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Abstract—A novel presentation for channel selection problem
in Brain-Computer Interfaces (BCI) is introduced here. Con-
tinuous presentation in a projected two-dimensional space of the
Electroencephalograph (EEG) cap is proposed. A multi-objective
particle swarm optimization method (D2MOPSO) is employed
where particles move in the EEG cap space to locate the optimum
set of solutions that minimize the number of selected channels and
the classification error rate. This representation focuses on the
local relationships among EEG channels as the physical location
of the channels is explicitly represented in the search space
avoiding picking up channels that are known to be uncorrelated
with the mental task. In addition continuous presentation is a
more natural way for problem solving in PSO framework. The
method is validated on 10 subjects performing right-vs-left motor
imagery BCI. The results are compared to these obtained using
Sequential Floating Forward Search (SFFS) and shows significant
enhancement in classification accuracy but most importantly in
the distribution of the selected channels.

Index Terms—Continuous Presentation, Channel Selection,
Brain Computer Interfaces, EEG, Multi-Objective Problem,
D2MOPSO, Multi-Objective Particle Swarm Optimization,
Dominance, Decomposition

I. INTRODUCTION

Brain-Computer Interface (BCI) is a relatively new approach
to communication between man and machine, which translates
brain activity into commands for communication and control
(i.e., computer cursor control, wheelchair control, robotic
control, etc.) [1], [2], [3]. The user of a BCI system can
perform several well-studied mental tasks to communicate and
control [4], [5], [6]. The machine must be able to recognize
these tasks from brain signals accordingly within a suitable
time window for control. Motor imagery tasks are commonly
used in BCI environment due to their good separability and
the understanding of their neurological mechanisms [7].

Non-invasive BCI uses Electroencephalography (EEG) sig-
nals associated with predefined mental tasks. The number
of channels used by an EEG system can vary according to
experiment paradigm and hardware design. It usually ranges
between 10 and 256 channels. For real-life BCI application it
is important to select a smaller set of channels with as little
sacrifice as possible in classification accuracy.

In order to avoid a large number of channels one can choose
several electrode positions that are known from neurophysio-
logical studies. Although this approach can be very useful, it

ignores the fact that different subjects respond differently and
the optimal positioning of the electrodes may vary. The other
way to circumvent this problem is to use a large number of
channels and use a method to reduce the dimensionality of
the input features or to select the best set of channels for each
subject.

Common Spatial Patterns (CSP) [8] is a well-known spatial
filter that is widely used in BCI. CSP is useful for channel
selection as it can be used to filter out the channels that
provide less discriminate data. CSP requires the data from all
the channels to be available online before the dimensionality
is reduced. CSP depends on the estimation of the covariance
matrices of multiple channel EEG data, which is usually very
sensitive to noise.

The problem of channel selection is usually looked at as a
search problem. The idea is to search the space of possible
combinations of channels in order to find the optimal com-
bination that produces the best classification accuracy. In [9],
the author argues that feature selection is advantageous over
dimensionality reduction in terms of interpretability. Feature
selection (and similarly channel selection) using several search
methods has been used frequently in the literature.

In [10] Digital Particle Swarm Optimization (DPSO) was
used, where each particle contained a number of binary
variables, which is equal to the number of channels, and cross
validation results were used as the fitness function. In [11] a
mixture of CSP and PSO based method was used for channel
selection. In [12], [13] Sequential Floating Forward Search
(SFFS) based methods were employed for channel/feature
selection.

Most search-based solutions presented in the literature are
single-objective methods. The classification accuracy is usu-
ally chosen as the only search criterion. The shortcoming
of this approach is that the optimization process does not
take into consideration the trade-off between the number of
channels selected and the desirable classification accuracy. In
theory, more channels would provide extra information that
can help enhance the classification accuracy. In practice this
might not be very accurate. It could be even desirable to
sacrifice the accuracy in order to have fewer channels and
hence a BCI system which can react to the user input within
a more reasonable time window.
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In [14], [15], we studied a novel multi-objective approach
to the channel selection problem. The modeling of the channel
selection problem was similar to that in single-objective case:
the number of variables (usually binary) is equal to the
number of channels with each channel can be either selected
or not. The goal of the optimization method is to minimize
two objectives: the number of channels and the error rate.
The drawback of this modeling is that it does not count for
the spatial relations among the channels making it prone to
selecting outlier channels (i.e. channels that are known to have
no correlation with the performed mental tasks).

