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Abstract

Most existing multiobjective evolutionary algorithms aimat approximating the PF, the distribution of the Pareto optimal
solutions in the objective space. In many real-life applications, however, a good approximation to the PS, the distribution of the
Pareto optimal solutions in the decision space, is also required by a decision maker. This paper considers a class of MOPs, in
which the dimensionalities of the PS and PF are different so that a good approximation to the PF might not approximate the PS
very well. It proposes a probabilistic model based multiobjective evolutionary algorithm, called MMEA, for approximating the PS
and the PF simultaneously for a MOP in this class. In the modelling phase of MMEA, the population is clustered into a number
of subpopulations based on their distribution in the objective space, the PCA technique is used to detect the dimensionality of the
centroid of each subpopulation, and then a probabilistic model is built for modelling the distribution of the Pareto optimal solutions
in the decision space. Such modelling procedure could promote the population diversity in both the decision and objective spaces.
To ease the burden of setting the number of subpopulations, adynamic strategy for periodically adjusting it has been adopted in
MMEA. The experimental comparison between MMEA and the two other methods, KP1 and Omni-Optimizer on a set of test
instances, some of which are proposed in this paper, have been made in this paper. It is clear from the experiments that MMEA
has a big advantage over the two other methods in approximating both the PS and the PF of a MOP when the PS is a nonlinear
manifold, although it might not be able to perform significantly better in the case when the PS is a linear manifold.

Index Terms
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I. I NTRODUCTION

This paper considers the followingcontinuous multiobjective optimization problem (continuous MOP):

minimize F (x) = (f1(x), · · · , fm(x)) (1)

subject to x ∈
n
∏

i=1

[ai, bi]

where−∞ < ai < bi < +∞ for all i = 1, . . . , n.
n
∏

i=1

[ai, bi] ⊂ Rn is the decision space andx = (x1, . . . , xn) ∈ Rn is the

decision variable vector.F :
n
∏

i=1

[ai, bi] → Rm consists ofm real-valued continuous objective functionsfi(x) , i = 1, . . . , m.

Rm is the objective space.
Let u = (u1, . . . , um), v = (v1, . . . , vm) ∈ Rm be two vectors,u is said todominate v, if u 6= v and ui ≤ vi for

all i = 1, . . . , m. x⋆ is called (globally) Pareto optimal if there is no otherx such thatF (x) dominatesF (x⋆). The set
of all the Pareto optimal points, denoted by PS, is called thePareto set. The image of the PS on the objective space,
PF= {y ∈ Rm|y = F (x), x ∈ PS}, is called thePareto front [1], [2].

Most existing multiobjective evolutionary algorithms (MOEAs) aim at finding an approximation to PFs [2]–[15]. However, in
some real-world applications, particularly when the preference (i.e. utility function) of a decision maker is not clearly defined,
a good approximation to both the PF and the PS should be required by the decision maker for facilitating their decision making
as argued in [16]–[18]. If the mapping from the PS to the PF is one-to-one and relatively uniform, a good approximation to
the PF could approximate the PS well too. Otherwise, this could not be the case. Two typical classes of continuous MOPs, in
which the approximation of their PSs should be carefully addressed, are as follows:
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• Class I: A finite number of different points in the PS may have the same image in the PF under the mappingF from the
PS to the PF, but the PS and the PF are of the same dimensionality, which is m − 1 under some mild conditions [19].
Therefore, the PS could consist of a number of disconnected continuous(m− 1)-D manifolds. ZDT6 [20], Jin1 [21] and
the SYM-PART instances [22] are test instances in this class.

• Class II: The PF is a(m− 1)-D continuous manifold and the PS is a continuous manifold ofa higher dimensionality. All
the inverse images of a point in the PF could constitute a non-zero dimensional continuous manifold. Some WFG test
instances [23] are in this class.

To generate a good approximation to both the PS and the PF of a MOP, an algorithm should arguably have an effective
mechanism to encourage and maintain the population diversity, not only in the objective space as most MOEAs do, but
also in the decision space. For this reason, Deb and Tiwari introduced the crowding distance in the decision space into the
nondominated sorting scheme in Omni-Optimizer [24], a generalization of NSGA-II [25], for promoting the population diversity
in the decision space. Chan and Ray suggested using two selection operators in MOEAs, one encourages the diversity in the
objective space and the other does so in the decision space [26]. They implemented KP1 and KP2, two algorithms using these
two selection operators. It should be pointed out that the MOPs that KP1, KP2 and Omni-Optimizer attempt to deal with are
of Class I. Rudolphet al also proposed to use a restart strategy for finding a good approximation to the PS of a MOP of Class
I [22], [27]. To the best of our knowledge, no effort has been made for dealing with problems of Class II. The major purpose
of this paper is to study how to approximate both the PS and thePF of a MOP of Class II.

