
ICmetrics for Low Resource Embedded Systems

Yevgeniya Kovalchuk, Huosheng Hu,
Dongbing Gu, Klaus McDonald-Maier

School of Computer Science & Electronic Engineering
University of Essex

Colchester, UK
yvkova@essex.ac.uk; hhu@essex.ac.uk;

dgu@essex.ac.uk; kdm@essex.ac.uk

Gareth Howells
School of Engineering and Digital Arts

University of Kent
Canterbury, UK

W.G.J.Howells@kent.ac.uk

Abstract—The ICmetrics technology is based on extracting
features from digital devices’ operation that may be integrated
together to generate unique identifiers for each of the devices
or create unique profiles that describe the devices’ actual
behaviour. Any changes in these identifiers (profiles) during
consequent devices’ operation would signal about a possible
safety or security breach within the electronic system. This
paper explores the program counter (PC) of a processor core
as a potential source for ICmetrics features and discusses
several methods of feature values acquisition with the aim to
achieve a maximum level of information gain with a minimal
impact on a system’s performance. The main finding of this
study is that while isolated PC values may not always allow to
generate a stable identifier (profile) for a device that would
distinguish the device from the rest in the considered set, the
PC sequences and frequencies in the execution flow may serve
as suitable ICmetrics features, which has yet to be tested in
complex scenarios.

ICmetrics; security; encryption; embedded systems;
autonomous systems

I. INTRODUCTION
There is an ever growing number of domains and

applications where ensuring security and safety of electronic
devices’ operation and communication is essential, however
not easily linked to human input (e.g. passwords, biometrics)
to facilitate security. Take for example environments where
machine-machine communication occurs with no human
intervention [1, 2] or medical and/or assistive devices (such
as electronic wheelchairs), where human’s input is difficult
or not reliable (e.g. due to a patient’s disability).

This paper presents some recent results of developing the
ICmetrics technology – the technology of generating unique
identifiers that may serve as encryption keys directly from
characteristics of electronic systems’ behaviour. As opposed
to physical characteristics of integrated circuits (ICs) used in
the Physical Unclonable Functions technology (PUF) [3],
ICmetrics is based on features derived from the operation of
ICs (software executing on programmable structures,
circuits, sensors, communication peripherals, etc.) and their
interaction with the environment. In our earlier work, we
have presented the theory of the technology and formalized
the tasks to implement it in real systems [4]. In this study, we
are looking to investigate if the ICmetrics technology that

has previously been designed for non-intrusive debug
support architectures [5] can be deployed using intrusive
methods on low resource embedded systems that do not
feature a dedicated non-intrusive trace interface [6, 7].

In particular, we analyse two intrusive tracing methods
for observing execution characteristics, namely (1) single
stepping and (2) sample based tracing. At this early stage of
our research, we have tested the methods only on obtaining
the program counter (PC) values as a potential ICmetrics
feature source. Our choice in favour of the PC is based on
the observation that registered PC values and their sequences
change slightly (if at all) for a certain devices during its
operation in the given environment, but vary significantly
across devices of different configuration or (if the
configuration is identical) while operating in different
environmental conditions.

Based on a detailed analysis of the PC logs presented in
this paper, we provide some recommendations on designing
tracing methods and suitable sources of ICmetrics features.
We also propose alternative data analysis techniques in
order to build a strong and effective security infrastructure.

In the remaining sections of the paper, we detail our
experimental platform and methods of obtaining data for
ICmetrics features; give interpretation of the results we have
achieved when analysing the PC logs, and highlight future
directions for ICmetrics research.

II. EXPERIMENTAL SETUP
For this study, we have employed a low resource

embedded system based around an ARM7 processor core, in
particular an Atmel AT91SAM7S256 microcontroller [8]
and 64Kbytes SRAM memory. We have used the
combination of Eclipse [9], Open On-Chip Debugger
(OOCD) [10], and JTAG programming port for
programming the microcontroller, as well as tracing the
programs’ execution.

We have used two intrusive tracing methods to log the
PC: the single stepping method has provided us with the
benchmark data against which we evaluated the second
method, which is sampling. While these methods affect
execution times, they do not change the execution flow (for
the code executed here), meaning that the proposed methods
provide the same PC values as would have been obtained

