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1. Introduction 

LePUS3 [1] (lepus.org.uk) is a logic, visual, object-oriented Design Description Lan-

guage: a formal specification language designed to capture and convey the building-

blocks of object-oriented design. LePUS3 minimal vocabulary constitutes of abstrac-

tion mechanisms that can specify effectively and precisely design patterns and the de-

sign of Java
TM

 (C++, Smalltalk, etc.) programs at any level of abstraction.  

LePUS3 was tailored to integrate the strength of other specification and modelling 

notations, most notably UML, but it is unique in addressing the combination of the 

following concerns: 

 Rigour. LePUS3 is a logic visual language: a chart stands for a formula in an 

axiomatized theory in the classical first-order predicate calculus. 

 Parsimony & scalability. LePUS3 offers powerful abstractions: charts scale well 

and do not clutter with the size of the program. 

 Minimality. LePUS3 vocabulary (Figure 1) is minimal, consisting of 15 tokens.  

 Decidability & verifiability [2]. Consistency between a given specification (a 

chart) and an implementation (a Java program) can be verified by a button-click. 

 Program Visualization. Charts modelling Java programs can be reverse-

engineered from source code. 

To emphasize practicalities, we focus on tool support [3][4] in specifying, (automati-

cally) verifying, and visualizing Java programs in LePUS3. 
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Figure 1. LePUS3 vocabulary 

Presented in the 5th International Conference on the Theory and Applications of Diagrams—DIAGRAMS, Herrsching, Germany, 19–21 

Sep. 2008. Appeared in Gem Stapleton et al. (eds.) Lecture Notes in Artificial Intelligence Vol. 5223, pp. 364–367. Berlin: Springer, 2008. 

 

The work described here has subsequently been significantly revised and expanded in:  

 

Amnon H. Eden, with contributions from Jonathan Nicholson. Codecharts: Roadmaps and Blueprints for Object-Oriented Programs. Ho-

boken, New Jersey: Wiley-Blackwell, 2011. www.lepus.org.uk/ref/book/ 
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2. Visualizing Programs 

We take program visualization to be a tool-assisted process of discovering some of 

the building-blocks in the design of programs, and charting them at the appropriate 

level of abstraction. The motivation is usually understanding and re-engineering large, 

complex, and inadequately documented programs. We call the approach we take “De-

sign Navigation” [5]: a user-guided process of reverse-engineering LePUS3 charts 

from the source code of arbitrarily-large Java™ programs. Design Navigation in 

package java.io (Java™ Software Development Kit 1.6) is demonstrated below 

using the Two-Tier Programming Toolkit [3][4]. 

After analyzing package java.io, De-

sign Navigation commences from the Top 

Chart (Chart 1), the most abstract representa-

tion of any Java program. Chart 1 depicts the 

set of all static types (classes, interfaces, etc.) 

in java.io as a „1-dimensional class‟. 

From Chart 1, Design Navigation proceeds 

by a user-guided, tool-assisted step-wise ap-

plication of concretization („zoom-in‟) and 

abstraction („zoom-out‟) operators (left panel, 

Chart 1). At each step, the Two-Tier Pro-

gramming Toolkit discovers inheritance class 

hierarchies (triangles), sets of classes (shaded 

rectangles), sets of dynamically-bound meth-

ods (superimposed ellipses), and correlations 

amongst them (arrows), visualized using 

LePUS3 terms and predicates (Figure 1). 

For example, Chart 2 offers a birds-eye view of the Closeable class inheritance 

hierarchy in java.io, generated in a short sequence of concretizations of Chart 1. 

 

Chart 2. The Closeable hierarchy in java.io 

 

Chart 1. All the classes in java.io 



LePUS3: An Object-Oriented Design Description Language      3 

 

3. Specifying Programs and Patterns 

We take the goal of visual specification to be that of articulating non-functional re-

quirements on object-oriented design in a precise visual language at the appropriate 

level of abstraction. LePUS3 can be used to specify generic design motifs, such as the 

Composite design pattern (Chart 3), as well as the overall design of a specific imple-

mentation, such as package java.awt (Chart 4). 

 

Chart 3. The Composite pattern Chart 4. java.awt (selected elements from) 

The similarity between Chart 3 and Chart 4 is not accidental: package java.awt 

was designed to implement the Composite design pattern [6]. In LePUS3, this intent 

is made explicit by a logic assignment (Figure 2): a mapping which indicates where 

(and how often) the design pattern is supposed to be implemented. The Two-Tier 

Programming Toolkit can be used not only to specify assignments but, as we show in 

the next section, also verify them at a click of a button. 

 

Figure 2. Assignment from the Composite design pattern (Chart 3) to java.awt (Chart 4) 

Component
Leaves

Component
Ops

container

Component
Ops

Composite
Ops

component

Component
Ops

Forward

Abstract

Inherit Inherit

component

composite

Leaves

Component
Ops

Composite
Ops

Component
Ops

Abstract

Component
Ops

Inherit

Forward

Aggregate
Inherit



4      E. Gasparis, J. Nicholson, A.H. Eden 

 

4. Automatically Verifying LePUS3 Specifications 

By verification [2][7] we refer to the rigorous, conclusive, and decidable process of 

establishing or refuting consistency between a specification (chart) and a program. 

Fully automated verification is 

possible in principle since 

LePUS3 is decidable. It is also 

possible in practice, as proven 

by the Two-Tier Programming 

Toolkit, which implements the 

verification algorithm. For ex-

ample, the toolkit can verify by 

a button-click that package 

java.awt satisfies the Com-

posite design pattern as speci-

fied in Chart 3, delivering its re-

sults in seconds (Figure 3). If 

verification fails, the toolkit in-

dicates clearly which parts of 

the specification were violated 

to allow programmers to fix 

such inconsistencies. 
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