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Abstract

We obtain the Smith normal forms of a class of circulant polynomial matrices
(λ-matrices) in terms of their “associated polynomials” when these polynomials
do not have repeated roots. We apply this to the case when the associated
polynomials are products of cyclotomic polynomials and show that the entries
of the Smith normal form are products of cyclotomics.
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1. Introduction

The Smith normal form theorem (“possibly the most important theorem in
all of elementary matrix theory” [4]) has a range of applications, such as for
solving differential equations and for detecting similarity of matrices and ob-
taining Frobenius forms. Many algorithms for finding Smith forms of matrices
and λ-matrices have been developed, implemented, and their complexities stud-
ied. This has been done both from floating point and symbolic computation
perspectives – see for example [8],[2],[6],[7]. The multiplicativity of Smith forms
of λ-matrices is considered in [5].

A circulant matrix is one in which each row is a cyclic shift of the preced-
ing row by one column. Such matrices are applied in mathematics, statistics,
the physical sciences and electronic engineering; some of their applications are
described in [1]. Circulant matrices form a class of matrices where attractive,
concise, results may be obtained. For instance, the eigenvalues of a circulant
matrix C can be stated in terms of the roots of its “representer polynomial”,
and hence the diagonal form of C may be stated in terms of this polynomial.

In this paper we investigate the Smith normal form for a class of circulant
λ-matrices, and show that this can also be stated in terms of the representer
polynomial. Our methods are based on those developed by Lin and Phoong [3]
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in their study of “pseudo-circulant matrices” used in the design of digital filters.
Our results differ from the Smith form results cited above, in that they give
an expression for the Smith form itself, rather than an algorithm for finding it;
this further supports Davis’s assertion that “practically every matrix theoretic
question for circulants may be resolved in ‘closed form’ ” [1, page xi].

2. Preliminaries

We first set out the notation and terminology that we will use throughout
the paper; this will be based on [4]. Let R be a principal ideal ring and F a
field (often this will be Q) and let Rn×n denote the ring of n× n matrices over
R (where n ≥ 1). If R = F [λ], where λ is an indeterminate, then an element
M = M(λ) ∈ F [λ]n×n is a λ-matrix over F (these are also known as polynomial
matrices). An element M ∈ Rn×n is unimodular if its determinant is a unit of
R. Thus if R = F [λ] the unimodular matrices are those with non-zero constant
determinant.

2.1. Smith normal forms

The Smith normal form theorem can be stated as follows (see for example [4,
Theorem II.9]).

Theorem 2.1. Let R be a principal ideal ring and let M ∈ Rn×n. Then there
exist unimodular matrices U, V ∈ Rn×n such that UMV = S where

S = diagn(s1, . . . , sr, 0, . . . , 0),

where r = rankR(M), s1, . . . , sr are non-zero elements of R and si|si+1 for
1 ≤ i ≤ r − 1.

The matrix S in Theorem 2.1 is called a Smith normal form (over R) of M
and it is unique up to multiplication of the entries by units in R. This means
that for λ-matrices over F , the entries may be taken to be monic polynomials;
some authors include this condition as part of the definition of a Smith form –
we shall not do so however.

2.2. Circulant λ-matrices

For γ = (a1, . . . , an) ∈ Rn the circulant matrix circn(γ) ∈ Rn×n is the
matrix (over R)

C =


a1 a2 a3 · · · an
an a1 a2 · · · an−1

an−1 an a1 · · · an−2

...
...

...
...

a2 a3 a4 · · · a1

.
We will be concerned with circulant λ-matrices (over F ) so

γ = γ(λ) = (a1(λ), . . . , an(λ))
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and

C = C(λ) = circn(γ(λ)).

We now give some standard derivations which extend the theory of circulant
matrices from Section 2, Chapter 3 of [1] to circulant λ-matrices. We keep our
notation and terminology close to that used in [1]. Let

π = circn(0, 1, 0, . . . , 0)

be the fundamental circulant. The representer polynomial for C(λ) (in the
indeterminate z) is the polynomial

pγ(λ)(z) =
n∑
i=1

ai(λ)zi−1

and we observe that
pγ(λ)(π) = circn(γ(λ)).