https://www.researchgate.net/publication/3235729_From_Theory_to_Practice_An_overview_of_MIMO_space-time_coded_wireless_systems?el=1_x_8&enrichId=rgreq-18f1c11e169e4da4e74eafe1dc79ae0c&enrichSource=Y292ZXJQYWdlOzI2MTM0MTk5OTtBUzoxMDAxMDg4NDI1Njk3MjhAMTQwMDg3OTIxNjY5OA==
https://www.researchgate.net/publication/4269818_Key_Generation_for_Secure_Inter-satellite_Communication?el=1_x_8&enrichId=rgreq-18f1c11e169e4da4e74eafe1dc79ae0c&enrichSource=Y292ZXJQYWdlOzI2MTM0MTk5OTtBUzoxMDAxMDg4NDI1Njk3MjhAMTQwMDg3OTIxNjY5OA==
https://www.researchgate.net/publication/266296056_Overview_of_ICmetrics_Technology_-_Security_Infrastructure_for_Autonomous_and_Intelligent_Healthcare_System?el=1_x_8&enrichId=rgreq-18f1c11e169e4da4e74eafe1dc79ae0c&enrichSource=Y292ZXJQYWdlOzI2MTM0MTk5OTtBUzoxMDAxMDg4NDI1Njk3MjhAMTQwMDg3OTIxNjY5OA==
https://www.researchgate.net/publication/3351788_Debug_support_for_complex_systems_on-chip_A_review?el=1_x_8&enrichId=rgreq-18f1c11e169e4da4e74eafe1dc79ae0c&enrichSource=Y292ZXJQYWdlOzI2MTM0MTk5OTtBUzoxMDAxMDg4NDI1Njk3MjhAMTQwMDg3OTIxNjY5OA==
https://www.researchgate.net/publication/220772285_Ensuring_data_integrity_via_ICmetrics_based_security_infrastructure?el=1_x_8&enrichId=rgreq-18f1c11e169e4da4e74eafe1dc79ae0c&enrichSource=Y292ZXJQYWdlOzI2MTM0MTk5OTtBUzoxMDAxMDg4NDI1Njk3MjhAMTQwMDg3OTIxNjY5OA==
https://www.researchgate.net/publication/4257255_Physical_Unclonable_Functions_for_Device_Authentication_and_Secret_Key_Generation?el=1_x_8&enrichId=rgreq-18f1c11e169e4da4e74eafe1dc79ae0c&enrichSource=Y292ZXJQYWdlOzI2MTM0MTk5OTtBUzoxMDAxMDg4NDI1Njk3MjhAMTQwMDg3OTIxNjY5OA==
https://www.researchgate.net/publication/3045014_Debug_support_strategy_for_systems-on-chips_with_multiple_processor_cores?el=1_x_8&enrichId=rgreq-18f1c11e169e4da4e74eafe1dc79ae0c&enrichSource=Y292ZXJQYWdlOzI2MTM0MTk5OTtBUzoxMDAxMDg4NDI1Njk3MjhAMTQwMDg3OTIxNjY5OA==

with non-intrusive methods. To register the PC values, both
methods halt the CPU by issuing OOCD commands [10] via
a telnet port. The difference between the methods lies in the
frequency and completeness of obtaining data. The single
stepping tracing method logs every single CPU instruction,
while the sampling method does this only at regular
intervals, at the predetermined rate of 50Hz in this case. We
have chosen this sampling rate since it is the highest
throughput that our JTAG programming port supports and
we aimed at testing a fast logging method to be practical in
real time applications. Such settings mean that the single
stepping method provides complete profiling of the program
execution, whilst the sampling method – only its
approximation. While the single stepping method is
preferred to gain full profiles, it is very slow. The sampling
method on the other hand allows speeding up logging
considerably (thus, affecting the systems normal executing
much less); however it does mean that not all data are
logged and significant parts of the executing profile may not
be identified. Below, we compare the two methods in more
detail, explore their suitability for obtaining ICmetrics
features, and provide recommendations on designing a
better tracing method to be useful in ICmetrics research.

Since at this early stage we have only been interested to
see if the PC could be used as a potential source for
ICmetrics features, and also to compare the two methods of
obtaining data, we have employed basic low complexity
software routines to serve as a source of data so as to achieve
visually representative and easily interpretable analysis
results. More specifically, we have chosen several algorithms
from the automotive package of the MiBench suite of
benchmark algorithms [11] to design our programs, namely:
angle conversion (AC); bit count (BC); cubic function (CF);
and square roots (SR). In addition, we have included a
program generating random numbers (RN). To increase the
probability of logging all distinct PC values when using the
sampling tracing method, we have run each program several
times and recorded more PC values as compared to the
single stepping method. The number of times to run each
program has been determined to achieve the execution times
comparable to those of the single stepping logging.

III. DATA ANALYSIS
Table I details a summary of statistics performed over

the raw data obtained from the log files. In particular, “total
steps” and “total samples” provide the total number of PC
values recorded during the entire sessions of tracing by the
single stepping and sampling methods respectively. Since a
program may use the same memory address several times
during its execution flow, we have calculated how many
distinct PC values are present in the program profiles
recorded by each of the two methods. This can be seen in
“distinct @ step” and “distinct @ sam”, where “sam” refers
to the sampling tracing method.

TABLE I. STATISTICS OF THE PROGRAMS’ PROFILES

Param.\Program AC BC CF RN SR
total steps 263565 104971 205482 138011 102131
total samples 758952 205315 1424747 202968 268034
distinct @ step 429 44 1695 52 94
distinct @ sam 429 44 1695 48 93
unique @ step 132 0 1376 7 16
unique @ sam 132 0 1376 7 16
total routine 13338 8964 14509 9002 4929
distinct routine 62 11 274 6 16
distinct interval 64 8 258 6 16
distinct routine
incl. branches

37 4 200 4 8

For ICmetrics research, we are also interested in how the

program profiles differ from each other. Therefore, we have
further refined the number of distinct PC values by finding
the number of addresses that occurred in the profile of a
certain program, but not in the profiles of the rest of the
programs. This is reflected in “unique @ step” and “unique
@ sam”. Note that despite the sampling tracing method,
although being very close, has not always managed to trace
all distinct addresses (“distinct @ step” as compared to
“distinct @ sam”), it still catches exactly the same number of
unique addresses for each of the programs (“unique @ step”
and “unique @ sam”).

