learned weights (not symmetric). Their method was
to use covariance matrix adaptation evolution strategy
(CMA-ES) [42] in conjunction with an archive to amelio-
rate the effects of intransitivities when coevolving players.

+ ETDL-N -tuple: The N-tuple described in Section III-B,
with an evolved structure but with weights trained using
TDL. Note that all the N-tuple systems evaluated for
matching expert play use exactly the same structure as
specified in Table I and depicted in Fig. 2; only the weights
differ. We also used four other IV -tuple players as specified
next.

+ SJK-CTDL-N-tuple and SJK-ETDL-N-tuple from [11]
(the SJK comes from the authors’ names). CTDL refers to
their coevolved/TDL trained player while ETDL refers to
their evolved/TDL trained player.

* Nashl-N-tuple and Nash2-N-tuple were supplied by
Manning [10], and trained using a mixture of “Nash
memory”-based evolution and TDL. The Nash2 player
was evolved by mutating only the weights, while the
Nashl player’s evolution also allowed mutations to the
N -tuple sample points and outperforms the Nash2 player.

Note that the weights for all players are listed in the online
repository for this paper.?

This gives us a total of 17 players to evaluate in the
round-robin league, though we only include the results from
12 players for matching expert play, since players that have
not been trained on the expert play logs do not perform well
at this task. To illustrate this point we include Heur-WPC and
ETDL-N -tuple in Table II.

A. Matching Expert Play

A set of 1000 league games is used for training and a further
independent 1000 league games are used for testing. The size
of the data sets both in terms of the number of patterns and the
average number of features per pattern depends on the details
of the method, but 1000 games leads to over 400 000 patterns
(each game may be up to 60 moves, and each move may have
many possible afterstates). The training time depends on the
details of each method used and the methods scale differently.
Nonetheless, it is useful to provide a rough idea of how long

9See https://notendur.hi.is/~tpr/pref/

308

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 6, NO. 3, SEPTEMBER 2014

TABLE 11
THE BRANCHING FACTOR (BF) AND NUMBER OF TRAINING SAMPLES AT DIFFERENT GAME STAGES. THE PERCENTAGE OF CORRECT MOVES TAKEN ON TESTING
DATA FOR PREFERENCE LEARNING WITH BOARD INVERSION (IPREF) AND WITHOUT (PREF), MM, LSTD, AND THE DIRECT CLASSIFICATION
APPROACH (CLASSIFY) USING BOTH 1-TUPLE AND N -TUPLE FEATURES. WE ALSO INCLUDE RESULTS OF PREDICTING USING
THE STANDARD HEURISTIC WEIGHTED PIECE COUNTER (HEUR-WPC), THE COEVOLVED WEIGHTED PIECE
COUNTER (COEV-WPC) AND THE EVOLVED STRUCTURE, TDL-TRAINED N -TUPLE (ETDL-V -TUPLE)

1-Tuple N-Tuple Heur-WPC ETDL-N-Tuple

#discs | BF #N iPref Pref MM LSTD Classify iPref Pref MM LSTD Classify
1-16 | 7.1 73133 474 472 558 16.4 33.8 783 754 68.8 29.8 68.7 21.9 13.4
17-20 | 11.0 40045 17.6 31.0 20.8 8.0 20.6 524 473 430 15.2 31.8 2.6 15.5
21-24 | 11.5 42194 252 21.7 206 92 222 496 429 334 21.6 322 2.0 20.6
25-28 | 11.9 43796 28.1 257 258 11.0 21.8 45.1 421 31.1 20.7 34.1 52 229
29-32 | 11.7 42818 282 244 238 9.5 20.1 405 378 262 18.4 29.7 43 22.1
33-36 | 11.3 41319 282 237 239 9.0 20.3 40.1 36.6 28.0 17.6 30.2 6.8 249
37-40 | 10.6 38318 289 26.1 25.6 10.9 224 41.8 37.0 306 17.9 32.0 9.4 26.1
41-44 | 9.6 34308 294 287 283 13.5 25.9 415 377 31.6 20.4 32.5 14.3 29.6
4548 | 8.4 29412 29.7 293 294 17.8 28.9 436 395 340 21.6 347 20.8 31.5
49-52| 7.1 23784 30.5 306 314 259 30.6 440 410 353 24.1 36.4 272 35.8
53-56 | 5.5 17385 347 323 352 335 349 49.0 464 409 313 41.1 334 422
57-60 | 4.0 10960 40.8 385 414 429 40.3 539 518 46.5 39.0 483 38.7 49.5
61-64 | 2.5 3411 51.9 479 51.6 53.0 51.0 62.5 595 559 52.8 57.3 48.0 61.3
> 8.6 (437883) 338 33.0 345 18.4 28.6 53.0 494 425 25.1 427 17.6 27.0

each method takes. Where training times are mentioned below
they are for an Intel i7 PC using a single core.