In [13], we studied a “regular” continuous MOP in which both the PF and FS are piecewise continuous manifolds of
(m− 1)-D dimensionality, and proposed RM-MEDA, an estimation of distribution algorithm (EDA) for approximating its PF.
In this paper, we generalize the idea of RM-MEDA and propose amodel based multiobjective evolutionary algorithm, called
MMEA, for approximating the PS and the PF of a MOP of Class II simultaneously. MMEA has the following features:

• The population diversity in the decision space is promoted in its reproduction generator, instead of in the selection operators
as in Omni-Optimizer, KP1 and KP2. The NDS-selection, whichis used in RM-MEDA, is employed in MMEA.

• To build a probabilistic model of promising solutions, the population is divided, based on their distribution in the objective
space, into a number of subpopulations. Therefore, the population diversity in the objective space can be promoted. To
ease the burden of tuning the number of subpopulations, a dynamical strategy for tuning it has been adopted in MMEA.

• The principal component analysis technique is used to detect the dimensionality of the centroid of each subpopulation
in the decision space, and then a probabilistic model can be built for modelling its distribution in the decision space. In
such a way, the population diversity in the decision space can be encouraged.

The rest of the paper is organized as follows: Section II gives the details of the algorithm. Section III presents the performance
metrics and the test instances, some of which are firstly proposed in this paper. Section IV compares MMEA with KP1 and
Omni-Optimizer on these test instances. More discussions on the ability of MMEA are provided in Section V. Section VI
concludes this paper and lists some future research topics.

II. A LGORITHM

A. Framework

At each generation, the proposed algorithm, MMEA, maintains:

• A population ofN solutions (i.e. points in
n
∏

i=1

[ai, bi]):

x1, . . . , xN .

• Their F -values:F (x1), . . . , F (xN ).
MMEA adopt the following widely used estimation of distribution algorithm framework:
Phase 1 Initialization: Generate an initial populationP and compute theF -values of these solutions inP .
Phase 2 Modelling: Build a model for modelling the distribution of the individuals in P .
Phase 3 Reproduction: Generate a set of new solutionsQ by sampling from the model built in Phase 2 and compute the

F -values of these solutions inQ.
Phase 4 Selection: SelectN solutions fromP

⋃

Q and replace all the solutions inP by them.
Phase 5 Stopping Condition: If a stoping condition is met, stop and return all the solutions in P and their corresponding

F -values. Otherwise, go toPhase 2.
In the following, we give and discuss the implementations ofmodelling, reproduction and selection.

B. Modelling

In a successful algorithm for approximating both the PS and the PF of (1), the individuals in its population should approximate
the PS in the decision space and their images should convergeto the PF in the objective space as the search goes on. Therefore,
one could model the PS and the PF based on information extracted from the population. Such models can be further used for



sampling new good solutions. Such an idea has been used to some extent in RM-MEDA. The problem that RM-MEDA was
designed for is a ‘regular” continuous MOP, in which both thePS and the PF are of the same dimensionality. In this paper,
the same idea is used in the modelling phase of MMEA for dealing with a MOP of Class II.

The modelling phase in MMEA works as follows:
Step 1 Building a Utopian PF: Based on information from the current populationP , build a (m − 1)-D simplex in the

objective space as a Utopian PF.
Step 2 Determining the Number of Subpopulations: DetermineK, the number of subpopulations used in modelling the

PS.
Step 3 Selecting Reference Points: SetY 1, . . . , Y K , K points which are uniformly spread onUPF in the objective space,

to beK reference points.
Step 4 Clustering: For each reference pointY i, compute, in the objective space, its Euclidian distances to all the individual

solutions inP . Select the[2N
K ] closest solutions toY i and let them constitute subpopulationP i.

Step 5 Principal Component Analysis and Modelling: Do Principal Component Analysis (PCA) on each subpopulation
P i and build a model for it.