This paper presents a new presentation of the channel
selection problem based on the projection of the real channel
positions in 3D into a two dimensional space. D2MOPSO
[16] is employed here as the multi-objective optimizer based
on particle swarm optimization. D2MOPSO utilizes the
dominance concept [17] along with decomposition. It uses
bounded crowding leaders’ archive to store the non-dominated
particles. The leader selection is then applied to the archive
using the aggregation value as the selection criterion. The
particle personal movement trajectory is updated using decom-
position. All objectives are normalized in order to give them
equal priorities when decomposition is applied. Towards the
end of the optimisation process the size of the leaders’ archive
is substantially reduced to contain only non-dominated parti-
cles with the lowest crowding distance aiming at increasing the
diversity and the coverage of low dense regions. For solving
multi-objective channel selection problem, the particles in
D2MOPSO move continuously in the projected 2D space to
locate the channels that achieve lowest error rate with fewer
channels. This approach is tested on 10 participants performing
right vs left motor-imagery tasks and the results are compared
to SFFS based method.

II. METHODS

A. Modeling Multi-Objective Channel Selection Problem

The modeling of the channel selection problem consists
of defining the objective functions to be optimized and the
representation of the problem in order for the optimization
method to be able to solve it.

The channel selection problem is represented here by first
setting up a maximum number of channels to select C. The
number of decision variables would then be 2C as each
channel is represented by its x and y coordinates in a projected
2D space of the channels 3D locations. The variables are real
variables and can take any value within the space of the EEG
cap. Each channel location is surrounded by an inclusion circle
with radius R. A solution is defined as a set of tuples

si = {(x1, y1), (x2, y2), . . . , (xC , yC)} (1)

Each tuple (xi, yi) is a point in the 2D cap space and is
considered a selected channel if it falls within an inclusion
circle. Should the point fall into two inclusion circles, the
closest channel location is selected using Euclidean distance.
Duplicated selected channels are ignored when calculating the
objective values.

Fig. 1: Projected Biosemi 64+2 EEG channel locations. The
numbering scheme follows the standard Biosemi numbering.
Inclusion circles are drawn around each channel.

The first objective function is the classification error rate
defined as E = 1 − CV where CV is the cross-validation
result. The second objective function is the number of selected
channels C. The optimal solution(s) would have minimum
number of channels with lowest error rate and hence minimize
E and C.

B. D2MOPSO: Multi-Objective Particle Swarm Optimizer
based on Decomposition and Dominance

Decomposition transforms the MOP into a set of distinct
aggregation problems. Each particle solves the corresponding
problem by assigning a priority to each objective according
to a weight vector (λ). This assists the optimisation process
to find potential solutions that are evenly distributed along the
Pareto Front (PF). By associating each particle with a distinct
aggregation problem (i.e. λ value), the exploration activity of
each particle is focused on a specific region in the objective
space and aimed at reducing the distance to the reference point.

Substituting entirely the dominance approach in MOPSO
with decomposition (i.e. using the aggregation value instead
of dominance as the leaders’ selection criterion) might lead to
premature convergence as each particle is strictly directed to
one destination. At some point during optimisation, the par-
ticles would be unable to update their positions and personal
best memory as the global best and neighborhood information
are not changing. In addition to this, solving a MOP with
complicated PF raises a serious challenge as some λ vectors
direct the related particles to unpromising areas. In this case,
part of the swarm is waisting a large number of evaluations
investigating undesirable regions. Another drawback of de-



composition is that while solving MOP with high dimensional
objective spaces, it fails to produce a sufficient number of
non-dominated solutions that cover the entire PF as the space
required to be covered by the swarm using λ vectors grows
exponentially with the number of dimensions. To cope with
this growth, decomposition based approaches need to use a
large swarm to be able to offer a good PF coverage, which
increases the number of function evaluations. The number of
evaluations any evolutionary method needs to cover the PF is
an important features as large number of evaluations counts
as a big disadvantage for any EA and especially in real-life
problem where evaluation can be very expensive.

To overcome these drawbacks, D2MOPSO integrates
both dominance and decomposition approaches. The bounded
crowding leaders’ archive [17], where the leaders of the swarm
are selected from, is based on the dominance approach where
only non-dominated particles are stored. When the archive is
full, the non-dominated particles are only added at the low
dense regions replacing those ones at the high dense regions.
The personal best values are updated and the leaders are
selected based on the decomposition’s aggregation function.