We shall call the polynomial

f(λ) = pγ(λ)(1) =

n∑
i=1

ai(λ)

the associated polynomial for C(λ). We define

Ω = diagn(1, ζn, . . . , ζ
n−1
n )

where (as throughout this paper) ζn denotes e2π
√
−1/n, and we let F be the

Fourier matrix of order n (i.e., it is the n × n matrix whose (i, j)th matrix is

ζ
−(i−1)(j−1)
n /

√
n). By Theorem 3.2.1 of [1], we have π = F∗ΩF , where F∗ is

the conjugate transpose of F . Therefore

C(λ) = pγ(λ)(π) = pγ(λ)(F∗ΩF) = F∗pγ(λ)(Ω)F = F∗Λ(λ)F

where

Λ(λ) = diagn(pγ(λ)(1), pγ(λ)(ζn), . . . , pγ(λ)(ζ
n−1
n )). (1)

In summary, we have the λ-matrix version of Theorem 3.2.2 of [1]:

Theorem 2.2. Let C(λ),Λ(λ) and Ω, π,F be the λ-matrices and matrices de-
fined above. Then Λ(λ) is a diagonal form for C(λ) with diagonalizing matrices
F∗, F :

C(λ) = F∗Λ(λ)F .

Taking determinants (and noting F∗F = I) we get

det(C(λ)) =

n∏
j=1

pγ(λ)(ζ
j−1
n ). (2)
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The same argument as [1, pages 75–76] shows that we may express this as a
resultant

n∏
j=1

pγ(λ)(ζ
j−1
n ) = Res(zn − 1, pγ(λ)(z)).

Further, we have

Res(zn − 1, pγ(λ)(z)) = an(λ)
n
n−1∏
i=1

(µi(λ)n − 1)

where µ1(λ), . . . , µn−1(λ) ∈ F [λ] are the roots of pγ(λ)(z). Summarizing, we
have the following corollary to Theorem 2.2 (which is the analogue of the formula
obtained in [1, page 76]).

Corollary 2.3. In the above notation det(C(λ)) = an(λ)
n∏n−1

i=1 (µi(λ)n − 1).

We record another corollary of Theorem 2.2:

Corollary 2.4. In the above notation rankF [λ](C(λ)) = rankF [λ](Λ(λ)).

3. Smith forms of circulant λ-matrices

In this section we consider circulant λ-matrices

C(λ) = circn(c1(λn), λc2(λn), . . . , λn−1cn(λn)) ∈ Q[λ]n×n. (3)

We obtain a Smith form for C(λ) in terms of the roots of the associated poly-
nomial f(λ) =

∑n
i=1 λ

i−1ci(λ
n). Our methods apply to a slightly wider class

of circulant λ-matrices than these; we will comment on this at the end of the
section.

Our methods are based on those developed in [3]. Following the terminology
of that paper, for n ≥ 2 we say that θ, φ ∈ C are congruous with respect to n if
θn = φn and we say that a set of complex numbers is congruous with respect to
n if all pairs of its elements are.

Proposition 3.1. Let 0 ≤ j ≤ n− 1. The representer polynomial pγ(λ)(z) and
the associated polynomial f(λ) of a circulant λ-matrix of the form (3) satisfy
pγ(λ)(ζ

j
n) = f(λζjn).

Proof.

pγ(λ)(z) =

n∑
i=1

λi−1ci(λ
n)zi−1 =

n∑
i=1

ci(λ
n)(λz)i−1

so

pγ(λζjn)(z) =

n∑
i=1

ci(λ
n)(λ(ζjnz))

i−1 = pγ(λ)(ζ
j
nz)

and in particular f(λζjn) = pγ(λζjn)(1) = pγ(λ)(ζ
j
n).
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We require the following proposition, the proof of which is straightforward.