In the following, we give the details of the major steps in theabove modelling phase.
1) Building a Utopian PF: We assume that the PF of the MOP in question is of(m − 1)-D. Therefore, it is reasonable to

use a(m − 1)-D simplex as a Utopian PF. The following procedure is used toconstruct such a simplexS:
Step 1.1 For i = 1, . . . , m, find the individual solutionzi in P such thatzi is a nondominated solution inP and it
has the largestfi function value among all the nondominated solutions inP .
Step 1.2 Initialize S as the(m−1)-D simplex with vertexesF (z1), . . . , F (zm) in the objective space. MoveS along
its normal direction to a position such that (a) no point inS can be dominated by any solutions inP , and (b) the
moved distance should be as short as possible.
Step 1.3 Let A1, . . . , Am be the vertexes of the moved simplexS. Compute the center ofS:

O =
1

m

m
∑

i=1

Ai.

Then enlargeS by moving its vertexes:
Ai := Ai + 0.25(Ai − O)

for i = 1, . . . , m.
The major reason why we enlargeS is to guide the algorithm to extend its search in the objective space. Whenm, the number
of the objectives is 2,S is a one-D line segment in the objective space. Fig. 1 illustrates howS is generated in such a case.

Fig. 1. Illustration of building a Utopian PF in the case of two objectives. (a) Find the extreme points and initialize simplex S. (b) MoveS along its normal
direction. (c) EnlargeS.

2) Determining the Number of Subpopulations: To reduce the problem-dependence ofK, the value ofK is changing
dynamically and periodically during the search. More particularly,

K = Kmin + (⌊ t

∆t
⌋)mod(Kmax − Kmin)

where
• t is the current generation number,
• Kmin andKmax are predetermined minimal and maximal values forK, respectively,
• ∆t is a predetermined length of the time interval during which the value ofK is fixed.



3) Selecting Reference Points and Clustering: Reference points uniformly spread on the Utopian PF and different
subproblems are associated with different reference points. Therefore, the search effort could be distributed to different reference
points of the Utopian PF in a relatively uniform way. In clustering, different subpopulations may overlap, which aims at
improving the search performance in between different reference points.

4) PCA and Modelling: The individual solutions in subpopulationP i should, hopefully, scatter around part of the PS in the
decision space as the search goes on. For simplicity, we can model the centroid ofP i as a hyper-rectangleΦi in the decision
space and regard each individual inP i as an observation of the following random rector:

ξ = ζ + ε,

whereζ is uniformly randomly distributed onΦi, ε ∼ N(0, σ2
i I) is an-dimensional zero-mean Gaussian vector,I is then×n

identity matrix andσi > 0.
Now the task is how to estimateΦi andσi. We do it as follows:

Step 5.1 Compute the sample mean and the sample covariance matrix of the individual solutions inP i:

x̄i =
1

|P i|
∑

x∈P i

x,

and
Cov =

1

|P i| − 1

∑

x∈P i

(x − x̄)(x − x̄)T .

where|P i| is the cardinality ofP i.
Step 5.2 Compute the eigenvalues ofCovi:

λi
1 ≥ λi

2 ≥ . . . ≥ λi
n

and their corresponding unity eigenvectors:
V i

1 , V i
2 . . . , V i

n.

Step 5.3 Setni, the dimensionality ofΦi to be the smallest integer such that:

ni

∑

j=1

λi
j ≥ 0.8

n
∑

j=1

λi
j

Step 5.4 Compute the range of the projections of the points inP i onto the firstni principal component directions:

lij = min
x∈P i

(x − x̄i)T V i
j

and
ui

j = max
x∈P i

(x − x̄i)T V i
j

for j = 1, . . . , ni.
Step 5.5 Set

Φi = {x ∈ Rn|x = x̄i +
∑ni

j=1
αjV

i
j ,

lij − 0.25(lij − ui
j) ≤ αj ≤ ui

j + 0.25(ui
j − lij),

j = 1, . . . , ni.}.
Step 5.6 Set

σi =
1

n − ni

n
∑

j=ni+1

λi
j .