The remaining figures in Table I are explained in the
following sections, where we analyse the programs’ profiles
in more detail in order to compare the two tracing methods
and to determine which potential ICmetrics features can be
derived from the PC logs.

A. Address Maps
Figure 1 compares program profiles obtained with the

two logging methods. It plots each occurrence (axis X) of
the PC value (axis Y) during the program runs.

Note the non-repetitive PC values present at the
beginning and end of the single step profiles, which result in
their more frequent presence in the sampling profiles. These
are addresses used for initializing variables. Since the
sampling tracing method is designed to run the programs
many times (to give more chances for each address to be
recorded), the addresses corresponding to variable
initialization appear in the sampling profiles often. Baring
this in mind, it can be suggested from visual inspection of
the address maps plotted in Figure 1 that both tracing
methods provide similar program profiles for each of the
five programs (i.e. each graph on the left is similar to its
counterpart on the right).

At the same time, the profiles of the five programs differ
from one another (the five pictures in the left column are
different, so they are in the right column).

These two observations on similarities and differences
between the program profiles suggest that:

https://www.researchgate.net/publication/3940924_MiBench_A_free_commercially_representative_embedded_benchmark_suite?el=1_x_8&enrichId=rgreq-18f1c11e169e4da4e74eafe1dc79ae0c&enrichSource=Y292ZXJQYWdlOzI2MTM0MTk5OTtBUzoxMDAxMDg4NDI1Njk3MjhAMTQwMDg3OTIxNjY5OA==

Figure 1. Program profiles by the two tracing methods.

1) the sampling tracing method can be used to
approximate a program profile very closely to the
complete one and therefore serve as a means for
logging the PC as a potential source of ICmetrics
features;

2) the PC might be a useful source for ICmetrics
features, since it is possible to visually distinguish
program profiles from each other based on the PC
values only.

However, a more detailed analysis is required to verify
these suggestions. The following sections provide better
understanding of the data.

B. Information Gain
Since we have established that the sampling method

could potentially provide us with the complete set of distinct
addresses present in a program’s profile (see “distinct @
step” and “distinct @ sam” in Table I), it would be
interesting to determine the speed of gaining information
during the sampling tracing. This exercise would allow us to
justify and quantify gains in time versus losses in PC values
when applying the sampling tracing method instead of the
single stepping.

Figure 2. Information gain with the sampling method.

By plotting the number of samples against the number of
unique addresses as picked up by the sampling tracing
method (Figure 2), we have found that the information gain
graphs for all programs considered in this study take a form
of the logarithmic function. In other words, the longer the
sampling logging is running, the lesser number of additional
addresses is obtained; and at the same time, the more
samples are taken, the closer is the profile to the complete
one.

To demonstrate the advantage the sampling tracing
method has over the single stepping method in terms of
logging times, we have calculated the minimal times
required to run sampling tracing until 90% (as an example)
of all distinct PC values recorded in the single stepping logs
are captured. Table II provides the results of this experiment.
In particular, “distinct @” is the number of distinct PC
values that is required to record with the sampling tracing
method. “Samples needed” is the number of samples we
have established it took the sampling method to capture the
required number of distinct values. “Step time” is the time
(hr:min:sec) of executing the programs when using the single
stepping logging. “Sample time” is the time it took the
sampling logger to record the required number of distinct
addresses. Finally, “time saving” demonstrates what
percentage of time as compared to the total “step time” it
would allow to save if using the sampling logging instead of
the single stepping.

TABLE II. STATISTICS ON TIMING AND INFORMATION GAIN

Param.\Program AC BC CF RN SR
distinct @ 386 39 1525 46 85
samples needed 87578 823 34447 398 4632
step time 1:28:00 0:35:00 1:08:00 0:46:00 0:34:00
sample time 0:32:28 0:00:16 0:11:32 0:00:08 0:01:33
time saving 63.1% 99.2% 83.0% 99.7% 95.4%

It can be noticed from Table II that time savings although

vary across the programs, are very significant in all cases (at
least 63% and up to 99.7% in our case). Matching the results
in Table II to the program profiles depicted in Figure 1, it
can be suggested that time savings depend on the
complexity of the algorithm and sequence of its flow (i.e.
how many and when distinct PC values appear in a
program’s execution profile). This means that the results
may be not that high if more complex programs are
involved (e.g., if there is a higher ratio of distinct PC values
as compared to the total number of PC values involved in a
program’s execution flow).

These findings provide justification for our earlier
suggestion that a sampling based tracing methods could be
used for program profiling in embedded systems in order to
reduce overheads related to obtaining data. Note however,
that the main requirement for ICmetrics features is that they
should allow for separation of considered embedded
systems in the feature space. It is evident from Table I that
the PC values themselves not always allow for
distinguishing a program from the rest in the operational set
(note zero values in “unique @ step” and “unique @ sam”
for BC, meaning that there are no PC values that are unique
for this program).