Decomposition requires an aggregation function to decom-
pose the MOP into several aggregation problems. Many func-
tions have been proposed in the literature (e.g., weighted sum,
Tchebycheff, weighted Tchebycheff and Penalty based bound-
ary intersection (PBI)). Recently the weighted PBI method is
reported to be of interest [18] and is used in this paper. PBI is
originally proposed in [19] by modifying Normal Boundary
Intersections (NBI). PBI uses a weighted vector λ and a
penalty value θ for minimizing the distance to the utopia
vector (i.e. a hypothetical vector between the reference point
(z∗ = min{fi(p)|p ∈ Ω}) and the center of the PF) d1 and
the direction error to the weighted vector d2 from the solution
F (p) in the objective space. PBI is then defined in [20]:

minimize g(p|λ, z∗) = d1 + θd2 (2)

where

d1 =
‖ (F (p)− z∗)Tλ ‖

‖ λ ‖
d2 =‖ (F (p)− z∗)− d1

λ

‖ λ ‖
‖

(3)

p is used here to denote the position of the particle in the
solution space rather than x to avoid confusion with the
channel location in the EEG cap space.
D2MOPSO uses the PBI approach to decompose the opti-

misation objective defined by Eq. 4 into N scalar optimisation
problems, where N is the swarm’s size. By changing the
weights and using the reference point defined above, any
Pareto optimal solution can be reached.

F (p) = {f1(p), f2(p), . . . , fm(p)} (4)

where p ∈ Ω, and m is the number of objectives.
In addition to combining dominance and decomposition,

D2MOPSO normalizes the MOP objectives. As the ranges
of the objectives’ values can differ considerably and are

rarely known a priori for the majority of real life problems,
objectives needed to be normalized before aggregation. This
ensures equal priorities for all objectives, thereby preventing
one objective from dominating the others when the aggregation
is applied. The objective values are normalized using a sigmoid
limiting transformation function defined in Eq.5. The Sigmoid
limiting transformation is chosen as it does not need any prior
knowledge of the objectives’ ranges.

S(fi(p)) =
1

(1 + e−fi(p))
(5)

In Eq. 3 the normalized value of each objective
is used instead of the objective values: S(F (p)) =
(S(f1(p), f2(p), . . . , fm(p))) instead of F (p).

The particle’s position is a solution to the channel selection
problem. The position is presented as:

P = {x1, y1, x2, y2, . . . , xC , yC}
= {p1, p2, p3, y4, . . . , p2∗C−1, p2∗C} (6)

where C is the maximum number of selected channels, xi, yi
are coordinates in the cap space as defined in Eq.1.

Every particle determines the next move by finding the new
velocity and new position using Eq. 7 and Eq. 8. The new
velocity, at iteration t, is calculated using pbest, gbest (i.e.
the information of a global leader selected from the leaders’
archive), and the velocity of the particle in the previous
iteration vit−1 .

vit = w ∗ vit−1
+ C1 ∗ r1 ∗ (ppbesti − pit−1

)

+ C2 ∗ r2 ∗ (pgbesti − pit−1
) (7)

pit = pit−1
+ vit (8)

where pbesti is the personal best performance of particlei,
gbest is the global best position of the leader selected from
the archive, r1, r2 ∈ [0, 1] are random values, w ∈ [0.1, 0.5]
is the inertia weight, and C1, C2 ∈ [1.5, 2.0] are the learning
factors that take uniformly distributed random values in their
predefined ranges. The process of leader selection uses a
uniformly distributed random variable r ∈ [0, 1] to decide
whether to select the leaders randomly or using their aggrega-
tion values (i.e. each particle selects the leader that gives the
best aggregation value using the particle’s λ) depending on a
0.5 threshold.

Towards the end of the optimisation process the swarm is
likely to be converged but the particles are still evaluated
till the termination of the algorithm. At the last α% of the
iterations, D2MOPSO reduces the leaders archive size to β%
of its original size. 100 − β% of the particles in the original
archive are removed according to their crowding distance
leaving the particles with the lowest crowding distance in
the archive (i.e. particles at the low dense regions in the
objective space). The particles then select their leaders from



the new archive. This directs all the particles at the end of the
optimisation towards the low dense regions enhancing thereby
the coverage and diversity. α and β are set based on the
convergence of the leaders’ archive, i.e. the leaders’ archive is
no more updated with new non-dominated particles.

The pseudo-code of D2MOPSO is listed in Algorithm 1.

