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Fig. 1. GP: “Survival of the fittest” program

1. INTRODUCTION

Genetic programming [Koza 1992; Banzhaf et al. 1998; Langdon and Poli 2002] is
an established artificial intelligence technique which is used in many areas. Essen-
tially it applies the older genetic algorithm technique [Holland 1992; Goldberg 1989]
to automatically generate programs. (See Figure 1.)
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The next section will introduce genetic programming, including a very short
over view of the many areas where GP has been applied, before Section 3 con-
centrates on uses of genetic programming in the Pharmaceutical industry. We
finish with a worked example (Section 4) which describes an evaluation of machine
learning for predicting potential drugs’ activity with an pharmaceutically impor-
tant enzyme (Human cytochrome P450 2D6) made by GlaxoSmithKline chemists
[Langdon et al. 2001; Langdon et al. 2002; Langdon et al. 2002; Langdon 2002a;
Langdon 2002b; Langdon et al. 2003]. Appendix A gives pointers to further in-
formation.

2. WHAT IS GENETIC PROGRAMMING

This section describes genetic programming. Although many variations are possi-
ble, GP is essentially simple and you can easily either down load a free version or
code your own version and give it a try.

In genetic programming (GP) [Koza 1992; Banzhaf et al. 1998; Langdon 1998;
Langdon and Poli 2002] Darwinian natural selection [Darwin 1859] is used inside
computers. GP starts with a population containing a primordial soup of randomly
created programs. Selection is applied so that the “fitter” programs survive and
have more children. Over a series of generations the population evolves and fitness
improves. After, say, 50 generations a suitable solution, or approximate solution,
may be found. See Figure 1.

2.1 Representing programs in Genetic Programming

Typically in GP the individual programs in the evolving population are stored as
parse trees. These are very similar to a Lisp S-expressions. Figure 2 shows a tree
which calculates (a+b)*c. Where a, b and c are the program’s inputs. The trees
internal nodes (+ and *) are functions and the result of the calculation emerges from
the tree’s root. In data mining and Bioinformatics the programs are usually treated
as predictive models. E.g. given properties of a molecule (such as does it have an
acidic group, a base or a metallic cation) predict how strongly it will interact with a
chosen enzyme. Obviously, as Section 4 will show, real examples are more complex
but you can use computers to automatically evolve such programs. The rest of this
section describes GP in more detail but in many cases trees like Figure 2 are good
enough.

The original GP systems evolved programs represented as trees [Forsyth 1981;
Cramer 1985; Bickel and Bickel 1987; Fujiki and Dickinson 1987; Koza 1989] and
this is still the most common form of GP. Linear genetic programming is by
far the most successful alternatives to trees [Banzhaf et al. 1998]. Typically low
level assembler or machine code programs are evolved but grammars allow a lin-
ear representation to specify higher level languages, e.g. grammatical evolution
[O’Neill and Ryan 2003]. However many other representations have been consid-
ered such as Holland’s classifiers [De Jong 1987] and graphs, e.g. PADO
[Teller and Veloso 1995], Parallel Distributed Genetic Programming [Poli 1996],
Cartesian Genetic Programming [Miller and Smith 2006], Binary Decision Diagrams
[Downing 2006], Genetic Network Programming [Eguchi et al. 2006] and Multiple
Interacting Programs [Angeline 1998].