And yet, the PC logs could still serve as a potential
source of ICmetrics features. For example, the uniqueness
of each program profile could potentially be derived from
their execution flows (i.e. not from separate PC values, but
their sequences), and also frequencies of PC occurrences. It
must be noted however that sampling at a certain frequency
(i.e., our sampling tracing method) may not allow to
reconstruct PC frequencies and sequences as they actually
appear during the program execution flow.

To address this issue, in the next section we analyse PC
sequences as recorded in the single stepping logs in order to
determine if a better sampling method can be designed in
such a way so it is useful for ICmetrics research. Section D
presents the frequency analysis of the single stepping PC
logs in order to estimate if ICmetrics features can be
obtained from the PC frequency domain.

C. Branch Analysis
The PC in traditional processors is incremented

sequentially after fetching a program instruction. In the case
of an ARM7, i.e. the experimental setup presented here, the
PC increments by 4 bit, and less often by 2 bit. However,
there are certain instructions (e.g. branches, jumps,
subroutine calls and returns) that interrupt the sequence by
placing a new value in the PC. This results in larger changes

in the log files. Here, we refer to the intervals of sequential
increments in the PC values (i.e. by for 2 or 4 bits) as to
“routines”, while the points where a higher increment occurs
(more than 4 bits) we call “branch” points.

We have extracted distinct cases of all routines present in
the PC logs, noting their start and end addresses, the number
of steps (increments) in between, and frequency of their
occurrence. Depending on where branching points happen,
we have noticed 4 types of routines in the program profiles:
(1) without branching points (represented by routine R1 in
Figure 3); (2) with an early finish (routine R2); (3) with a
later start (routine R3); (4) with both later start and early
finish (routine R4).

As can be seen from Figure 3, it is important to note all
branching points within a larger routine (e.g. points A, B, C,
D, and E for the routine R1) as they split the later into
smaller intervals that score different frequency values
(intervals [A, B] and [D, E] occur with the frequency of 2,
while the frequency of interval [C, D] is 3 and for interval
[B, C] it is 4). The frequency of such intervals could
potentially serve as an ICmetrics feature as it represents
particularity of a program operation. For example, tracing
two identical devices running the same software code but
interacting with different environments could result in two
different profiles since different subroutines would be
executed during the execution flow within the program code
depending on the characteristics of each environment,
potentially resulting in different interval frequencies.

This observation also suggests an alternative, more
intelligent, way of tracing the PC. In particular, samples can
be taken at branch points instead of at regular intervals or at
every single step, which is what modern debug support
architectures present in advanced embedded processors
facilitate [5]. Such approach combines the advantages of the
two methods we propose here, overcoming their major
pitfalls at the same time. More specifically, it would allow
for obtaining full program profiles (as with the single
stepping method), but much faster and with less intrusion
(i.e. by sampling at branch points only).

Note, “distinct routine” in Table I refers to the distinct
number of routines extracted from the single steps profiles
as they occurred during the programs’ operation despite
their start or end in relation to bigger routines that involve
them (i.e. we score the occurrences of routines R1, R2, R3,
and R4, as in Figure 3, separately). In “distinct interval” we
count the numbers of the smallest intervals found within
larger routines (i.e. we score the occurrences of intervals [A,
B], [B, C], [C, D], and [D, E]). Finally for “distinct routine
incl. branches”, we include smaller routines as part of
counting the largest routines that involve them (i.e. we add
occurrences of R2, R3, and R4 to the number of R1
occurrences). As can be seen from the results in Table I, all
five programs behave differently; there is no pattern in
relationship between the numbers in the last 3 rows. This
confirms once again that the frequency of the smallest parts
of routines is a good candidate feature for ICmetrics.

https://www.researchgate.net/publication/220772285_Ensuring_data_integrity_via_ICmetrics_based_security_infrastructure?el=1_x_8&enrichId=rgreq-18f1c11e169e4da4e74eafe1dc79ae0c&enrichSource=Y292ZXJQYWdlOzI2MTM0MTk5OTtBUzoxMDAxMDg4NDI1Njk3MjhAMTQwMDg3OTIxNjY5OA==

Figure 3. The four types of routines

D. Frequency Matrices
To get further insight on how the program profiles relate

to each other and to establish if potential ICmetrics features
can be derived from the PC frequency domain, we have
brought all five programs into one space and built frequency
matrices noting how many times a certain address occurred
in the profile of each program. We have done this for both
the single step and sampling logs, omitting entries with all
zeros (i.e. when an address is not present in any of the
program profiles).

By normalising the values in the matrices in different
ways, we have obtained several colour maps that vividly
show relationships between the programs. We used the grey
colour scale to represent intensity of a certain feature as
present in the profiles of each of the programs at each
address point, from white colour corresponding to zero (a
feature is not present) to black colour representing the
highest value of the feature (Figures 4). The programs used
1864 distinct addresses all together; they are represented on
axis Y from the lowest address at the top.

Figure 4a plots frequencies of address usage by each of
the programs (i.e. how many times a certain address has
occurred during the program execution as logged in the
single step logs) to demonstrate once again (as in Figure 1)
how different the program profiles are. Note, the more
intense grey colour at a certain address is, the higher is the
frequency of this address being used by the given program
as compared to the rest of the programs. As there are spikes
of high frequencies in the matrices (up to 6400
occurrences), we normalized the data with the logarithm
transformation to bring all the values into the interval from
zero to one.