Algorithm 1 D2MOPSO

1: Initialize the swarm with N particles and N λ vectors
2: for i = 1 to N do
3: assign the particle i to its closest λ vector
4: initialize velocities V = {v1, . . . , vN} and pbesti
5: Initialize leaders’ archive, external archive and z∗

6: end for
7: Crowding(leader archive)
8: for i = 1 to MaxIteration do
9: if i == (1− α%) ∗MaxIteration then

10: reduce leaders archive size
11: end if
12: for j = 1 to N do
13: update Velocity, vj(t+ 1)
14: update position, pj(t+ 1)
15: evaluate the new position
16: normalize objectives and calculate aggregate function

for j
17: update pbestj , leaders archive, external archive, and

z∗

18: end for
19: end for
20: Return the final result in the external archive

C. Sequential Forward Floating Search

SFFS is a comprehensive search single objective algorithm.
It starts by selecting the single best channel (with CV as the
search criterion). The algorithm continues by combining the
selected channel with all the non-selected channels one by one
and as a result selects the best two channels and so on. This is
called the growing phase as opposed to the pruning phase in
which a channel is removed from the selected set of channels
and the criterion is checked again. If the criterion has a higher
value with lower number of channels then the new channels
set is adopted. The algorithm alternates between growing and
pruning phases until a maximum number of channels N is
selected or the maximum number of iteration is reached [13].
SFFS is applied here as a baseline to check the performance
of the proposed algorithm.

III. EXPERIMENTS AND RESULTS

A. Data Recording and Pre-processing

EEG data were recorded from 10 healthy subjects using a
(64+2)-channel Biosemi system. Standard synchronous motor-
imagery training was used [21] with two motor-imagery tasks:
left hand, and right hand. No feedback sessions were recorded.
Figure 2 shows the structure of the trials.

Fig. 2: The structure of the synchronous trials

Data were originally recorded at 256Hz but downsampled
to 25Hz after feature extraction. Common reference was used
in this study. Butterworth bandpass filter (1− 45Hz) is used
to remove possible external interference. No artifact removal
methods were applied but data were visually checked.

For each subject, data were recorded over 4 sessions with
10 minutes break in between. Every session consisted of 20
trials per class. In total 160 trials were recorded. The first 4
seconds of every trial are ignored as it does not contain any
task-related information [21].

In order to get the channel locations a Biosemi
64+2 channels locations file provided by EEGLAB
(http://sccn.ucsd.edu/eeglab/channellocation.html) is utilized.
This provides a three-dimensional view of the channels which
is projected onto a two-dimensional plane that goes through
the assumed center of the brain (i.e. the origin used to define
the location of the channels in the 3D space) and parallel to
the XY plane.

B. Feature Extraction and Classification

µ(8 ∼ 12Hz) and low β(13 ∼ 16Hz) rhythms are
extracted from each channel by applying a bandpass FIR filter
at the corresponding frequency band. The filtered data are
squared and then averaged within consecutive time intervals
[22].

If a channel is selected both its µ and β features are used.
Extracted features from the selected channels are combined
together to form one feature vector of maximum 20 features
(the maximum number of selected channels is set to 10).
Linear Discriminant Analysis (LDA) was used to classify the
extracted features with an averaging window of 1 second to
smooth the classifier output. 4-fold cross validation is applied,
based on trial by trial classification, and is used to calculate
the error rate.

C. D2MOPSO parameter settings

D2MOPSO employs a swarm of 100 particles that evolve
through 100 generations. The inertia weight w is set to a
random value in the range [0.1, 0.5], C1 and C2 are set to
2, r1, r2 are set to random values in [0, 1], and α and β are
set to 10%. The algorithm was run 10 times per subject to
avoid any bias due to the random initialization.

The maximum number of possible selected channels is set
to 10 which means the solution space, in which the swarm
evolves, has 20 dimensions (see Eq.6). Decision variables
(pi : i ∈ [1, 2C]) are bounded by an upper and lower limit
to constrain these variables within the space of the EEG cap.



TABLE I: Results using SFFS

Subject Cross Validation Accuracy% Number of Channels
Subject-1 67.05 10
Subject-2 68.17 10
Subject-3 80.17 10
Subject-4 67.20 10
Subject-5 75.29 7
Subject-6 65.16 8
Subject-7 73.71 10
Subject-8 67.69 6
Subject-9 72.22 8
Subject-10 62.37 9
Average 69.90 8.8

Std 5.34 1.47

Fig. 3: Frequency of Channels selected via SFFS

D. Results

First the results using SFFS are presented as a baseline to
check the validity of the results obtained using D2MOPSO.
Table I lists the results achieved on the 10 subjects. Figure 3
shows a histogram of the selected channels over all 10 subjects
with a Gaussian fit of the distribution of the selected channels.

