
LePUS3: An Object-Oriented Design Description Language

Epameinondas Gasparis (1) Jonathan Nicholson (1) Amnon H. Eden (1,2)

(1) The Two-Tier Programming Project, Department of Computing & Electronic Systems, Uni-

versity of Essex, United Kingdom. (2) Centre for Inquiry, Amherst, NY, USA

1. Introduction

LePUS3 [1] (lepus.org.uk) is a logic, visual, object-oriented Design Description Lan-

guage: a formal specification language designed to capture and convey the building-

blocks of object-oriented design. LePUS3 minimal vocabulary constitutes of abstrac-

tion mechanisms that can specify effectively and precisely design patterns and the de-

sign of Java
TM

 (C++, Smalltalk, etc.) programs at any level of abstraction.

LePUS3 was tailored to integrate the strength of other specification and modelling

notations, most notably UML, but it is unique in addressing the combination of the

following concerns:

 Rigour. LePUS3 is a logic visual language: a chart stands for a formula in an

axiomatized theory in the classical first-order predicate calculus.

 Parsimony & scalability. LePUS3 offers powerful abstractions: charts scale well

and do not clutter with the size of the program.

 Minimality. LePUS3 vocabulary (Figure 1) is minimal, consisting of 15 tokens.

 Decidability & verifiability [2]. Consistency between a given specification (a

chart) and an implementation (a Java program) can be verified by a button-click.

 Program Visualization. Charts modelling Java programs can be reverse-

engineered from source code.

To emphasize practicalities, we focus on tool support [3][4] in specifying, (automati-

cally) verifying, and visualizing Java programs in LePUS3.

[Transitive] Binary Relation
& Total predicate

Isomorphic predicateUnary relation
&
All predicate

2-DIM
HIERARCHY
CONSTANT

0-dim
class

constant

1-Dim
Class

Constant

0-dim
signature
constant

1-Dim
Signature
Constant

1-Dim
Hierarchy
Constant

0-dim
class

variable

1-Dim
Class

Variable

1-Dim
Signature
Variable

0-dim
signature
variable

2-DIM
HIERARCHY
VARIABLE

1-Dim
Hierarchy
Variable

Figure 1. LePUS3 vocabulary

Presented in the 5th International Conference on the Theory and Applications of Diagrams—DIAGRAMS, Herrsching, Germany, 19–21

Sep. 2008. Appeared in Gem Stapleton et al. (eds.) Lecture Notes in Artificial Intelligence Vol. 5223, pp. 364–367. Berlin: Springer, 2008.

The work described here has subsequently been significantly revised and expanded in:

Amnon H. Eden, with contributions from Jonathan Nicholson. Codecharts: Roadmaps and Blueprints for Object-Oriented Programs. Ho-

boken, New Jersey: Wiley-Blackwell, 2011. www.lepus.org.uk/ref/book/

http://lepus.org.uk/
http://www.lepus.org.uk/ref/book/
http://www.lepus.org.uk/ref/book/

2 E. Gasparis, J. Nicholson, A.H. Eden

2. Visualizing Programs

We take program visualization to be a tool-assisted process of discovering some of

the building-blocks in the design of programs, and charting them at the appropriate

level of abstraction. The motivation is usually understanding and re-engineering large,

complex, and inadequately documented programs. We call the approach we take “De-

sign Navigation” [5]: a user-guided process of reverse-engineering LePUS3 charts

from the source code of arbitrarily-large Java™ programs. Design Navigation in

package java.io (Java™ Software Development Kit 1.6) is demonstrated below

using the Two-Tier Programming Toolkit [3][4].

After analyzing package java.io, De-

sign Navigation commences from the Top

Chart (Chart 1), the most abstract representa-

tion of any Java program. Chart 1 depicts the

set of all static types (classes, interfaces, etc.)

in java.io as a „1-dimensional class‟.

From Chart 1, Design Navigation proceeds

by a user-guided, tool-assisted step-wise ap-

plication of concretization („zoom-in‟) and

abstraction („zoom-out‟) operators (left panel,

Chart 1). At each step, the Two-Tier Pro-

gramming Toolkit discovers inheritance class

hierarchies (triangles), sets of classes (shaded

rectangles), sets of dynamically-bound meth-

ods (superimposed ellipses), and correlations

amongst them (arrows), visualized using

LePUS3 terms and predicates (Figure 1).