When the number of features is large, as in the case of the
N-tuple features, the most costly step in LSTD is finding the
pseudoinverse of the feature matrix. This step depends only on
the number of features, not on the number of patterns. In the
case of the /V-tuple configuration we use, there are potentially
6561 features, but only 5355 occur in the training set, which
means finding the pseudoinverse of a 5355 x 5355 matrix. This
step takes a few minutes for this size of matrix, but scales with
the cube of the number of features, so the time taken could be
problematic for large N -tuple systems with tens of thousands of
features.

LibLinear (which we use as a black box machine learning
tool) works by iteratively solving a quadratic programming
problem. The cost of this depends on the number of patterns,
the number of features, how easily separable the pattern classes
are, and the setting of the “slack” variable C'. For our settings,
LibLinear learns the 437 883 N-tuple patterns in less than a
minute. The slowest method under test was MM, which took
several hours to train.

The performance of the learned functions on the test set is
compared for the different learning methods and feature sets.
Test set errors and the percentage of the maximum possible
score obtained are reported.

Section VIII-B reports on the results for the learned weights
using the 1-tuple features. These are then also compared with
those of the standard handcrafted heuristic weights, Heur-WPC.

Section VIII-C reports the equivalent results using the
N -tuple features. Table II includes all the expert move predic-
tion results in a single table for easy comparison.

B. 1-Tuple Features

In previous work [12], we compared the performance of
preference learning versus LSTD when learning the weights
of a weighted piece counter. These results are still of interest
to the current paper since we are now including the MM al-
gorithm in the comparison and direct classification. However,
while performing the new experiments, we found that a 1-tuple

system generally outperformed the more standard weighted
piece counter, so instead we have used this as our simple form
of value function. The 1-tuple has three weights for each of
the 64 squares on the board: a separate weight to be applied
for each possible state of the square, empty, white, or black
(hence 192 = 3 x 64 weights in total). We also experimented
with a symmetric 1-tuple that only stores separate weights for
squares that are distinct under symmetry, hence ten squares (30
weights) in total. However, this did not perform as well as the
asymmetric version. The best setting for A, for the LSTD, is
0.9 and will be used in all the experimental results reported.

Fig. 3 shows how the decision accuracy varies with the stage
of the game for each approach. The top set of lines indicates
the percentage of correct pairwise decisions, while the bottom
set indicates the percentage of correct move choices. Table II
shows the underlying numbers, with the bottom row showing
the mean branching factor, the total number of patterns, and the
mean accuracy for each approach. Note how differential prefer-
ence learning and MM substantially outperform LSTD until the
final stages of the game, when LSTD performs slightly better.
The direct classification approach performs slightly worse but
matches MM toward the end of the game.

The 1-tuples are asymmetric and naturally produce binary-
valued features. For the 1-tuples, MM proved to be the best
method, outperforming preference learning by a small but sta-
tistically significant margin. However, the preference learner
using board inversion performs better at games stages 3 to 5.
All methods performed very much better than LSTD.

We analyzed the weight vectors learned in each case. One
of the most important things to learn in Othello is the value
of playing in the corner, and the danger of playing next to the
corner (see Fig. 1). Only preference learning was able to learn
both these things reliably. LSTD learned the value of playing
in the corners, but was unable to learn the danger of playing
adjacent to a corner. This observation coincides with the way
that LSTD learns better in the later stages of the game, at which
stage the adjacent cells to a corner may well have been flipped
to the color of the corner occupier, and hence they would no
longer show up as being poor moves.

RUNARSSON AND LUCAS:

90

1-TUPLE

accuracy in percentage

= = = Classify

iPref

game stage

9

10

11

12

Fig. 3. Graphical representation of the move prediction accuracy given in
Table II (bottom five curves) and test-set classification accuracy for all move
options when using 1-tuple features.

N-TUPLE
100 T T T T T T T T T T T

7 in percentage

51
<

= = = Classify

T

iPref

10

11

12

game stage

Fig. 4. Graphical representation of the accuracy in actual moves made (bottom
five curves) and test-set classification accuracy for all move options using
N -tuple features.