Efficient ways of using tree programs have been promoted several times, mostly
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these are based on DAGs and caching, e.g. [Handley 1994a; Ehrenburg 1996; Droste 1997;
Kvasnieka and Pospichal 1997; Yangiya 1995; Krawiec and Lijewski 2006]. Another
popular approach is to use the evolved program to specify not the final program but
how to generate the final solution (be it another program, an architectural design or
robot). This goes under several names, e.g. genotype-phenotype mapping, embryol-
ogy and developmental systems [Gruau 1993; Sims 1994; Keller and Banzhaf 1999;
Hemberg and O’Reilly 2004; Ijspeert and Kodjabachian 1999; Hornby et al. 2003;
Jacob 2001; Koza et al. 2003; Jones et al. 2005; Kumar 2005; McKay et al. 2006;
Miller and Banzhaf 2003; Wilson and Heywood 2006]. Others have rejected evolu-
tion of low level languages and sort to evolve programs in as powerful as possible
high level languages, either directly [Yu 2001], by using strong typing [Montana 1995]
or external grammars to constrain the children of fit programs to have syntactic or
semantically desirable properties [Whigham and Crapper 1999; Wong and Leung 1995;
Hoai et al. 2003]. The Push system [Spector and Robinson 2002] seeks to avoid hu-
man intervention and even (like [Teller 1996]) allows the programs to generate their
own breeding operations.

2.2 Genetic Programming Fitness Function

The fitness function guides evolution. It is how you tell evolution which are the
better programs. In supervised data mining the classic fitness functions use training
examples where the desired output for each example is given along with some (pre-
dictive) facts about that example. E.g. given publicly available data and history for
a number of stocks traded in the far-east, predict which companies went bankrupt
[Zhou 2003]. Or given the solubility of 1000 chemicals and their molecular weight,
electric charge and pH, predict the solubility of a new chemical.

Typically the fitness of an individual program in the population is either its
root mean squared (RMS) error or the number of correct predictions it made on
the training data. However, particularly in Bioinformatics, the available data of-
ten contains many more examples of one class (e.g. healthy patients) than of the
others. In this case, the easy trap to fall into, is to evolve a predictor which
always says the patient is healthy regardless of its inputs. There are a number

+
*

c

a b

Fig. 2. GP models are often represented as trees. E.g. eval=(a+b)*c. Where a,b,c (the inputs

to the model) are leaves. While + and * are functions and internal nodes of the tree. The result

emerges from the root node (*) of the tree.
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of ways of dealing with this, for example using the area under the ROC curve
as fitness [Langdon and Buxton 2001a; Langdon and Buxton 2001b] http://www.
cs.ucl.ac.uk/staff/W.Langdon/roc/.

2.3 Creating new programs

Typically the programs in the initial population are randomly created. There are a
number of ways of doing this [Koza 1992; Langdon 2000] however the details may
not matter. Any simple mechanism which creates trees of different sizes and shapes
and with different functions and inputs, may be fine. Evolution will exert its own
biases on the initial population over time [Poli et al. 2007].

It can be interesting to count the number of copies of each input or function
there are in the initial population and trace how it evolves over successive gener-
ations [Langdon and Poli 1997; Langdon 1998]. This allows you to double check
everything you expect to be in the initial population is indeed present. Also, par-
ticularly if you have many inputs, it is possible for primitives to become extinct.
NB. this may be exactly what is required. For example, in some problems there
are many inputs which are not informative and so it may help if they became ex-
tinct [Langdon and Buxton 2004]. In data mining we would say that evolution is
automatically doing feature selection.

The better programs are selected to be parents for the next generation. The new
programs can be mutated copies of their parent or two parents can get together to
produce one or more children. Many different ways or randomly mutating programs
have been suggested. Generally for data mining it seems to be a good idea to use
a few different mutation operators. However try and avoid randomising the child
program so much that it has little similarity to its parent.

New children are typically created by copying both parents, extracting a subtree
(sub program) from one and inserting into the other (deleting what was their before
hand). See Figure 3. The idea is that this sexually produced child will contain parts
(genes) from both its highly fit parents and so (occasionally) it may be fitter than
either of them. A short animation of Koza’s subtree cross over can be found at
http://www.genetic-programming.com/crossover.gif

It is common for programs to increase in size over time. This is often known as
“bloat” and has been extensively studied [Langdon et al. 1999]. There are many
effective ways of dealing with bloat. However simply ensuring that when you create
new programs by mutation or crossover they do not exceed a certain size, e.g.
25 inputs, is usually sufficient.