Proposition 3.2. Let {α1, . . . , αq} be a set of roots of a polynomial in Q[λ] that
is congruous with respect to n ≥ 2. Then, for j = 1, . . . , q we have αj = α1ζ

nj
n

for some distinct 0 ≤ nj ≤ n− 1.

Our key lemma is:

Lemma 3.3. Let C(λ) ∈ Q[λ]n×n be of the form (3) and let f(λ) ∈ Q[λ] be
its associated polynomial. Let αi be a root of f . Let Σ be a congruous set of
roots of f (with respect to n) that contains αi such that Σ cannot be properly
contained in any other set of congruous roots of f (with respect to n).

If S(λ) = diagn(s1(λ), . . . , sn(λ)) is a Smith form for C(λ) then (λn − αni )
is a factor of sj(λ) if and only if n− |Σ| < j ≤ n.

Proof. By Proposition 3.1 and (1) we have that

Λ(λ) = diagn(f(λ), f(λζn), . . . , f(λζn−1
n )).

Therefore for each 0 ≤ ` ≤ n− 1 we have

Λ(αiζ
`
n) = diagn(f(αiζ

`
n), f(αiζ

`+1
n ), . . . , f(αiζ

`+n−1
n ))

and so the set of diagonal terms of Λ(αiζ
`
n) is

{f(αiζ
`
n), f(αiζ

`+1
n ), . . . , f(αiζ

`+n−1
n )} = {f(αi), f(αiζn), . . . , f(αiζ

n−1
n )}.

By Proposition 3.2 we may write Σ = {αiζn1
n , . . . , αiζ

n|Σ|
n } for distinct 0 ≤

n1, . . . , n|Σ| ≤ n − 1. Thus f(αiζ
n1
n ) = . . . = f(αiζ

n|Σ|
n ) = 0 so at least |Σ|

of the diagonal entries of Λ(αiζ
`
n) are zero. No other diagonal entries can be

zero, for otherwise Σ could be expanded to form a set of congruous roots of f
that contains Σ, a contradiction. Thus rankQ[αiζ`n](Λ(αiζ

`
n)) = n − |Σ| and by

Corollary 2.4 we have

rankQ[αiζ`n](C(αiζ
`
n)) = n− |Σ|.

Therefore by Theorem 2.1

rankQ[αiζ`n](S(αiζ
`
n)) = n− |Σ|

so (λ− αiζ`n) divides exactly |Σ| of the diagonal entries of S(λ). That is, (λ−
αiζ

`
n) divides sj(λ) if and only if n − |Σ| < j ≤ n. Since this is true for each

0 ≤ ` ≤ n− 1 we have that

n−1∏
`=0

(λ− αiζ`n) = (λn − αni )

divides sj(λ) if and only if n− |Σ| < j ≤ n.
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Theorem A. Let C(λ) ∈ Q[λ]n×n be of the form (3) and suppose that its
associated polynomial f(λ) ∈ Q[λ] does not have repeated roots. Suppose that
the sets Ai (i ∈ I) form a partition of the set of roots of f such that each set Ai
is congruous with respect to n ≥ 2 and such that there is no such partition into
fewer sets. For each i ∈ I let αi denote one element of Ai. Then there exist
unimodular matrices U(λ), V (λ) ∈ Q[λ]n×n such that U(λ)C(λ)V (λ) = S(λ)
where

S(λ) = diagn(s1(λ), . . . , sn(λ))

where for each j = 1, . . . , n

sj(λ) =
∏
i∈I,

|Ai|>n−j

(λn − αni ).

The matrix S(λ) is a Smith form (over Q[λ]) of C(λ).