C. N-Tuples

The experiments from the previous section are repeated here,
but this time the ETDL-N -tuple is used as a reference. These
results are plotted in Fig. 4 and given in full in Table II. The
N -tuples are able to capture the human playing policy with
greater accuracy than 1-tuples. The preference learner performs
best when used in board inversion mode (iPref) where it aver-
ages 53% move prediction accuracy. This is superior to the next
best (Pref) and far superior to MM, and to LSTD by an even
greater margin. The direct classification method performs sim-
ilarly to the MM method, but does not produce a player of the
same strength, as illustrated by the round-robin results.

The percentage of correct moves made drops toward the
middle of the game, as the branching factor increases and
board states become more variable. The iPref-NV -tuple player

PREFERENCE LEARNING FOR MOVE PREDICTION AND EVALUATION FUNCTION APPROXIMATION IN Othello 309

is unable to match the human move decisions satisfactorily,
however, its performance is better than that of the 1-tuple. The
worst performance of the iPref-N -tuple is around 40% correct
moves made (discs 33-36), while the best performing 1-tuple
(MM) drops to just over 20% (discs 21-24) (see Table II).
The ETDL-N -tuple makes very different moves to the human
experts and so clearly plays a different strategy, albeit a strong
one (the second strongest of all evaluation functions under
test), as clearly demonstrated by the round-robin results below.

D. Significance of Using Difference Vectors

The way we formulated the problem for the iPref and Pref
methods involves taking the difference of the feature vectors
before submitting the vector to the classifier. As previously ex-
plained, this is similar to the pairwise approximate policy itera-
tion approach of Furnkrantz et al. [25], though they give pairs of
vectors different labels rather than explicitly taking the differ-
ence of the feature vectors. Taking feature value differences is
directly equivalent when using a linear classifier, as we are here,
and may also be a good idea when using a nonlinear classifier.

As mentioned previously, an alternative (e.g., [13]) is to
simply give the winning and losing moves different class
labels. The difference vector approach is more efficient for any
classification algorithm that is able to deal with sparse vectors
(such as Liblinear for example), since many of the board
positions being compared may differ only in a few features.
The features which are the same will cancel each other out
and hence not involve either any CPU effort at the point of
classification, or any storage space when saving the data sets.

We measured the average number of features present in the
input vectors, given the combination of feature set and classifi-
cation approach. For the 1-tuple features (192 features) the dif-
ference vectors had an average of 11.8 nonzero ones, while for
the classification approach this was 64 (in fact, every input has
exactly 64 nonzero features, since every square is in one of three
possible states).

For the N-tuple features (6561 features) the saving was less
pronounced, with the difference method having an average of
64.8 nonzero features versus 82.7 for the classification method.

Given the natural efficiency gains, we were interested to ob-
serve the effects on performance. The classification approach
leads to unbalanced data sets (since at each stage only one move
is chosen from the possible ones available). We fed both the un-
balanced data sets and ones which were balanced through ap-
propriate replication of the winning patterns into Liblinear, but
found in all cases that the difference vector approach was more
accurate. The results for the balanced data were slightly better,
and these are presented in Figs. 3 and 4 and Table II.

E. Round-Robin League

The previous results reported how well the approaches
learned to approximate human play. It is also of interest to
measure and compare the playing strength of each approach.
Playing strength was estimated from a full round-robin league
where each weight vector was used to play each other one,
using one-ply minimax search from the same 1000 positions.

The 1000 positions were chosen by running a vanilla Monte
Carlo tree search Othello player (similar to the one described

310 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 6, NO. 3, SEPTEMBER 2014

TABLE III
RANK ORDER, RELATIVE ELO RATING, AND PERCENTAGE OF AVAILABLE
POINTS ATTAINED WITH {1.0, 0.5, 0.0} AWARDED FOR WIN, DRAW, AND
LOSS, RESPECTIVELY. RESULTS ARE BASED ON A FULL ROUND-ROBIN
LEAGUE WITH EACH PLAYER PLAYING 32 000 GAMES FROM FIXED
OPENING POSITIONS USING 1-PLY MINIMAX SEARCH. COLUMN
B/W INDICATES THE APPROACH TAKEN TO DISTINGUISH
BLACK MOVES FROM WHITE MOVES AND COLUMN ||
SHOWS THE NUMBER OF WEIGHTS IN EACH MODEL