Given the ease with which genetic programming can be used it is no surprise
to find it turning up in many applications. Table I gives a brief summary whilst
[Langdon and Qureshi 1995; Langdon 1996] contain more information.

3. DRUG DISCOVERY

We start with a brief overview of the drug discovery process and then continue
with using GP in drug discovery. Medical research on a disease may discover the
disease’s life cycle. There may be a critical point in the life cycle that might be
disrupted by a drug. E.g. a “target” point where a chemical might bind and prevent
the disease’s action.
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Fig. 3. The new child program is created from fragments of its two parents

The number of potential drugs is huge. It has been estimated there are some-
thing like 1040 drug like chemicals1. Using ultra fast high throughput robot based
screening, in the region of a million different chemicals can be measured. E.g. for
traces of activity with the target or for potential side effects. It is clear it is impos-
sible to physically measure every potential drug (or even manufacture them all).
However computer models can predict properties for some of them. The predic-
tions can guide the choice of which chemicals to look at next and, even if only
partially accurate, can save money and time. Computer models of “virtual chem-
icals”, i.e. chemicals that do not exist, are used at many stages of the discovery
“funnel” (cf. Figure 4). If the model suggests a virtual chemical looks promising,
it can then be made.

3.1 P450 and Drug Discovery

As a drug proceeds down the discovery funnel costs escalate rapidly. NB. the later
a potential drug is abandoned the more expensive is the failure. “Late failures”
have contributed to the demise or withdraw from the market of several companies
and the costs involved have contributed to the trend for pharmaceutical companies
to amalgamate. A major cause of late failure is adverse interaction with other parts
of the body.

1While 1040 is a large number, its near the mass of the milky way (cwt), but its nothing to be

scared of. In GP the number of halting programs can exceed 10100 000 000 [Langdon and Poli 2006].
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Table I. Summary of Uses of Genetic Programming

—Prediction and Classification [MacCallum 2004; Francone et al. 2005].

—Image and Signal Processing [Smith et al. 2005]

—Armoured vehicle detection [Lin and Bhanu 2005], modelling blood flow
[Majeed and Ryan 2006], food spoilage [Ellis et al. 2004].

—Bioinformatics and Pharmaceuticals

—Using GP within GlaxoSmithKline. In addition to the work in Section 3 onwards, GP

has been used for: predicting drug take up into the blood after it has been swallowed
[Langdon and Barrett 2004], analysing DNA chip gene expression data [Langdon 2003;

Langdon and Buxton 2004]

—Molecular design [Globus et al. 1999], DNA-based nanotechnology [Feldkamp et al. 2003]
—Drugs and Structure-activity relationship (SAR) modelling [Archetti et al. 2006]

chemistry and protein folding prediction [Handley 1994b; Wasiewicz and Mulawka 2001;
Aggarwal and MacCallum 2004]

—GP and other machine learning techniques used by the pharmaceutical industry are

discussed in [Barrett and Langdon 2006].
—Medicine [Bojarczuk et al. 2000].

—Optimisation

—Engineering, BAE Systems design [Matthews et al. 2006] General Electric aeroplane

turbofan engine optimisation. Engineering [Fan et al. 2002], e.g. design of vehicle
suspension [Wang et al. 2005]. Scheduling [Tanev et al. 2002], vehicle routing

[Benyahia and Potvin 1998], chemical engineering [Kordon et al. 2005].