The dimensionality of the PS is unknown, so is that ofΦi, the centroid ofP i. In Step 5.3, the dimensionality ofΦi is
set such thatΦi holds at least80% of the variation in the solutions inP i. Φi extends by50% along each of the firstni

principal component directions, the smallestni-D hyper-rectangle containing the projections of all the solutions of P i on the
space spanned byV i

1 , . . . , V i
ni from x̄i. The motivation behind this extension is to extrapolate thepoints inP i for searching

unexploited promising areas in the decision space.ε is modelled as a Gaussian noise vector and all its componentsare i.i.d.,
which facilitates the sampling procedure.

The three major differences in the modelling phase between RM-MEDA and MMEA are:

• In clustering, RM-MEDA uses the local PCA [28] technique to partition the population into several clusters. In contrast,
MMEA in this paper selects the subpopulation centers from the Utopian PF and does clustering based on the distances



in the objective space, which is computationally cheaper. Moreover, the local PCA could not be applied in MMEA since
the dimensionality of each subpopulation centroid must be predetermined in the local PCA and such dimensionality is
unknown in the problems MMEA aims to solve.

• The number of clusters is preset in RM-MEDA. While MMEA in this paper changes the number of subpopulations
dynamically, which lightens the burden of tuning this algorithmic parameter.

• In modelling each subpopulation, RM-MEDA sets the dimensionality of its centroid to be(m − 1), while MMEA needs
to estimate it. This difference is due to the fact that these two algorithms are for different MOPs.

C. Sampling

A new solutionx is generated in Phase 4 of MMEA as follows:

Step 1 Uniformly randomly generate an integerk from {1, 2, . . . , K}.
Step 2 Uniformly randomly generate a pointx′ from Φk. Generate a noise vectorε′ from N(0, σkI).
Step 3 Returnx = x′ + ε′.
Step 4 If xj , an element ofx is not in [aj , bj ], randomly select a solutiony from subpopulationk (obtained in Step 4 in

modelling phase), and restxj :

xj =
1

2
(yj + θ)

where

θ =

{

aj , if xj < aj ,

bj if xj > bj ,

In our implementation, the above procedure is repeatedN times for generatingN solutions in Phase 4.

D. Selection

The selection operator used in the experimental studies is the NDS-selection, a version of non-dominated sorting scheme [25]
proposed in [13]. It works as follows:

Step 1 SetQ = P ∪ Q andP = ∅.
Step 2 PartitionQ into different frontsF1, . . . , Fl by using the fast non-dominated sorting approach [25]. Setk = 0.

Do

k = k + 1,
P = P ∪ Fk,

Until |P | ≥ N .

Step 3 While |P | > N , Do

For all the individual members inFk ∩P , compute their crowding distances inFk ∩P . Remove the element
in Fk ∩ P with the smallest crowding distance fromP . In the case when there are more than one members
with the smallest crowding distance, randomly choose one and remove it.

In Step 2, the NDS-Selection partitionsQ into different frontsF1, . . . , Fl such that thej-th front Fj contains all the non-
dominated solutions in{P ∪Q}\(∪j−1

i=1
Fi). Therefore, there is no solution in{P ∪Q}\(∪j−1

i=1
Fi) that could dominate a solution

in Fj .
The crowding distance, used in Step 3, of pointx in S is defined as the average side length of the largestm-D rectangle

in the objective space subject to the two constraints: (a) each of its sides is parallel to a coordinate axis, and (b)F (x) is the
only point in F (S) = {F (y)|y ∈ S} that is an interior point in the rectangle. A solution with a larger crowding distance is
given priority to be selected since it could increase the population diversity in the objective space.

III. T EST INSTANCES ANDPERFORMANCEMETRICS

A. Test Instances

MMEA is for approximating both the PS and the PF of a MOP of Class II. Only the WFG instances, among the continuous
MOP test instances we have found in the literature, are in Class II. Two WFG instances: WFG6 and WFG7, have been used
in our experiments. Based on the experiments in [23], the PFsof WFG7 could be “easily” and “quickly” found by NSGA-II,
while WFG6 is “hard” for NSGA-II. It could be because that theobjectives in WFG7 are separable while it is not the case in
WFG6. The PSs of these two test instances are 2-D rectangles in the decision space when their control parameters are set as
in Table I. To study the behaviors of algorithms on nonlinearPSs, we have designed several MOP test instances of Class II
with nonlinear PSs. All these test instances are listed in Table I. Figs. 2 and 3 plot their PFs and the projections of theirPSs
onto lower-D spaces.