For example, Chart 2 offers a birds-eye view of the Closeable class inheritance

hierarchy in java.io, generated in a short sequence of concretizations of Chart 1.

Chart 2. The Closeable hierarchy in java.io

Chart 1. All the classes in java.io

LePUS3: An Object-Oriented Design Description Language 3

3. Specifying Programs and Patterns

We take the goal of visual specification to be that of articulating non-functional re-

quirements on object-oriented design in a precise visual language at the appropriate

level of abstraction. LePUS3 can be used to specify generic design motifs, such as the

Composite design pattern (Chart 3), as well as the overall design of a specific imple-

mentation, such as package java.awt (Chart 4).

Chart 3. The Composite pattern Chart 4. java.awt (selected elements from)

The similarity between Chart 3 and Chart 4 is not accidental: package java.awt

was designed to implement the Composite design pattern [6]. In LePUS3, this intent

is made explicit by a logic assignment (Figure 2): a mapping which indicates where

(and how often) the design pattern is supposed to be implemented. The Two-Tier

Programming Toolkit can be used not only to specify assignments but, as we show in

the next section, also verify them at a click of a button.

Figure 2. Assignment from the Composite design pattern (Chart 3) to java.awt (Chart 4)

Component
Leaves

Component
Ops

container

Component
Ops

Composite
Ops

component

Component
Ops

Forward

Abstract

Inherit Inherit

component

composite

Leaves

Component
Ops

Composite
Ops

Component
Ops

Abstract

Component
Ops

Inherit

Forward

Aggregate
Inherit

4 E. Gasparis, J. Nicholson, A.H. Eden

4. Automatically Verifying LePUS3 Specifications

By verification [2][7] we refer to the rigorous, conclusive, and decidable process of

establishing or refuting consistency between a specification (chart) and a program.

Fully automated verification is

possible in principle since

LePUS3 is decidable. It is also

possible in practice, as proven

by the Two-Tier Programming

Toolkit, which implements the

verification algorithm. For ex-

ample, the toolkit can verify by

a button-click that package

java.awt satisfies the Com-

posite design pattern as speci-

fied in Chart 3, delivering its re-

sults in seconds (Figure 3). If

verification fails, the toolkit in-

dicates clearly which parts of

the specification were violated

to allow programmers to fix

such inconsistencies.

Acknowledgments: This work was partially funded by EPSRC. The authors wish to

thank Ray Turner and Rick Kazman for their numerous contributions to this project.

References

[1] A.H. Eden, E. Gasparis, J. Nicholson. "LePUS3 and Class-Z Reference Manual."

University of Essex, Tech. Rep. CSM-474, ISSN 1744-8050 (2007).

[2] J. Nicholson, A.H. Eden, E. Gasparis. "Verification of LePUS3/Class-Z Specifi-

cations: Sample models and Abstract Semantics for Java 1.4." University of Es-

sex, Tech. Rep. CSM-471, ISSN 1744-8050 (2007).

[3] E. Gasparis, A.H. Eden, J. Nicholson, R. Kazman. “The Design Navigator:

Charting Java Programs.” 30th Int'l Conf. Software Engineering (10–18 May

2008), Leipzig, Germany.

[4] http://ttp.essex.ac.uk/.

[5] E. Gasparis, A.H. Eden. "Design mining in LePUS3/Class-Z: search space and

abstraction/concretization operators." University of Essex, Tech. Rep. CSM-473,

ISSN 1744-8050 (2007).

[6] E. Gamma et al. Design patterns: elements of reusable object-oriented software.

Boston: Addison-Wesley, 1995.

[7] J.M. Wing. “A Specifier's Introduction to Formal Methods.” Computer 23:8

(1990), pp. 8–24.

Figure 3. The TTP Toolkit verification results

http://www.lepus.org.uk/ref/refman/refman.xml
http://www.lepus.org.uk/ref/verif/1java_as.xml
http://www.lepus.org.uk/ref/verif/1java_as.xml
http://www.eden-study.org/articles/2008/design-navigator-icse.pdf
http://www.eden-study.org/articles/2008/design-navigator-icse.pdf
http://www.essex.ac.uk/dces/research/publications/technicalreports/2007/CSM-473.pdf
http://www.essex.ac.uk/dces/research/publications/technicalreports/2007/CSM-473.pdf

	LePUS3: An Object-Oriented Design Description Language
	1. Introduction
	2. Visualizing Programs
	3. Specifying Programs and Patterns
	4. Automatically Verifying LePUS3 Specifications
	References