Figure 4 plots the results obtained using D2MOPSO,
where the results of each subject is plotted in distinct color
with a ploynominal fit of degree 2 of the result to show the
approximated Pareto Front for each subject.

To compare with SFFS in terms of classification accuracy
only, Table II shows the maximum accuracy achieved for each
of the 10 subjects. A two-sided t-test shows a significant
enhancement (p = 0.04 < 0.05) of classification accuracy
(taking the max accuracy for D2MOPSO) which is supported
by Figure 5 (the majority of points are under the unity line).
The number of channels is harder to compare as D2MOPSO
provides a wide range of solutions as shown in Fig. 4, but

Fig. 4: Results using D2MOPSO. Results of each subject
are plotted with a polynominal fit of degree 2 to show the
approximated Pareto Front.

TABLE II: Maximum Results using D2MOPSO

Subject Cross Validation Accuracy% Number of Channels
Subject-1 68.03 10
Subject-2 70.70 9
Subject-3 80.11 9
Subject-4 66.78 9
Subject-5 77.39 10
Subject-6 70.03 10
Subject-7 74.81 10
Subject-8 67.39 9
Subject-9 73.07 10
Subject-10 70.03 10
Average 71.83 9.6

Std 4.43 0.52

comparing with the highest accuracy obtained by D2MOPSO
shows insignificant difference (p = 0.1527 > 0.05) suggesting
that D2MOPSO is capable of achieving higher classification
accuracy for the same number of channels.

Figure 6 illustrates the distribution of channels selected for
10 subjects and using all the solutions obtained in the 10
runs per subject (after removing any dominated solutions),
showing a wider distribution than that in Fig. 3. This can be
interpreted as D2MOPSO is able to widen its search space
and provide more diverse solutions which reflects the goal of
the continuous problem presentation in the first place. Looking
at Fig. 1 it is clear that channels in the motor cortex area
have diverse channel numbers which explains why the wider
distribution of channels in Fig. 6 achieves higher classification
accuracy.

IV. CONCLUSION AND DISCUSSION

A continuous presentation of the channel selection prob-
lem in Brain-Computer Interfaces was introduced within the



Fig. 5: Comparison between accuracy results obtained using
SFFS and D2MOPSO

Fig. 6: Frequency of Channels selected via D2MOPSO

framework of D2MOPSO to offer a more natural way of
solving the problem aiming at higher classification accuracy
with lower number of selected channels. The usage of this
presentation is not limited to D2MOPSO but can easily be
adopted in any other multi-objective (or even single objective)
optimizer capable of solving continuous problems (e.g. GA).

The continuous presentation has an advantage of better ex-
ploring the search space by exploiting the spatial relationships
among channels rather than looking at the channel selection
problem as a discrete problem where channels are considered
spatially independent, which is demonstrated in Figure 6 and
Figure 3.

In a typical scenario, a particle (assumed to be looking
for one channel for simplicity) will start from a random

location within the 2D cap space and then navigate through
the channels to find the one channel that achieves the highest
accuracy. When more channels are needed the particle will use
this navigability mechanism to maintain the spatial relationship
among channels resulting in a much homogeneous set of
channels for classification.

In the presented experiments, the particles were allowed to
start from random locations in the space of the brain. Restrict-
ing the initial positions to regions that are known to contain
task-related information might be advantageous but was not
used here because we are also interested in finding channels
outside the commonly known areas to account for individual
differences. In general, however, the selected channels fall
within the motor cortex area (i.e. around Cz) for most subjects.

The results presented in Fig. 4 show predicted Pareto fronts
(i.e. error rate goes down with the increase of number of
channels but only to a certain limit where the error rate can
increase again) for most subjects with some exceptions (e.g.
Subject10 which showed an increase in error rate with the
increase in the number of channels).

The effectiveness of the multi-objective approach is mini-
mizing the number of channels that can be used with insignif-
icant sacrifice in accuracy is not discussed here in detail as
this was previously studied and demonstrated in [14], [15].
However, Figure 4 details the different solutions obtained for
each subject and it shows for most subjects similar results to
these found in [14], [15].

The results presented here are based on synchronous BCI
design (i.e. the timing is controlled by the system). We have
not tested this approach on self-paced design (i.e. the timing
is controlled by the subject) and hence we cannot make any
claim on how it might perform, but we can comfortably
predict similar results mainly due to the problem presentation
proposed.

We did not compare the results of D2MOPSO here with
other multi-objective algorithms (e.g. [14]) as the goal of
this work is to demonstrate the effectiveness of the proposed
presentation rather than the optimizer itself.
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