Rank | Player Rating % Score | b/w Jw]
1 SJK-CTDL-N-Tuple 1850 78.0% | neg | 4,698
2 iPref-N-Tuple 1848 77.8% | inv | 6,561
3 ETDL-N-Tuple 1803 733% | neg | 6,561
4 Nash1-N-Tuple 1787 71.6% | neg | 8,748
5 Nash2-N-Tuple 1765 69.2% neg 8,748
6 SJK-ETDL-N-Tuple 1765 69.1% | neg | 3,240
7 Pref-N-Tuple 1730 65.3% | neg | 6,561
8 Coev-WPC 1597 49.5% | neg 64
9 Heur-WPC 1596 49.4% | neg 64
10 MM-N-Tuple 1573 46.5% | inv | 6,561
11 iPref-1-Tuple 1499 37.9% | inv 192
12 MM-1-Tuple 1479 35.5% | inv 192
13 Pref-1-Tuple 1457 33.1% | neg 192
14 Classify-N-Tuple 1444 31.6% | inv | 6,561
15 Classify-1-Tuple 1364 234% | inv 192
16 LSTD-N-Tuple 1348 219% | neg | 6,561
17 LSTD-1-Tuple 1293 17.1% | neg 192

in [43]) using a budget of 5000 simulations per move. This
leads to a reasonable standard of play but with a significant
random element. We then harvested 1000 random unique po-
sitions from depth 6 in the game tree (i.e., after three moves
each by black and white), and played each player as black and
as white from these positions using a 1-ply minimax search with
no noise added. Since there are 17 players in the league, each
player played a total of 32 000 games.

We then used BayesElo!0 to rank the players and to assess the
likelihood of superiority. Table III shows the rank order of each
player together with its Elo rating, with the mean rating set to
1600. The table also shows the percentage of wins and draws
attained by each player.

These results are a clear indication of the relative strength
of each player when pitted against each other, though it should
be kept in mind that significant intransitivities exist when using
fixed value functions to dictate Othello playing policy [41].

Clearly the best performing players by a significant margin
are SJK-CTDL-N-tuple and iPref-N-tuple. When the same
training algorithm is used, better performance is always ob-
tained with N -tuple rather than with 1-tuple features, though
it is interesting to note that the best WPCs (Coev-WPC and
Heu-WPC) outperform three of the weaker N -tuple players.

While Table III shows the aggregate of a full round robin
against all players, it is also interesting to see where each player
is strongest. To investigate this we created subleagues using the
two strongest players together with:

1) all the strongest NV -tuple players (Table IV);

2) a selection of the weakest players (Table V).

The results when viewed in this way are illuminating. When
pitted against the set of strongest players, iPref-N-tuple is
clearly the strongest and actually defeats every other player
on a head-to-head basis, defeating even SJK-CTDL-N -tuple

10http://remi.coulom.free.fr/Bayesian-Elo/

1134.5 to 865.5. When played against the weakest players,
SIK-CTDL-N-tuple is the strongest, since it is better at
exploiting their weaknesses than iPref-N-tuple. A possible
explanation for this is that during the coevolutionary training of
the CTDL player, it will have encountered a great deal of weak
play to learn from. Conversely, iPref-/V-tuple has only been
trained on the logs of games between strong players, and will
have seen fewer of the positions reachable through poor play.

E Summary and Analysis of Results

MM is the strongest approach when learning weights for the
1-tuple features, while preference learning with board inversion
(iPref) is the strongest by a large margin when learning weights
for the N -tuple features. It is interesting to consider why this
difference might arise. Recall that the 1-tuple and the N-tuple
features differ in the following ways.

1) The N-tuple features are in a much higher dimensional
space (6561 versus 192) and have a much higher degree
of linear separability. Liblinear maximizes the soft margin
in this high-dimensional space while considering regular-
ization, whereas MM does not aim for a maximal margin,
and its “regularization” is limited to selecting the value of
a small number of priors (three).

2) The N -tuple features are naturally multivalued, and the bi-
narization required for MM might be throwing away valu-
able information. It is possible that cleverer binarization
approaches might ameliorate this effect, but exploring this
in detail is beyond the scope of this paper.

3) To apply MM we used board inversion to ensure that
the move selection problem is always seen from black’s
perspective. This might be discarding subtle nuances, a
problem more likely to apply to the N-tuple features.
However, the alternative is to learn an MM model sepa-
rately for black and for white, which doubles the number
of weights to learn, and hence is not without its draw-
backs. Furthermore, board inversion cannot cause major
problems, since the best method under development in
this paper (iPref-/V -tuple) uses board inversion.

We undertook further investigation as to which of these
possible factors makes the most significant contribution to
the strong performance of preference learning compared to
MM. Regarding 1), we compared results on the training set to
see if MM was overfitting (due to poorer regularization) but
found that training set performance was very similar to test set
performance.

To investigate 2), we applied the preference learning tech-
nique to binarized features, and found that binarization caused
a drop in move prediction accuracy from 49.4% to 44.5%. This
is a significant drop, but is still 2.0% higher than MM. The types
of binarization used by Coulom [15] could be applied to further
improve MM, but given that the preference learning approach
still outperforms it when given the exact same data, we do not
see this as a high priority.