Figure 4b demonstrates the frequency distribution of
address usage across all addresses used by each program
separately, independently from the rest of the programs. It
can be noticed that the colour map is similar to the one
depicted in Figure 4a. The difference lies in the peculiarity
of normalization: in Figure 4a it is done over all values in

the single step frequency matrix (to show relation of
frequencies across all programs), while in Figure 4b it is
done over the values of each column (i.e. program)
separately (hence the more intense colours). In particular,
we have first normalized the values in each column using
formula (1) and then smoothed the data with the logarithm
transform.

∑
=

=
N

i
pipinormpi frfrfr

1
_ / (1)

where frpi_norm is the normalized frequency value, frpi is the
correspondent absolute frequency value, p is the program
number, i is the address number and N is the total number of
addresses (1864 in our case).

Finally, we have calculated probability distributions of
each employed address to be encountered in each program
profile. For this, we have applied formula (1) to every row
(instead of column) of the frequency matrices. Figure 4c
demonstrates these probability distributions for both the
single step and sampling methods; the more intense the grey
colour is, the higher is the probability of the address to
represent a certain program, with black colour meaning the
address is used by a particular program only. It can be
noticed that the sampling tracing method provides the
probability distribution colour map very close to the one
obtained from the single step logs, but not exactly the same
(note for example different intensities at the top of AC and
CF lanes). This observation confirms our earlier suggestion
(see section C) that a better sampling tracing method should
be designed to get the accuracy of the single stepping
method.

IV. SUMMARY
This paper has investigated the program counter (PC) as

a potential source for extracting ICmetrics features and
compared two tracing methods, the single stepping and
sampling, to obtain feature values. From the analysis results
presented in the paper, we conclude that while the fact that
PC values that may have been reached during execution
does not serve as good ICmetrics features, a strong
ICmetrics system can potentially be built based on the
sequence analysis and frequency analysis of PC logs.
However, further investigation and testing is required to
confirm this suggestion. In particular, in this study we have
used a small set of straightforward programs. In our future
work, we plan to enrol more complex software and design
scenarios simulating external environment and user
interaction in order to verify if our results are valid for
systems that can be find in real world.

We have also suggested a better tracing method to obtain
data for ICmetrics, which is sampling at branch points. Our
next step in developing methods for data acquisition will be
to look at more course grain software instrumentation suited
to observe larger and more complex software with limited
disturbances.

Figure 4. Frequency matrices colour maps.

ACKNOWLEDGMENT
The authors gratefully acknowledge the support of the UK
Engineering and Physical Sciences Research Council
under grant EP/K004638/1 and the EU Interreg IV A 2
Mers Seas Zeeën Cross-border Cooperation Programme –
SYSIASS project: Autonomous and Intelligent Healthcare
System (project’s website http://www.sysiass.eu/).

REFERENCES
[1] D. Gesbert, M. Shafi, Da-shan Shiu, P. J. Smith, A. Naguib, “From

theory to practice: an overview of MIMO space-time coded
wireless systems”, IEEE Journal on Selected Areas in
Communications, 21 (3), April 2003, pp. 281 -302.

[2] E. Papoutsis, W.G.J. Howells, A.B.T. Hopkins, K.D. McDonald-
Maier, “Key Generation for Secure Inter-satellite
Communication”, IEEE, NASA/ESA Conference on Adaptive
Hardware and Systems (AHS-2007), Edinburgh, UK, 2007, pp.
671–681.

[3] G. Edward Suh and Srinivas Devadas, “Physical unclonable
functions for device authentication and secret key generation”, In
Proceedings of the 44th Design Automation Conference, IEEE,
2007, pp. 9-14.

[4] Y. Kovalchuk, G. Howells, and K.D. McDonald-Maier, “Overview
of ICmetrics Technology – Security Infrastructure for Autonomous
and Intelligent Healthcare System”, International Journal of u-
and e- Service, Science and Technology, Vol. 4, No. 3, September
2011, pp. 49-60.

[5] A.B.T. Hopkins, K.D. McDonald-Maier, E. Papoutsis, W.G.J.
Howells, “Ensuring data integrity via ICmetrics based security
infrastructure”, Proceedings of the IEEE, NASA/ESA Conference
on Adaptive Hardware and Systems (AHS-2007), Edinburgh, UK,
2007, pp. 75-81.

[6] A.B.T. Hopkins, K.D. McDonald-Maier, “Debug support for
complex Systems on-Chip: A review”, IEE Proceedings on
Computers and Digital Techniques, 153 (4), 2006, pp.197-207.

[7] A.B.T. Hopkins, K.D. McDonald-Maier, Debug Support Strategy
for Systems-on-Chips with Multiple Processor Cores, IEEE
Transactions on Computers, Volume 55, Issue 2, 2006, pp. 174-
184.