TABLE I

TEST INSTANCES USED IN OUR EXPERIMENTS: F1-2ARE WFG INSTANCES, F3-F7ARE NEW DESIGNED TEST INSTANCES. x = (x1, . . . , xn).

Instance Range ofxi Objectives, PS and PF Remarks

F1 [0, 2i] WFG6 (M = 2, k = 2 [23] PS is a 2-D rectangle.
PS:xi = 0.7i, for i = 3, . . . , n, 0 ≤ x1 ≤ 2, 0 ≤ x2 ≤ 4. PS is concave.
PF: f1 = 2 sin(t), f2 = 4 cos(t), 0 ≤ t ≤ 0.5π. two objectives.

F2 [0, 2i] WFG7 (M = 2, k = 2) [23] PS is a 2-D rectangle.
PS:xi = 0.7i, for i = 3, . . . , n, 0 ≤ x1 ≤ 2, 0 ≤ x2 ≤ 4. PF is concave.
PF: f1 = 2 sin(t), f2 = 4 cos(t), 0 ≤ t ≤ 0.5π. two objectives.

F3 [0, 1] f1(x) = (x1 + x2)/2, PS is a 2-D nonlinear surface.

f2(x) = g(x)(1 −
√

f1

g
), PF is convex.

whereg(x) = 1 + 5

n−2

n
∑

i=3

h(xi)2 and two objectives.

h(xi) =

{

2xi − sin(0.5f1π) cos(2πf1 + iπ/n) − 1, i is even,
2xi − cos(0.5f1π) sin( 1

3
(2πf1 + iπ/n)) − 1, i is odd.

PS:xi =

{

0.5 + 0.5 sin(0.5f1π) cos(2πf1 + iπ/n), i is even,
0.5 + 0.5 cos(0.5f1π) sin( 1

3
(2πf1 + iπ/n)), i is odd.

for i = 3, . . . , n,and0 ≤ x1, x2 ≤ 1.
PF: f2 = 1 −

√
f1, 0 ≤ f1 ≤ 1.

F4 [0, 1] f1(x) = (x1 + x2)/2, PS is a 2-D nonlinear surface.
f2(x) = g(x) − f2

1
, PF is concave.

whereg(x) = 1 + 5

n−2

n
∑

i=3

h(xi)
2, and two objectives.

h(xi) =

{

2xi − f1 cos(2πf1 + iπ/n) − 1, i is even,
2xi − f1 sin(2πf1 + iπ/n) − 1, i is odd.

PS:xi =

{

0.5 + 0.5f1 cos(2πf1 + iπ/n), i is even,
0.5 + 0.5f1 sin(2πx1 + iπ/n), i is odd,

for i = 3, . . . , n, and0 ≤ x1, x2 ≤ 1.
PF: f2 = 1 − f2

1 , 0 ≤ f1 ≤ 1.

F5 [0, 1] f1(x) = (x1 + x2)/2, PS is a 2-D nonlinear surface.
f2(x) = g(x) − f1 + sin(2πf1)/(2π), PF is not concave or convex.

whereg(x) = 1 + 5

n−2

n
∑

i=3

h(xi)2, and two objectives.

h(xi) =

{

2xi − f1 cos(2πf1 + iπ/n) − 1, i is even,
2xi − f1 sin( 1

3
(2πf1 + iπ/n)) − 1, i is odd.

PS:xi =

{

0.5 + 0.5f1 cos(2πf1 + iπ/n), i is even,
0.5 + 0.5f1 sin( 1

3
(2πx1 + iπ/n)), i is odd,

for i = 3, . . . , n, and0 ≤ x1, x2 ≤ 1.
PF: f2 = 1 − f1 + sin(2πf1)/(2π), 0 ≤ f1 ≤ 1.

F6 [0, 1] f1(x) = (x1 + x2 + x3)/3, PS is 3-D continuous
f2(x) = g(x) − f2

1
, nonlinear manifold.

whereg(x) = 1 + 5

n−3

n
∑

i=4

h(xi)
2, and PF is concave.

h(xi) =

{

2xi − sin(0.5f1π) cos(2πf1 + iπ/n) − 1, i is even,
2xi − cos(0.5f1π) sin( 1

3
(2πf1 + iπ/n)) − 1 i is odd.

two objectives.