For 3), we applied MM to predict black moves only in order
to remove any effects of the board inversion procedure. This im-
proved training set accuracy by 2.4%, but reduced test set accu-
racy by 1.7%, presumably due to the reduction in the available
training data.

RUNARSSON AND LUCAS: PREFERENCE LEARNING FOR MOVE PREDICTION AND EVALUATION FUNCTION APPROXIMATION IN Othello

311

TABLE 1V
LEAGUE RESULTS FOR THE SEVEN STRONGEST .V -TUPLE PLAYERS WHEN PLAYED AGAINST EACH OTHER. TABLE SHOWS RANK ORDER, ROUND-ROBIN RESULTS,
RELATIVE ELO RATING, AND PERCENTAGE OF AVAILABLE POINTS ATTAINED WITH {1.0, 0.5, 0.0} AWARDED FOR WIN, DRAW, AND LOSS, RESPECTIVELY

2)
S S
. £ o5 & & £
SEN & & & §F 9
RS = < = & N
s & § & § § &
Q >) >
Rank Player ': S < 43’ S N S Rating % Score
1 iPref-N-Tuple 0.0 11345 12865 12455 13375 1248.0 13720 1683 63.5
2 SIK-CTDL-N-Tuple | 865.5 0.0 1031.0 12190 11115 12935 1349.0 1644 572
3 Nashl-N-Tuple | 713.5 969.0 0.0 10445 10575 995.0 1212.0 1599 49.9
4 ETDL-N-Tuple | 754.5 781.0 955.5 0.0 940.5 11640 11845 1588 48.2
5 Nash2-N-Tuple | 662.5 888.5 9425 1059.5 0.0 10115 1107.0 1583 473
6 Pref-N-Tuple | 752.0 706.5 1005.0 836.0 988.5 0.0 840.0 1556 427
7 SJIK-ETDL-N-Tuple | 628.0 651.0 788.0 815.5 893.0 1160.0 0.0 1546 41.1
TABLE V

LEAGUE COMPRISING THE TWO STRONGEST /N -TUPLE PLAYERS TOGETHER WITH A SELECTION OF WEAK PLAYERS. TABLE SHOWS RANK ORDER, ROUND-ROBIN
RESULTS, RELATIVE ELO RATING, AND PERCENTAGE OF AVAILABLE POINTS ATTAINED WITH {1.0, 0.5, 0.0} AWARDED FOR WIN, DRAW, AND LOSS, RESPECTIVELY

N
&
N S Q
S & & & & &
S § 5 F 5 8§ 5 4
Q Q Q Q Q Q

Rank Player S g = £ S g g S Rating % Score
1 SJK-CTDL-N-Tuple 0.0 8655 1807.5 1547.5 1863.5 1901.5 1921.5 1958.5 1906 84.8
2 iPref-N-Tuple | 1134.5 0.0 16140 11785 1799.5 18420 18785 19155 1866 81.2
3 WPC-Coev 192.5 386.0 0.0 1089.0 15755 1578.0 17135 1746.0 1668 59.1
4 WPC-Heu 4525 8215 911.0 0.0 1297.0 13825 12965 14940 1632 54.7
5 One-MM 136.5 200.5 4245 703.0 0.0 1128.0 1306.5 1629.5 1512 39.5
6 One-Diff 98.5 158.0 422.0 617.5 872.0 0.0 1246.0 15955 1483 35.8
7 One-Cls 78.5 1215 286.5 703.5 693.5 754.0 0.0 987.0 1399 25.9
8 One-LSTD 41.5 84.5 254.0 506.0 370.5 4045 1013.0 0.0 1335 19.1

The results suggest that the superior performance of prefer-
ence learning compared to MM is largely due to its ability to
handle multivalued features, but also in part due to the support
vector machine approach to maximal margin classification in a
high-dimensional feature space. Although it is always possible
to transform multivalued features into binary ones, doing this
well takes time and effort. The fact that preference learning can
handle multivalued features directly is a distinct advantage com-
pared to MM.

Finally, the effects of board inversion on the preference
learning approach when used with N-tuples are especially
interesting, and led to the highest performing system, both for
predicting expert moves and when playing in the round-robin
league. The board inversion approach focuses on learning
strategies which are good for either player, and ignores sub-
tleties where a particular line of play may be good for black
but not for white. Doing this effectively doubles the amount of
training data within the populated regions of feature space, and
hence leads to superior performance.