Proof. By Theorem 2.1 there exist unimodular matrices U(λ), V (λ) ∈ Q[λ]n×n

such that U(λ)C(λ)V (λ) = S(λ) where S(λ) = diagn(s1(λ), . . . , sn(λ)) and
sj |sj+1 for all 1 ≤ j ≤ n − 1. The condition on the partition ensures that no
congruous set Ai can be properly contained in any other congruous set of roots
of f (with respect to n). Therefore Lemma 3.3 implies that the entry sj(λ)
(j = 1, . . . , n) of S(λ) is

sj(λ) = hj(λ)
∏

f(α)=0,
αn=αni ,
i∈I,

|Ai|>n−j

(λn − αn)

= hj(λ)
∏
i∈I,

|Ai|>n−j

(λn − αni ) (4)

It remains to show that each hj(λ) is a unit, so may be taken to be 1. We have

s1(λ) . . . sn(λ) = det(S(λ))

= c · det(C(λ)) for some c ∈ Q by Theorem 2.1

= c

n∏
j=1

pγ(λ)(ζ
j−1
n ) by (2)

= c

n∏
j=1

f(λζj−1
n ) by Proposition 3.1. (5)

Let kλL (k ∈ Q) be the leading term of f(λ) so, since f does not have repeated

roots, we have that L =
∑
i∈I |Ai|. Then f(λ) = k

∏L
l=1 (λ− θl), where θl,
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l = 1, . . . , L, are the roots of f(λ) and we have

n∏
j=1

f(λζj−1
n ) = kn

L∏
l=1

(λ− θl)(λζn − θl) . . . (λζn−1
n − θl)

= kn
L∏
l=1

(−1)n(λn − θnl )

= (−1)Lnkn
L∏
l=1

(λn − θnl )

which has degree nL so by (5) we have

deg(s1(λ) . . . sn(λ)) = nL. (6)

Now by (4) we have

deg(s1(λ) . . . sn(λ)) = deg(h1(λ) . . . hn(λ)) + deg(g(λ)) (7)

where

g(λ) =

n∏
j=1

∏
i∈I,

|Ai|>n−j

(λn − αni ).

This gives that for i ∈ I, (λn − αni ) is a factor of g(λ) of multiplicity |Ai| so
deg(g(λ)) = n

∑
i∈I |Ai| = nL. Then (6),(7) imply deg(h1(λ) . . . hn(λ)) = 0, so

for every j = 1, . . . , n we have that hj(λ) is a constant, and therefore a unit.

Note that in general the associated polynomial does not determine the Smith
form of a λ-matrix. For example circ3(1, λ, λ2) has a Smith form diag3(1, λ3 −
1, λ3 − 1) whereas circ3(1, λ + λ2, 0) has a Smith form diag3(1, 1, λ6 + 3λ5 +
3λ4 + λ3 + 1). The hypothesis that C(λ) is of the form (3) may be replaced
by the condition that the associated polynomial f(λζjn) = pγ(λ)(ζ

j
n) for all 0 ≤

j ≤ n − 1. Such a weakening of hypothesis appears to be somewhat marginal,
however.

4. Circulant λ-matrices associated with products of cyclotomics

In this section we consider circulant λ-matrices of the form (3) where the
roots of the associated polynomial are roots of unity and are not repeated. That
is, for associated polynomials of the form

f(λ) =

r∏
i=1

Φdi(λ) (8)
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where r ≥ 1, di ≥ 1, di 6= dj for i 6= j. If we let m = lcm(d1, . . . , dr) then we
may write (8) as

f(λ) =
∏
d|m

Φd(λ)δ(d) (9)

where

δ(d) =

{
1 if d ∈ {d1, . . . , dr},
0 if d 6∈ {d1, . . . , dr},

and clearly we can write (9) in the form (8). Examples of λ-matrices of this
form are

circn(1, λ, λ2, . . . , λm−1, 0, . . . , 0) ∈ Q[λ]n×n, (10)

where n ≥ m, and their associated polynomials are

1 + λ+ λ2 + . . .+ λm−1 =
∏
d|m
d6=1

Φd(λ).