[8] Atmel’s SAM7S datasheet:
http://www.atmel.com/Images/doc6175.pdf

[9] Eclipse official web-site: http://www.eclipse.org/
[10] Online OpenOCD User's Guide:

http://openocd.sourceforge.net/doc/html/index.html#
Top

[11] M.R. Guthaus, J.S. Ringenberg, D. Ernst, T.M. Austin, T. Mudge,
and R.B. Brown, “MiBench: A free, commercially representative
embedded benchmark suite”, Proceedings of the International
Workshop on Workload Characterization, 2001, pp. 3-14.

https://www.researchgate.net/publication/3235729_From_Theory_to_Practice_An_overview_of_MIMO_space-time_coded_wireless_systems?el=1_x_8&enrichId=rgreq-18f1c11e169e4da4e74eafe1dc79ae0c&enrichSource=Y292ZXJQYWdlOzI2MTM0MTk5OTtBUzoxMDAxMDg4NDI1Njk3MjhAMTQwMDg3OTIxNjY5OA==
https://www.researchgate.net/publication/3235729_From_Theory_to_Practice_An_overview_of_MIMO_space-time_coded_wireless_systems?el=1_x_8&enrichId=rgreq-18f1c11e169e4da4e74eafe1dc79ae0c&enrichSource=Y292ZXJQYWdlOzI2MTM0MTk5OTtBUzoxMDAxMDg4NDI1Njk3MjhAMTQwMDg3OTIxNjY5OA==
https://www.researchgate.net/publication/3235729_From_Theory_to_Practice_An_overview_of_MIMO_space-time_coded_wireless_systems?el=1_x_8&enrichId=rgreq-18f1c11e169e4da4e74eafe1dc79ae0c&enrichSource=Y292ZXJQYWdlOzI2MTM0MTk5OTtBUzoxMDAxMDg4NDI1Njk3MjhAMTQwMDg3OTIxNjY5OA==
https://www.researchgate.net/publication/3235729_From_Theory_to_Practice_An_overview_of_MIMO_space-time_coded_wireless_systems?el=1_x_8&enrichId=rgreq-18f1c11e169e4da4e74eafe1dc79ae0c&enrichSource=Y292ZXJQYWdlOzI2MTM0MTk5OTtBUzoxMDAxMDg4NDI1Njk3MjhAMTQwMDg3OTIxNjY5OA==
https://www.researchgate.net/publication/4269818_Key_Generation_for_Secure_Inter-satellite_Communication?el=1_x_8&enrichId=rgreq-18f1c11e169e4da4e74eafe1dc79ae0c&enrichSource=Y292ZXJQYWdlOzI2MTM0MTk5OTtBUzoxMDAxMDg4NDI1Njk3MjhAMTQwMDg3OTIxNjY5OA==
https://www.researchgate.net/publication/4269818_Key_Generation_for_Secure_Inter-satellite_Communication?el=1_x_8&enrichId=rgreq-18f1c11e169e4da4e74eafe1dc79ae0c&enrichSource=Y292ZXJQYWdlOzI2MTM0MTk5OTtBUzoxMDAxMDg4NDI1Njk3MjhAMTQwMDg3OTIxNjY5OA==
https://www.researchgate.net/publication/4269818_Key_Generation_for_Secure_Inter-satellite_Communication?el=1_x_8&enrichId=rgreq-18f1c11e169e4da4e74eafe1dc79ae0c&enrichSource=Y292ZXJQYWdlOzI2MTM0MTk5OTtBUzoxMDAxMDg4NDI1Njk3MjhAMTQwMDg3OTIxNjY5OA==
https://www.researchgate.net/publication/4269818_Key_Generation_for_Secure_Inter-satellite_Communication?el=1_x_8&enrichId=rgreq-18f1c11e169e4da4e74eafe1dc79ae0c&enrichSource=Y292ZXJQYWdlOzI2MTM0MTk5OTtBUzoxMDAxMDg4NDI1Njk3MjhAMTQwMDg3OTIxNjY5OA==
https://www.researchgate.net/publication/4269818_Key_Generation_for_Secure_Inter-satellite_Communication?el=1_x_8&enrichId=rgreq-18f1c11e169e4da4e74eafe1dc79ae0c&enrichSource=Y292ZXJQYWdlOzI2MTM0MTk5OTtBUzoxMDAxMDg4NDI1Njk3MjhAMTQwMDg3OTIxNjY5OA==
https://www.researchgate.net/publication/4269818_Key_Generation_for_Secure_Inter-satellite_Communication?el=1_x_8&enrichId=rgreq-18f1c11e169e4da4e74eafe1dc79ae0c&enrichSource=Y292ZXJQYWdlOzI2MTM0MTk5OTtBUzoxMDAxMDg4NDI1Njk3MjhAMTQwMDg3OTIxNjY5OA==
https://www.researchgate.net/publication/266296056_Overview_of_ICmetrics_Technology_-_Security_Infrastructure_for_Autonomous_and_Intelligent_Healthcare_System?el=1_x_8&enrichId=rgreq-18f1c11e169e4da4e74eafe1dc79ae0c&enrichSource=Y292ZXJQYWdlOzI2MTM0MTk5OTtBUzoxMDAxMDg4NDI1Njk3MjhAMTQwMDg3OTIxNjY5OA==