IX. CONCLUSION

This paper presented the results of using differential prefer-
ence learning to imitate human play from game logs. Using logs
taken from the French Othello League, we applied preference
learning in two ways: using a standard output negation method
and using board inversion. We compared the preference learning

approach with LSTD, with MM, and with a more standard clas-
sification approach.

For each experiment, identical features were used (though bi-
narized for use with MM), and an identical classifier was used
to predict the moves; only the learning algorithms differed. Al-
though the MM decision criterion involves a product rather than
a sum of weights, taking logarithms allowed us to replicate the
classification algorithm across all approaches without altering
the decisions made.

In each case, learning was used to estimate the weights
of a linear evaluation function in feature space, either using
the board vector directly as the set of features, or using the
highly nonlinear N-tuple features. The N-tuple approach
provided the best performance and, when used with preference
learning in combination with board inversion, outperformed
all other methods under test in two ways: it learned to better
match expert human decision making and it produced better
performing players. To evaluate playing performance, we used
a round-robin league involving all the players developed in
this paper together with a range of players developed by other
researchers. Our best player (iPref-/V-tuple) defeated every
opponent on a head-to-head basis.

Our previous work showed that differential preference
learning outperformed LSTD when using a weighted piece
counter value function, so it was not too surprising when this
result also held for the N-tuple weights. The real surprise was
the large margin by which preference learning outperformed
the MM algorithm when using N-tuple features, keeping in

312 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 6, NO. 3, SEPTEMBER 2014

mind that MM is a leading method for move prediction in Go.
A promising avenue for future work is, therefore, to investi-
gate whether preference learning can be used to improve the
performance of leading Go programs.

In addition to the potential for stronger game Al, preference
learning has a great deal to offer in better imitating human styles
of play, even if this does not lead to play of a higher standard.
In many board games, Othello being one example, it is more of
a challenge to generate Al behavior that is fun and interesting
to play against, rather than simply being strong.

In this paper, our primary goal was to further develop
a new approach to move prediction and compare it with
state-of-the-art algorithms using two different feature sets. A
future goal is to introduce more features (such as mobility) with
the aim of achieving even higher accuracy in the imitation of
particular expert players. By imitating expert play we were also
able to produce one of the strongest known Othello value-func-
tion-based players.!! This is an interesting and nonobvious
result, since it would also be possible to have players that
closely matched expert play most of the time but made enough
disastrous errors to lose most of their games.

We used LibLinear to set the weights of the preference
learner, but this has practical limits on the size of data set it
can deal with. An interesting alternative would be to train the
system using online backpropagation in order to deal with
game-log data sets that are orders of magnitude larger than the
one used in the current study, the tradeoff being the loss of the
maximal margin property.

Given the significant margin by which preference learning
with board inversion outperforms preference learning with
output negation, a promising avenue for future work is using
the board inversion technique for TDL, where currently the
output negation approach is standard.

Finally, the approach is not in any way limited to board
games, and the preference learning approach may find im-
portant application in the development of more humanlike
nonplayer characters in video games.

REFERENCES

[1] A. Rimmel ez al., “Current frontiers in Computer Go,” IEEE Trans.
Comput. Intell. AI Games, vol. 2, no. 4, pp. 229-238, Dec. 2010.

[2] B. Arneson, R. B. Hayward, and P. Henderson, “Monte Carlo tree
search in Hex,” IEEE Trans. Comput. Intell. AI Games vol. 2, no. 4,
pp. 251-258, Dec. 2010.

[3] J. A. Stankiewicz, “Knowledge-based Monte-Carlo tree search in
Havannah,” M.S. thesis, Faculty Humanities Sci., Maastricht Univ.,
Maastricht, The Netherlands, 2011.

[4] G. Tesauro, “Practical issues in temporal difference learning,” Mach.
Learn., vol. 8, pp. 257-277, 1992.

[5] K. Chellapilla and D. Fogel, “Evolving neural networks to play
checkers without expert knowledge,” IEEE Trans. Neural Netw., vol.
10, no. 6, pp. 1382-1391, Nov. 1999.

[6] M. Buro, “Statistical feature combination for the evaluation of game
positions,” J. Artif. Intell. Res. vol. 3, pp. 373-382, 1995 [Online].
Available: http://arxiv.org/abs/cs/9512106

[7] S. M. Lucas, “Investigating learning rates for evolution and temporal
difference learning,” in Proc. IEEE Symp. Comput. Intell. Games,
2008, DOI: 10.1109/CI1G.2008.5035614.

11Using a standard evaluation method of testing by playing games using 1-ply
lookahead.