These appear in Problem 28, page 82 of [1], which asks for a proof that the
determinant is equal to

(−1)(m,n)−1 (λnm/(m,n) − 1)(m,n)

λn − 1

(attributing the result to Oystein Ore). Theorem B will calculate the Smith
form of λ-matrices of the form (3) with associated polynomial of the form (9)
and show that its diagonal entries are products of cyclotomics in λn; Corollary C
will apply it to the λ-matrices (10).

By (9) we see that the set of roots of f is

B = {ζid | i = 1, . . . , d− 1, (i, d) = 1, d|m, δ(d) = 1}. (11)

Now
f(λ)|

∏
d|m

Φd = (λm − 1)

and (λm − 1) has roots ζim, i = 0, . . . ,m− 1, so the set of roots of f is

B = {ζim | i = 0, . . . ,m− 1,Φd(ζ
i
m) = 0 for some d|m with δ(d) = 1}.

With this in mind, we set M = m/(m,n), N = n/(m,n) and for each µ =
0, . . . ,M − 1 we define the sets

Bµ = {ζµ+jM
m | j = 0, . . . , (m,n)− 1,Φd(ζ

µ+jM
m ) = 0 for some d|m, δ(d) = 1}

(12)
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and it is clear that these form a partition of the set B. Furthermore, given
µ = 0, . . . ,M − 1, if θ ∈ Bµ then

θn = ζnµ+jMn
m = ζnµm · (ζmm )jn/(m,n) = ζnµm (13)

so each set Bµ (µ = 0, . . . ,M − 1) is congruous with respect to n.
Also, if ζim ∈ B is congruous to an element of Bµ then ζim ∈ Bµ. To see this

note that ζim ∈ B can be written ζim = ζµ
′+jM

m for some µ′ ∈ {0, . . . ,M − 1},
j ∈ {0, . . . , (m,n)− 1}, so (ζim)n = ζnµm if and only if ζnµ

′

m = ζnµm or equivalently

ζNµ
′

M = ζNµM or ζ
N(µ′−µ)
M = 1 or (µ′−µ) ≡ 0 mod M , ie µ′ = µ so ζim = ζµ+jM

m ∈
Bµ. Thus the set Bµ cannot be properly contained in any other set of congruous
roots of f (with respect to n).

For each µ = 0, . . . ,M − 1, let χ(µ) denote any element of Bµ. We collect
the sets Bµ according to the ‘primitivity’ of χ(µ)n. That is, since χ(µ)n = ζnµm
is a primitive m/(nµ,m)’th root of unity, we collect the sets Bµ according to
the value of m/(nµ,m), or equivalently according to the value of (nµ,m). Now

{(nµ,m) | µ = 0, . . . ,M − 1} = {(N(m,n)µ,M(m,n)) | µ = 0, . . . ,M − 1}
= {(m,n)(Nµ,M) | µ = 0, . . . ,M − 1}
= {(m,n)(µ,M) | µ = 0, . . . ,M − 1}
= {(m,n)D | D|M}. (14)

That is, the possible values of (nµ,m)/(m,n) are the divisors D of M . We
partition the set {0, . . . ,M − 1} according to these values. For each D|M ,
defining

CD = {µ | µ = 0, . . . ,M − 1, (nµ,m)/(m,n) = D}

gives such a partition, i.e.

·∪D|M CD = {µ | µ = 0, . . . ,M − 1}. (15)

Proposition 4.1.
∏
µ∈CD (λn − χ(µ)n) = ΦM/D(λn).

Proof.∏
µ∈CD

(λn − χ(µ)n) =
∏

µ=0,...,M−1
(nµ,m)=(m,n)D

(λn − ζnµm )

=
∏

µ=0,...,M−1
(Nµ,M)=D

(λn − ζNµ(m,n)
m )

=
∏

µ=0,...,M−1
(Nµ,M)=D

(λn − ζNµM )

=
∏

ν=0,...,M−1
(ν,M)=D

(λn − ζνM ) where ν = Nµ mod M

and the result follows.
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Proposition 4.2. Let D|M . If µ, µ′ ∈ CD then |Bµ| = |Bµ′ |.