PS:xi =

{

0.5 + 0.5sin(0.5f1π) cos(2πf1 + iπ/n), i is even,
0.5 + 0.5 cos(0.5f1π) sin( 1

3
(2πf1 + iπ/n)), i is odd,

for i = 4, . . . , n, and0 ≤ x1, x2, x3 ≤ 1.
PF: f2 = 1 − f2

1
, 0 ≤ f1 ≤ 1.

F7 [0, 1] f1(x) = g(x) cos(0.25π(x1 + x2)) sin(0.5πx3), PS is 3-D continuous
f2(x) = g(x) cos(0.25π(x1 + x2)) cos(0.5πx3), nonlinear manifold.
f3(x) = g(x) sin(0.25π(x1 + x2)), PF is concave.

whereg(x) = 1 + 5

n−3

n
∑

i=4

h(xi)2, three objectives.

h(xi) =

{

2xi − sin(0.5πy) cos(2πy + iπ/n) − 1, i is even,
2xi − cos(0.5πy) sin( 1

3
(2πy + iπ/n)) − 1, i is odd,

andy = (x1 + x2 + x3)/3.

PS:xi =

{

0.5 + 0.5 sin(0.5f1π) cos(2πf1 + iπ/n), i is even,
0.5 + 0.5 cos(0.5f1π) sin( 1

3
(2πf1 + iπ/n)), i is odd,

for i = 4, . . . , n,and0 ≤ x1, x2, x3 ≤ 1.
PF: f1 = cos(s) sin(t), f2 = cos(s) cos(t), f3 = sin(s), 0 ≤ s, t ≤ π/2.
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Fig. 2. The PFs and the PSs for F1-F4. (a): F1. (b): F2. (c): F3.(d): F4. Left: the PFs in the objective space. Middle: the projections of the PSs onto the
x1-x2 space. Right: the projections of the PSs onto thex1-x3 space for F1 and F2, and onto thex1+x2

2
-x3 space for F3 and F4.
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Fig. 3. The PFs and the PSs for F5-F7. (a): F5. (b): F6. (c): F7.Left: PFs in the objective space. Middle: the projections ofthe PSs onto thex1-x2 space
for F5, and onto thex1-x2-x3 space for F6 and F7. Right: the projections of the PSs onto thex1+x2

2
− x3 space for F5, and onto thex1+x2+x3

3
-x4 space

for F6 and F7.

B. Performance Metrics

The Inverted Generational Distance (IGD) metric [13], [29]is used to assess the algorithm performances in our experimental
studies. LetP ∗ be a set of uniformly distributed Pareto optimal points in the PF (or PS). LetP be an approximation ofP ∗.
The metric is defined as follows.

IGD(P ∗, P ) =

∑

v∈P∗ d(v, P )

|P ∗| ,

whered(v, P ) is a distance betweenv andP and |P ∗| is the cardinality ofP ∗.
The IGD metric can measure both diversity and convergence. To have alow IGD value,P must be very close to the PF

(or PS) and cannot miss any part of the whole PF (or PS).
We denoteIGD metric asIGDF whenP ∗ is a set of points in the PF andd(v, P ) is the Euclidian distance measured in

the objective space, and asIGDX when P ∗ is a set of points in the PS andd(v, P ) is the Euclidian distance measured in
the decision space.

In our experiments, 1,000 points, in whichf1 or t taking 1,000 equidistant values from their lower bounds to their upper
bounds, are selected from the respective PFs of F1-F6 to beP ⋆ for computing theIGDF metrics.50× 50 = 2, 500 points in
the PF of F7 withs, t = 0

49
× π

2
, 1

49
× π

2
, . . . , 49

49
× π

2
, are taken to formP ⋆ for computing theIGDF metric for experiments

on F7.50× 50 = 2, 500 points in the respective PSs of F1-F5, in whichx1 andx2 take 50 equidistant values from their lower
bounds to their upper bounds respectively, are taken to formP ⋆ for computing theIGDX metrics.25 × 25 × 25 = 15, 625
points in the respective PSs of F6 and F7, in whichx1, x2 andx3 take 25 equidistant values from their lower bounds to their



upper bounds respectively, are taken to beP ⋆ for computing theIGDX metrics.