—Financial Trading [Brabazon and O’Neill 2004]
—Currency trading [Neely and Weller 2003], Stock market prediction (Horse race betting)

[Tsang et al. 1998; Grosan and Abraham 2006]

—Robots and Autonomous Agents, Artificial Life [Brooks 1992]

—Economic simulations [Chen 2006], Robot walking [Wolff and Nordin 2003], Robot flying
[Augustsson et al. 2002; Spector et al. 2005], Robot hand-eye co-ordination

[Langdon and Nordin 2001]

—Artistic
—GP can suggest novel designs, e.g. to architects [Hemberg and O’Reilly 2004]

—Evolving L-systems [Jacob 2001; Langdon 2004]

—Simulations of flocks of birds, bats, herds of wildebeest, etc. These are now state of the
art in major Hollywood computer generate film sequences (CGI). Indeed the inventor,
Craig Reynolds, was awarded an Oscara.

a 1997 (70th) Scientific and Engineering Award, Digital Imaging, Craig W. Reynolds for his pi-

oneering contributions to the development of three-dimensional computer animation for motion

picture production.

P450 (Figure 5) is a class of enzymes which stick out of animal cells and are
attached to the cell wall. They are responsible for degrading most drugs on the
market. So it is not too surprising that many companies in the pharmaceutical
industry are looking at computer based approaches for early prediction of P450
activity.

4. A WORKED EXAMPLE FROM GLAXOSMITHKLINE

GSK was formed by the merger of Glaxo Wellcome and SmithKline Beecham in
2000. Both GW and SB had large libraries of chemicals which might be used as
drugs. Modern robotic chemistry was used to measure the biochemical properties
of both libraries, especially the chemicals’ interaction with P450. Given the avail-
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Fig. 4. Drug discovery funnel. The discovery of a drug to treat a disease proceeds in stages.
Initially there are many potential drugs. At each stage their number reduces but the investment
in each one increases dramatically

ability of this data, GSK wished to see how effective computer models, particularly
those based on machine learning, could be at predicting P450 activity. So they held
an internal workshop on the feasibility of automatic computer prediction in drug
discovery.

Part of the workshop was a blind trial where different groups within GSK were
invited to try their techniques. Twelve techniques were entered into the competi-
tion. Each was given: former SB training data and former SB data for test. Also
they were asked to make predictions, to see how well their technique extrapolated
to the P450 activity of chemicals taken from the former GW library.

4.1 P450 data sets

The chemists divided the continuous IC50 activity measurement into three classes:
inhibitory, substrate and inactive. Table II summarises the data all the workshop
competitors where given, whilst Figure 6 shows the three way split of the IC50
values in the training data.

A common problem in machine learning is learning the supplied training data
but then failing to predict unseen data. This is known as “over fitting”. There
are essentially two ways to deal with this. Regularisation methods which seek to
avoid over fitting by controlling the method’s learning capacity. This limits how
much it can learn and so prevents memorising every detail of the training data
(which may turn out to be simply noise). Instead it is forced to generalise as best
it can the training data. After learning general features of the training data one
hopes to be able to apply these lessons to new data. In artificial neural networks
(ANN) regularisation is often done by limiting the size (and so learning ability) of

7



Fig. 5. Human Cytochrome P450 2D6. The main amino acids chain (blue) folds into four clusters

leaving a central void. Around the void, in various orientations, are four planar heme groups
(larger red clusters). It is believed P450 works by holding drugs and other foreign molecules in
the void allowing the heme groups to digest it.

Table II. Summary of P450 Datasets. In addition to 121 features calculated from each chemical’s

formula the workshop organisers had the measured chemical affinity as concentration. This gives
an IC50 activity level, which was used to split the chemicals into 3 classes inhibitor (≤ 3µM),

substrate (> 3 to < 30µM) and inactive (≥ 30µM).

Total Inbitory Substrate Inactive Contents P450 Activity
3000 1000 1000 1000 part of SB collection for training (ran-

dom selection but 1000 compounds in

each class)

IC50 given

4570 91 1562 2916 part of SB collection for test with held
1932 114 446 1372 GW compounds to test extrapolation with held
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the network. Over fitting seems to be less of a problem in GP, but one can similarly
limit the size of the programs to control the complexity of the evolved models.