https://www.researchgate.net/publication/266296056_Overview_of_ICmetrics_Technology_-_Security_Infrastructure_for_Autonomous_and_Intelligent_Healthcare_System?el=1_x_8&enrichId=rgreq-18f1c11e169e4da4e74eafe1dc79ae0c&enrichSource=Y292ZXJQYWdlOzI2MTM0MTk5OTtBUzoxMDAxMDg4NDI1Njk3MjhAMTQwMDg3OTIxNjY5OA==
https://www.researchgate.net/publication/266296056_Overview_of_ICmetrics_Technology_-_Security_Infrastructure_for_Autonomous_and_Intelligent_Healthcare_System?el=1_x_8&enrichId=rgreq-18f1c11e169e4da4e74eafe1dc79ae0c&enrichSource=Y292ZXJQYWdlOzI2MTM0MTk5OTtBUzoxMDAxMDg4NDI1Njk3MjhAMTQwMDg3OTIxNjY5OA==
https://www.researchgate.net/publication/266296056_Overview_of_ICmetrics_Technology_-_Security_Infrastructure_for_Autonomous_and_Intelligent_Healthcare_System?el=1_x_8&enrichId=rgreq-18f1c11e169e4da4e74eafe1dc79ae0c&enrichSource=Y292ZXJQYWdlOzI2MTM0MTk5OTtBUzoxMDAxMDg4NDI1Njk3MjhAMTQwMDg3OTIxNjY5OA==
https://www.researchgate.net/publication/266296056_Overview_of_ICmetrics_Technology_-_Security_Infrastructure_for_Autonomous_and_Intelligent_Healthcare_System?el=1_x_8&enrichId=rgreq-18f1c11e169e4da4e74eafe1dc79ae0c&enrichSource=Y292ZXJQYWdlOzI2MTM0MTk5OTtBUzoxMDAxMDg4NDI1Njk3MjhAMTQwMDg3OTIxNjY5OA==
https://www.researchgate.net/publication/3940924_MiBench_A_free_commercially_representative_embedded_benchmark_suite?el=1_x_8&enrichId=rgreq-18f1c11e169e4da4e74eafe1dc79ae0c&enrichSource=Y292ZXJQYWdlOzI2MTM0MTk5OTtBUzoxMDAxMDg4NDI1Njk3MjhAMTQwMDg3OTIxNjY5OA==
https://www.researchgate.net/publication/3940924_MiBench_A_free_commercially_representative_embedded_benchmark_suite?el=1_x_8&enrichId=rgreq-18f1c11e169e4da4e74eafe1dc79ae0c&enrichSource=Y292ZXJQYWdlOzI2MTM0MTk5OTtBUzoxMDAxMDg4NDI1Njk3MjhAMTQwMDg3OTIxNjY5OA==
https://www.researchgate.net/publication/3940924_MiBench_A_free_commercially_representative_embedded_benchmark_suite?el=1_x_8&enrichId=rgreq-18f1c11e169e4da4e74eafe1dc79ae0c&enrichSource=Y292ZXJQYWdlOzI2MTM0MTk5OTtBUzoxMDAxMDg4NDI1Njk3MjhAMTQwMDg3OTIxNjY5OA==
https://www.researchgate.net/publication/3940924_MiBench_A_free_commercially_representative_embedded_benchmark_suite?el=1_x_8&enrichId=rgreq-18f1c11e169e4da4e74eafe1dc79ae0c&enrichSource=Y292ZXJQYWdlOzI2MTM0MTk5OTtBUzoxMDAxMDg4NDI1Njk3MjhAMTQwMDg3OTIxNjY5OA==
https://www.researchgate.net/publication/3351788_Debug_support_for_complex_systems_on-chip_A_review?el=1_x_8&enrichId=rgreq-18f1c11e169e4da4e74eafe1dc79ae0c&enrichSource=Y292ZXJQYWdlOzI2MTM0MTk5OTtBUzoxMDAxMDg4NDI1Njk3MjhAMTQwMDg3OTIxNjY5OA==
https://www.researchgate.net/publication/3351788_Debug_support_for_complex_systems_on-chip_A_review?el=1_x_8&enrichId=rgreq-18f1c11e169e4da4e74eafe1dc79ae0c&enrichSource=Y292ZXJQYWdlOzI2MTM0MTk5OTtBUzoxMDAxMDg4NDI1Njk3MjhAMTQwMDg3OTIxNjY5OA==
https://www.researchgate.net/publication/3351788_Debug_support_for_complex_systems_on-chip_A_review?el=1_x_8&enrichId=rgreq-18f1c11e169e4da4e74eafe1dc79ae0c&enrichSource=Y292ZXJQYWdlOzI2MTM0MTk5OTtBUzoxMDAxMDg4NDI1Njk3MjhAMTQwMDg3OTIxNjY5OA==
https://www.researchgate.net/publication/220772285_Ensuring_data_integrity_via_ICmetrics_based_security_infrastructure?el=1_x_8&enrichId=rgreq-18f1c11e169e4da4e74eafe1dc79ae0c&enrichSource=Y292ZXJQYWdlOzI2MTM0MTk5OTtBUzoxMDAxMDg4NDI1Njk3MjhAMTQwMDg3OTIxNjY5OA==