Proof. Let µ, µ′ ∈ CD. Then we have (nµ,m)/(m,n) = D = (nµ′,m)/(m,n),
so (nµ,m) = (nµ′,m). Hence there exists 1 ≤ t ≤ m, (t,m) = 1 such that
t(nµ) ≡ (nµ′) mod m. Therefore t(Nµ) ≡ Nµ′ mod M and thus tµ ≡ µ′ mod M
(since (M,N) = 1), so tµ = µ′ + rM for some r ∈ Z. If ζµ+jM

m ∈ Bµ then

ζ
(µ+jM)t
m = ζµt+jMt

m = ζµ
′+j′M

m where j′ = r + jt mod m. Now since (t,m) = 1
we have (µ+ jM,m) = (µt+ jtM,m) = (µ′ + rM + jtM,m) = (µ′ + j′M,m) ,
i.e.

(µ′ + j′M,m) = (µ+ jM,m). (16)

Now since ζµ+jM
m ∈ Bµ we have Φd(ζ

µ+jM
m ) = 0 for some d|m with δ(d) = 1.

That is, ζµ+jM
m is a primitive d’th root of unity (where d|m with δ(d) = 1).

By (16) we have that ζµ
′+j′M

m is also a primitive d’th root of unity so ζµ
′+j′M

m ∈
Bµ′ . Therefore we may define ι : Bµ → Bµ′ by ι(θ) = θt. Then ζµ

′+j′M
m =

ι(ζµ+jM
m ) so ι is onto; we now show that it is one-to-one.
Let θ1 = ζµ+j1M

m , θ2 = ζµ+j2M
m ∈ Bµ (j1, j2 ∈ {1, . . . , (m,n) − 1}). Then

ι(θ1) = ι(θ2) if and only if ζ
(j1−j2)Mt
m = 1. This occurs if and only if (j1 −

j2)Mt ≡ 0 mod m, which occurs if and only if (j1 − j2)M ≡ 0 mod m (since
(m, t) = 1), which occurs if and only if (m,n)|(j1 − j2), i.e. j1 = j2. Therefore
ι is a bijection, and the result follows.

Therefore, for each D|M we may set

bD = |Bµ| (17)

for any µ ∈ CD. We can give a self contained expression for bD, which we shall
use in the statement of Theorem B.

Proposition 4.3. Let D|M . Let µ = 0, . . . ,M − 1 satisfy (nµ,m) = (m,n)D
(such a µ exists by (14)). Then

bD = |{j | j = 0, . . . , (m,n)− 1,m/(µ+ jM,m) = d for some d|m, δ(d) = 1}|.

Proof. We have that µ ∈ CD so the result follows from (12),(17).

Proposition 4.4. For each j = 1, . . . , n∏
µ=0,...,M−1
|Bµ|>n−j

(λn − χ(µ)n) =
∏
D|M

ΦM/D(λn)∆(D,j)

where ∆(D, j) =

{
0 if bD ≤ n− j,
1 if bD > n− j.
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Proof. ∏
µ=0,...,M−1
|Bµ|>n−j

(λn − χ(µ)n) =
∏
D|M

∏
µ∈CD
|Bµ|>n−j

(λn − χ(µ)n) by (15)

=
∏
D|M

bD>n−j

∏
µ∈CD

(λn − χ(µ)n) by (17)

=
∏
D|M

bD>n−j

ΦM/D(λn) by Proposition 4.1

=
∏
D|M

ΦM/D(λn)∆(D,j).