[8] T. P. Runarsson and S. M. Lucas, “Co-evolution versus self-play tem-
poral difference learning for acquiring position evaluation in small-
board Go,” IEEE Trans. Evol. Comput., vol. 9, no. 6, pp. 628—640,
Dec. 2005.

[9] S.M. Lucas and T. P. Runarsson, “Temporal difference learning versus
co-evolution for acquiring Othello position evaluation,” in Proc. IEEE
Symp. Comput. Intell. Games, 2006, pp. 52-59.

[10] E.Manning, “Using resource-limited Nash memory to improve an Oth-
ello evaluation function,” IEEE Trans. Comput. Intell. AI Games, vol.
2, no. 1, pp. 40-53, Mar. 2010.

[11] M. Szubert, W. Jaskowski, and K. Krawiec, “On scalability, general-
ization, hybridization of coevolutionary learning: A case study for Oth-
ello,” IEEE Trans. Comput. Intell. AI Games, vol. 5,no0. 3, pp. 214-226,
Sep. 2013, DOI: 10.1109/TCIAIG.2013.2258919.

[12] T. Runarsson and S. Lucas, “Imitating play from game trajectories:
Temporal difference learning versus preference learning,” in Proc.
IEEE Conf. Comput. Intell. Games, 2012, pp. 79-82.

[13] M. Lagoudakis and R. Parr, “Reinforcement learning as classification:
Leveraging modern classifiers,” in Proc. 20th Int. Conf- Mach. Learn.,
2003, vol. 20, pp. 424-431.

[14] D. Stern, R. Herbrich, and T. Graepel, “Bayesian pattern ranking for
move prediction in the game of Go,” in Proc. Int. Conf. Mach. Learn.,
2006, pp. 873—880.

[15] R. Coulom, “Computing Elo ratings of move patterns in the game of
Go,” Int. Comput. Games Assoc. J., vol. 30, no. 4, pp. 198-208, 2007.

[16] D.R.Hunter, “MM algorithms for generalized Bradley-Terry models,”
Ann. Stat., vol. 32, pp. 384406, 2004.

[17] M. Wistuba, L. Schaefers, and M. Platzner, “Comparison of Bayesian
move prediction systems for computer Go,” in Proc. IEEE Conf.
Comput. Intell. Games, 2012, pp. 91-99.

[18] M. Lagoudakis and R. Parr, “Least-squares policy iteration,” J. Mach.
Learn. Res., vol. 4, pp. 1107-1149, 2003.

[19] S.Bradtke and A. Barto, “Linear least-squares algorithms for temporal
difference learning,” Mach. Learn. vol. 22, no. 1-3, pp. 33-57, 1996.

[20] J. Boyan, “Technical update: Least-squares temporal difference
learning,” Mach. Learn. vol. 49, no. 2, pp. 233-246, 2002.

[21] S. Lucas, “Learning to play Othello with N-tuple systems,” Austral. J.
Intell. Inf. Process., vol. 4, pp. 1-20, 2008.

[22] W. Cheng, J. Furnkranz, E. Hiillermeier, and S. Park, “Prefer-
ence-based policy iteration: Leveraging preference learning for rein-
forcement learning,” in Machine Learning and Knowledge Discovery
in Databases, ser. Lecture Notes in Computer Science. Berlin,
Germany: Springer-Verlag, 2011, vol. 6911, pp. 312-327.

[23] A. Lazaric, M. Ghavamzadeh, and R. Munos, “Analysis of a clas-
sification-based policy iteration algorithm,” in Proc. 27th Int. Conf.
Mach. Learn., 2010 [Online]. Available: http://www.icml2010.org/pa-
pers/303.pdf

[24] L. Li, V. Bulitko, and R. Greiner, “Focus of attention in reinforcement
learning,” J. Universal Comput. Sci. vol. 13, no. 9, pp. 1246-1269,
2007.

[25] J. Flirnkranz, E. Hilllermeier, W. Cheng, and S.-H. Park, “Preference-
based reinforcement learning: A formal framework and a policy itera-
tion algorithm,” Mach. Learn., vol. 89, pp. 123-156, 2012.

[26] J. Firnkranz and E. E. Hiillermeier, Preference Learning. Berlin,
Germany: Springer-Verlag, 2010.

[27] D. Gomboc, M. Buro, and T. Marsland, “Tuning evaluation functions
by maximizing concordance,” Theor. Comput. Sci. vol. 349, no. 2, pp.
202-229, Dec. 2005.

[28] G. N. Yannakakis, M. Maragoudakis, and J. Hallam, “Preference
learning for cognitive modeling: A case study on entertainment pref-
erences,” IEEE Trans. Syst. Man Cybern. A, Syst. Humans, vol. 39,
no. 6, pp. 1165-1175, Nov. 2009.