IV. EXPERIMENTAL RESULTS

A. Experimental Settings and Algorithms in Comparison

The studies in [22], [26], [27] have shown that popular MOEAs, such as PAES [30], NSGA-II [25] and SPEA2 [31], cannot
approximate both the PF and the PS simultaneously since these methods could not maintain the population diversity in decision
space. MOEA/D, a recent MOEA based on aggregation proposed in [32], can not do so either for the same reason. In our
experiments, we have compared MMEA with KP1 [26]1 and Omni-Optimizer [24]2. As mentioned in Introduction, both of
them try to approximate both the PF and the PS of a MOP by promoting the population diversity in the decision space in
their selection operators. The simulated binary crossover(SBX) [33] and the polynomial mutation [34] are used in thesetwo
methods for generating offspring.

Table II lists all the parameter settings in our experiments.

TABLE II

EXPERIMENTAL SETTINGS

The number of variables n = 20
population size for all the algorithms N = 250 (F1-F5)

N = 500 (F6-F7)
maximal number of subpopulation Kmax = 30

MMEA minimal number of subpopulation Kmin = 5
the length of the time interval ∆t = 10
crossover parameter in SBX ηc = 20

Omni crossover rate Pc = 0.8
KP1 parameter in polynomial mutation ηm = 20

mutation rate Pm = 1/n

All the algorithms stop after 500 generations. The population in each algorithm is initialized uniformly and randomly in the
decision space. The following results are based on 20 independent runs of each algorithm on each test instance.

TABLE III

STATISTICAL RESULTS OFIDGF AND IGDX METRICS OF THETHREE ALGORITHMS ON F1-F7 (mean ± std.)

Instance Omni KP1 MMEA

F1 IGDF 0.0682± 0.0128 0.0574± 0.0076 0.0106 ± 0.0022
IGDX 26.8558± 4.2276 21.4472± 5.2046 0.5480 ± 0.1751

F2 IGDF 0.0385± 0.0204 0.0107± 0.0007 0.0080 ± 0.0006
IGDX 0.3126± 0.0431 0.2749 ± 0.0414 0.3076± 0.0442

F3 IGDF 0.5515± 0.0197 0.0918± 0.0194 0.0177 ± 0.0090
IGDX 1.0390± 0.0139 0.4456± 0.0638 0.1280 ± 0.0226

F4 IGDF 0.2100± 0.1242 0.1316± 0.1107 0.0313 ± 0.0479
IGDX 0.6692± 0.1951 0.4729± 0.2220 0.1398 ± 0.1107

F5 IGDF 0.1914± 0.0532 0.0294± 0.0038 0.0139 ± 0.0033
IGDX 0.5234± 0.0850 0.2473± 0.0385 0.1008 ± 0.0072

F6 IGDF 0.1376± 0.0657 0.1037± 0.0177 0.0294 ± 0.0236
IGDX 0.5744± 0.1342 0.4680± 0.0668 0.1584 ± 0.0209

F7 IGDF 0.6045± 0.0600 0.7451± 0.0000 0.0591 ± 0.0024
IGDX 1.0656± 0.0289 1.3131± 0.0291 0.2400 ± 0.0116

B. F1-F2

F1 and F2 have the same PS, which is a 2-D rectangle parallel tox1-x2 space. The objectives are nonseparable in F1 but
separable in F2 [23]. The means and standard deviations can be found in Table III of theIGDF and IGDX values of the
20 final populations obtained by each algorithm for F1 and F2.

Figs. 4 and 5 show, in the objective and decision spaces, the distribution of the final solutions obtained in the runs with the
lowestIGDF andIGDX values of each algorithm for these two test instances, respectively.

1We use KP1 in this paper because the experimental results in [26] have shown that KP1 is slightly better than KP2.
2The C++ source codes of KP1 was obtained from its authors. Omni-Optimizer was implemented by ourselves.
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Fig. 4. The best approximations obtained by three algorithms for F1. (a): Omni-Optimizer. (b): KP1. (c): MMEA. Left: thedistributions of the final solutions
in the objective space obtained in the runs with the lowestIGDF values by three respective algorithms. Middle: the distributions of the final solutions in
the x1-x2 space obtained in the runs with the lowestIGDX values. Right: the distributions of the final solutions in the x1-x3 space obtained in the runs
with the lowestIGDX values.