Theorem B. Let m,n ∈ N, set M = m/(m,n) and suppose

C(λ) = circn(c1(λn), λc2(λn), . . . , λn−1cn(λn)) ∈ Q[λ]n×n

has associated polynomial

f(λ) =
∏
d|m

Φd(λ)δ(d)

where δ(d) ∈ {0, 1} (d|m). Each D|M may be written D = (nµ,m)/(m,n) for
some µ = 0, . . . ,M − 1; for each such D define

bD = |{j | j = 0, . . . , (m,n)− 1,m/(µ+ jM,m) = d for some d|m, δ(d) = 1},

and for each such D and 1 ≤ j ≤ n define ∆(D, j) by

∆(D, j) =

{
0 if bD ≤ n− j,
1 if bD > n− j.

Then there exist unimodular matrices U(λ), V (λ) ∈ Q[λ]n×n such that

U(λ)C(λ)V (λ) = S(λ)

where S(λ) = diagn(s1(λ), . . . , sn(λ))where

sj(λ) =
∏
D|M

ΦM/D(λn)∆(D,j)

and S(λ) is a Smith form (over Q[λ]) of C(λ).

Proof. Recall that the sets Bµ (µ = 0, . . . ,M−1) defined at (12) form a partition
of the set B of roots of f defined at (11) and each set Bµ is congruous with
respect to n by (13). Further, no set Bµ can be properly contained in any other
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set of congruous roots of f (with respect to n) so there is no such partition into
fewer sets. Thus by Theorem A there exist unimodular matrices U(λ), V (λ) ∈
Q[λ]n×n such that S(λ) = U(λ)C(λ)V (λ) is a Smith form (over Q[λ]) of C(λ),
where

S(λ) = diagn(s1(λ), . . . , sn(λ))

where for each j = 1, . . . , n

sj(λ) =
∏

µ=0,...,M−1
|Bµ|>n−j

(λn − χ(µ)n)

where χ(µ) denotes one element from Bµ so Proposition 4.4 implies

sj(λ) =
∏
D|M

ΦM/D(λn)∆(D,j).

Corollary C. Let C(λ) = circn(1, λ, λ2, · · · , λm−1, 0, · · · , 0) ∈ Q[λ]n×n and set
M = m/(m,n). Then there exist unimodular matrices U(λ), V (λ) ∈ Q[λ]n×n

such that U(λ)C(λ)V (λ) = S(λ) where

S(λ) = diagn(1, · · · , 1︸ ︷︷ ︸
n−(m,n)

,

M−1∑
j=0

λjn, λnM − 1, · · · , λnM − 1︸ ︷︷ ︸
(m,n)−1

)

is a Smith form for C(λ).

Proof. The associated polynomial is

f(λ) = 1 + λ+ λ2 + . . .+ λm−1 =
λm − 1

λ− 1
=

∏
d|m

Φd(λ)δ(d)

where δ(1) = 0, δ(d) = 1 (d|m, d 6= 1). For D|M with D = (nµ,m)/(m,n)
(µ = 0, . . . ,M − 1) we have

bD = |{j | j = 0, . . . , (m,n)− 1,m/(µ+ jM,m) = d for some d|m, d 6= 1}|
= |{j | j = 0, . . . , (m,n)− 1,m/(µ+ jM,m) 6= 1}|
= |{j | j = 0, . . . , (m,n)− 1, µ 6= 0 or j 6= 0}|

=

{
(m,n) if µ 6= 0,

(m,n)− 1 if µ = 0.

Now µ = 0 if and only if D = M so bD = (m,n) if D 6= M and bD = (m,n)− 1
if D = M . That is, ∆(D, j) = 0 if 1 ≤ j ≤ n − (m,n) or if j = n − (m,n) + 1
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and D = M , and ∆(D, j) = 1 otherwise, so Theorem B gives

sj(λ) =
∏
D|M

ΦM/D(λn)∆(D,j)

=


1 if j ≤ n− (m,n),∏

D|M
D 6=M

ΦM/D(λn) if j = n− (m,n) + 1,∏
D|M ΦM/D(λn) if j > n− (m,n) + 1,

=


1 if j ≤ n− (m,n),∑M−1
j=0 (λn)j if j = n− (m,n) + 1,

(λn)M − 1 if j > n− (m,n) + 1.
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