It is also common (some would argue essential) to test the prediction of the model
on another set of data (which have not been used for training). There are a number
of ways of splitting data however they usually assume training and testing data are
representative. Part of the idea in the GSK trial was to see how well machine
learning could extrapolate from known chemicals to future drugs. It is obviously
much more difficult to make predictions about data which will be different from the
training data. However, this was why the GW chemicals were not used for training
but instead were used to try and see how well the models predicted.

For each chemical GSK calculated 121 “features” from the chemical’s formula.
The features were either Boolean, categorical or continuous. They represent chem-
ical properties. E.g. charge imbalance, acid or base, heavy metal.

The measurements are high quality but even so the data are still noisy. Note the
training data was deliberately set up to have equal numbers in each of the three
classes. However the test (or interpolation) data set and the extrapolation set have
very unequal splits between the three classes.

4.2 Using Genetic Programming to Predict Drug–P450 Interaction

A simple tree GP system was used [Langdon et al. 2003]. The functions (internal
nodes of the tree) were the four arithmetic operators (+, ×, -, and division, pro-
tected against divide by zero) and “IF” “min” and “max”. The leafs were the 121
features supplied by the chemists plus 100 randomly chosen constant values.

In order to guide the GP we ran each new evolved model on on each of the 3000
chemicals in the training dataset and compared its prediction to the measured P450
activity.2

2We combined the two common fitness measures, accuracy and RMS error, so that the fitness of
the tree was 20 000×#hits−

∑
error2. Where #hits is the number of chemicals the tree got the

class right and error is the difference between the value returned by the tree and measurement.
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Fig. 7. Evolved Tree – predicts P450
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GSK domain specific features calculated for each chemical from its chemical formula. These 8
features were chosen by GP from the 121 available.
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The population contained 5000 trees and the evolution was run for 50 generations.
This took about 2 hours. The best model in the final generation is shown in Figure 7,
whilst Figure 8 shows it as a tree.

4.3 Results and GSK Workshop Recommendations

Each of the competitors had to use their model to predict the IC50 value and class
for each chemical in each data sets. In particular, they had to predict the activity of
the 6502 unseen chemicals in the SB test set and GW extrapolation set. Then they
had to send their model and its predictions to the competition organisers before
the workshop.

The GP model (cf. Figures 7 and 8) produced the most accurate predictions of
IC50.

After the workshop, the GSK chemists produced the following recommendations
to GSK:

(1) GP, NN and Logistic Regression all showed reasonable predictivity, but far from
ideal. They should be explored further.

(2) GSK should follow up on GP methods and make the GP technology available
within GSK.

(3) GP produced a more easily understood model, using a small number of features
which made sense to the P450 modelling experts.

Before concluding; a short anecdote. We were the last presentation on the second
day of the workshop. The chemists had had two days of computer experts talking
to them about neural networks, MLPs, ANNs, decision trees, SVM, hidden layers,
forests, etc. etc. I also committed the sin of not talking about chemistry and they
sat and looked at their watches... until I put up Figure 8. Whereupon the meeting
came alive. The model contains chemistry! This provoked a big discussion amongst
the chemists about the relative importance of their favourite features.

The lesson – Make your model fit on one slide and show it to the users.

5. CONCLUSIONS

Genetic programming offers no guarantee that it will find a suitable solution within
an acceptable amount of time. In practise GP has solved difficult but economically
interesting problems (for which it is known that no guarantee is possible). While
many of the new techniques require more computation time, computer power is
increasingly available. Indeed [Buontempo et al. 2005] and [Deutsch 2003, page 49]
shows conventional techniques can be out performed in a few minutes. However,
from a commercial perspective, spending computer hours (e.g. over night) rather
than man-days is a bargain [Bains et al. 2004].

Genetic programming combines a flexible problem representation with a powerful
search mechanism which requires minimal assumptions. It can automatically evolve
innovative solutions to many diverse problems, including pharmaceutical problems.
It can be used in drug discovery to predict which potential molecules might become
drugs long before testing is required. At the GSK workshop GP came top out of
12 entries.
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