[29] H. P. Martinez, Y. Bengio, and G. N. Yannakakis, “Learning deep
physiological models of affect,” IEEE Comput. Intell. Mag., vol. 8, no.
2, pp. 20-33, May 2013.

[30] M. Buro, “Experiments with Multi-ProbCut and a new high-quality
evaluation function for Othello,” in Proc. Games AI Res., 1997, pp.
77-96.

[31] W. W. Bledsoe and 1. Browning, “Pattern recognition and reading by
machine,” in Proc. Eastern Joint Comput. Conf., 1959, pp. 225-232.

[32] R. Rohwer and M. Morciniec, “A theoretical and experimental ac-
count of N-tuple classifier performance,” Neural Comput., vol. 8, pp.
629-642, 1996.

[33] L. Breiman, “Random forests,” Mach. Learn., vol. 45, pp. 5-32.

[34] M. Thill, P. Koch, and W. Konen, “Reinforcement learning with
N-tuples on the game Connect-4,” in Parallel Problem Solving from
Nature—PPSN XII, ser. Lecture Notes in Computer Science. Berlin,
Germany: Springer-Verlag, 2012, vol. 7491, pp. 184-194.

[35] P. Burrow, “Hybridising evolution and temporal difference learning,”
Ph.D. dissertation, Dept. Comput. Sci. Electron. Eng., Univ. Essex,
Colchester, UK., 2011.

[36] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduc-
tion. Cambridge, MA, USA: MIT Press, 1998.

[37] R. Coulom, “Efficient selectivity and backup operators in Monte-Carlo
tree search,” in Computers and Games, ser. Lecture Notes in Com-
puter Science. Berlin, Germany: Springer-Verlag, 2007, vol. 4630,
pp. 72-83.

[38] R. Bradley and M. Terry, “Rank analysis of incomplete block designs.
1. The method of paired comparisons,” Biometrika, vol. 39, pp.
324-345, 1952.

[39] A.E. Elo, The rating of chess players: Past and present. New York:
Arco Publishing, 1978.

[40] T. Yoshioka, S. Ishii, and M. Ito, “Strategy acquisition for the game
’Othello’ based on reinforcement learning,” [EICE Trans. Inf. Syst.,
vol. 82, pp. 1618-1626, 1999.

[41] S. Samothrakis, S. Lucas, T. Runarsson, and D. Robles, “Coevolving
game-playing agents: Measuring performance and intransitivities,”
IEEE Trans. Evol. Comput., vol. 17, no. 2, pp. 213-226, Apr. 2013.

[42] N. Hansen, S. Mller, and P. Koumoutsakos, “Reducing the time com-
plexity of the derandomized evolution strategy with covariance matrix
adaptation (CMA-ES),” J. Evol. Comput., vol. 11, no. 1, 2003, DOI:
10.1162/106365603321828970.

[43] D. Robles, P. Rohlfshagen, and S. M. Lucas, “Learning non-random
moves for playing Othello: Improving Monte Carlo tree search,” in
Proc. IEEE Conf. Comput. Intell. Games, 2011, pp. 305-312.

RUNARSSON AND LUCAS: PREFERENCE LEARNING FOR MOVE PREDICTION AND EVALUATION FUNCTION APPROXIMATION IN Othello 313

Thomas Philip Runarsson (S’98-M’01) received
the M.Sc. degree in mechanical engineering and
the Dr. Scient. Ing. degree from the University
of Iceland, Reykjavik, Iceland, in 1995 and 2001,
respectively.

Since 2001, he has been a Research Professor at
the Applied Mathematics and Computer Science Di-
vision, Science Institute, University of Iceland and
adjunct at the Department of Computer Science, Uni-
versity of Iceland. His present research interests in-
clude evolutionary computation, global optimization,

Simon M. Lucas (M’98-SM’07) received the
B.Sc. degree from Kent University, Canterbury,
Kent, U.K., in 1986 and the Ph.D. degree from the
University of Southampton, Southampton, U.K., in
1991.

He is a Professor of Computer Science at the
University of Essex, Colchester, Essex, U.K., where
he leads the Game Intelligence Group. His main
research interests are games, evolutionary compu-
tation, and machine learning, and he has published
widely in these fields with over 130 peer-reviewed

papers. He is the inventor of the scanning :V -tuple classifier.

Prof. Lucas is the founding Editor-in-Chief of the IEEE TRANSACTIONS ON

COMPUTATIONAL INTELLIGENCE AND Al IN GAMES.