https://www.researchgate.net/publication/220772285_Ensuring_data_integrity_via_ICmetrics_based_security_infrastructure?el=1_x_8&enrichId=rgreq-18f1c11e169e4da4e74eafe1dc79ae0c&enrichSource=Y292ZXJQYWdlOzI2MTM0MTk5OTtBUzoxMDAxMDg4NDI1Njk3MjhAMTQwMDg3OTIxNjY5OA==
https://www.researchgate.net/publication/220772285_Ensuring_data_integrity_via_ICmetrics_based_security_infrastructure?el=1_x_8&enrichId=rgreq-18f1c11e169e4da4e74eafe1dc79ae0c&enrichSource=Y292ZXJQYWdlOzI2MTM0MTk5OTtBUzoxMDAxMDg4NDI1Njk3MjhAMTQwMDg3OTIxNjY5OA==
https://www.researchgate.net/publication/220772285_Ensuring_data_integrity_via_ICmetrics_based_security_infrastructure?el=1_x_8&enrichId=rgreq-18f1c11e169e4da4e74eafe1dc79ae0c&enrichSource=Y292ZXJQYWdlOzI2MTM0MTk5OTtBUzoxMDAxMDg4NDI1Njk3MjhAMTQwMDg3OTIxNjY5OA==
https://www.researchgate.net/publication/220772285_Ensuring_data_integrity_via_ICmetrics_based_security_infrastructure?el=1_x_8&enrichId=rgreq-18f1c11e169e4da4e74eafe1dc79ae0c&enrichSource=Y292ZXJQYWdlOzI2MTM0MTk5OTtBUzoxMDAxMDg4NDI1Njk3MjhAMTQwMDg3OTIxNjY5OA==
https://www.researchgate.net/publication/4257255_Physical_Unclonable_Functions_for_Device_Authentication_and_Secret_Key_Generation?el=1_x_8&enrichId=rgreq-18f1c11e169e4da4e74eafe1dc79ae0c&enrichSource=Y292ZXJQYWdlOzI2MTM0MTk5OTtBUzoxMDAxMDg4NDI1Njk3MjhAMTQwMDg3OTIxNjY5OA==
https://www.researchgate.net/publication/4257255_Physical_Unclonable_Functions_for_Device_Authentication_and_Secret_Key_Generation?el=1_x_8&enrichId=rgreq-18f1c11e169e4da4e74eafe1dc79ae0c&enrichSource=Y292ZXJQYWdlOzI2MTM0MTk5OTtBUzoxMDAxMDg4NDI1Njk3MjhAMTQwMDg3OTIxNjY5OA==
https://www.researchgate.net/publication/4257255_Physical_Unclonable_Functions_for_Device_Authentication_and_Secret_Key_Generation?el=1_x_8&enrichId=rgreq-18f1c11e169e4da4e74eafe1dc79ae0c&enrichSource=Y292ZXJQYWdlOzI2MTM0MTk5OTtBUzoxMDAxMDg4NDI1Njk3MjhAMTQwMDg3OTIxNjY5OA==
https://www.researchgate.net/publication/4257255_Physical_Unclonable_Functions_for_Device_Authentication_and_Secret_Key_Generation?el=1_x_8&enrichId=rgreq-18f1c11e169e4da4e74eafe1dc79ae0c&enrichSource=Y292ZXJQYWdlOzI2MTM0MTk5OTtBUzoxMDAxMDg4NDI1Njk3MjhAMTQwMDg3OTIxNjY5OA==
https://www.researchgate.net/publication/3045014_Debug_support_strategy_for_systems-on-chips_with_multiple_processor_cores?el=1_x_8&enrichId=rgreq-18f1c11e169e4da4e74eafe1dc79ae0c&enrichSource=Y292ZXJQYWdlOzI2MTM0MTk5OTtBUzoxMDAxMDg4NDI1Njk3MjhAMTQwMDg3OTIxNjY5OA==
https://www.researchgate.net/publication/3045014_Debug_support_strategy_for_systems-on-chips_with_multiple_processor_cores?el=1_x_8&enrichId=rgreq-18f1c11e169e4da4e74eafe1dc79ae0c&enrichSource=Y292ZXJQYWdlOzI2MTM0MTk5OTtBUzoxMDAxMDg4NDI1Njk3MjhAMTQwMDg3OTIxNjY5OA==
https://www.researchgate.net/publication/3045014_Debug_support_strategy_for_systems-on-chips_with_multiple_processor_cores?el=1_x_8&enrichId=rgreq-18f1c11e169e4da4e74eafe1dc79ae0c&enrichSource=Y292ZXJQYWdlOzI2MTM0MTk5OTtBUzoxMDAxMDg4NDI1Njk3MjhAMTQwMDg3OTIxNjY5OA==
https://www.researchgate.net/publication/3045014_Debug_support_strategy_for_systems-on-chips_with_multiple_processor_cores?el=1_x_8&enrichId=rgreq-18f1c11e169e4da4e74eafe1dc79ae0c&enrichSource=Y292ZXJQYWdlOzI2MTM0MTk5OTtBUzoxMDAxMDg4NDI1Njk3MjhAMTQwMDg3OTIxNjY5OA==