It is clear from Table III that in terms of theIGDF metrics, MMEA is better than the two other algorithms on these two
test instances. Figs. 4 and 5 confirm it to some extent: the final populations with lowestIGDF values obtained by MMEA
approximate the PFs better than that obtained the two other algorithms. Table III indicates that in terms of theIGDX metrics,
MMEA outperforms the two other competitors on F1 but is slightly worse than KP1 on F2. Actually, one could visually
distinguish from Fig. 4 the differences in approximation quality in thex1-x2 andx1-x3 spaces between MMEA and two other
methods on F1. It is hard, however, to tell any big differencein approximation quality in the decision space between MMEA
and KP1 on F2 from Fig. 5. These results indicate that MMEA could not always have the edge over KP1 on MOPs with
linear PSs like F2. The major reason might be that in MMEA, using a mixture of several different linear models could lead
to overfitting on these linear PSs and thus deteriorate its performance.

C. F3-F7

All these test instances have nonlinear PSs in the decision space. The dimensionality of the PSs of F3-F5 are 2 while that
of F6 and F7 are 3. Table III suggests that in terms of both theIGDF and IGDX metrics, MMEA performs better than
the two other algorithms. Taking F3 as an example, theIGDF mean value in MMEA is just about3% and19% of that in
Omni-Optimizer and KP1, respectively, and theIGDX mean value is about12% and 29% of that in Omni-Optimizer and
KP1, respectively. It is evident from Figs.6-10 that for F3-F7, the best approximations obtained by MMEA can approximate
the whole PF in the objective space very well, while KP1 and Omni-Optimizer always miss part of the PFs. Figs. 6- 10 also
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Fig. 5. The best approximations obtained by three algorithms for F2. (a): Omni-Optimizer. (b): KP1. (c): MMEA. Left: thedistributions of the final solutions
in the objective space obtained in the runs with the lowestIGDF values by three respective algorithms. Middle: the distributions of the final solutions in
the x1-x2 space obtained in the runs with the lowestIGDX values. Right: the distributions of the final solutions in the x1-x3 space obtained in the runs
with the lowestIGDX values.

reveal that in the decision space, the best approximations obtained by MMEA is significant better than that by the two other
algorithms for F3-F7.

KP1 and Omni-Optimizer promote the population diversity intheir selection operators and mainly the SBX, which wad
originally proposed for single objective optimization, togenerate new solutions. By contrast, MMEA uses the NDS-selection
operator, which does not explicitly encourage the population diversity in the decision space, and it estimates the geometrical
shape of the PS and attempts to make the new solutions uniformly distribute around the estimated PS. Our experiments have
suggested that reproduction operators are of crucial importance in MOEAs for approximating both the PS and the PF and
one should use problem-specific knowledge in designing reproduction operators in MOEAs. The major reason that KP1 and
Omni-Optimizer fail in F3-F7 might be that the SBX is not suitable for a MOP with nonlinear PSs. Actually, if two parent
solutions are Pareto optimal (i.e. in the PS), it is very likely that their offspring under the SBX are far away from the PS.

V. M ORE DISCUSSIONS

A. Could MMEA solve regular MOPs?

MMEA was designed for solving a MOP of Class II, in which the dimensionality of its PS is not lower than the number of
the objectives and not known. In fact, MMEA uses the PCA technique to detect the PS dimensionality before modelling the
PS in its search. Now a question arises whether MMEA can effectively solve a regular MOP in which the PS is a(m − 1)
continuous manifold in the decision space. To study this question, we have tested MMEA on LZ08-F4 [32], a regular MOP,



0 0.4 0.8 1.2
0

0.4

0.8

1.2

f1

f2

0 0.5 1
0

0.5

1

x1

x2

0 0.5 1
0

0.5

1

(x1+x2)/2

x3

(a) Omni-Optimizer

0 0.4 0.8 1.2
0

0.4

0.8

1.2

f1

f2

0 0.5 1
0

0.5

1

x1

x2

0 0.5 1
0

0.5

1

(x1+x2)/2

x3

(b) KP1

0 0.4 0.8 1.2
0

0.4

0.8

1.2

f1

f2

0 0.5 1
0

0.5

1

x1

x2

0 0.5 1
0

0.5

1

(x1+x2)/2

x3

(c) MMEA

Fig. 6. The best approximations obtained by three algorithms for F3. (a): Omni-Optimizer. (b): KP1. (c): MMEA. Left: thedistributions of the final solutions
in the objective space obtained in the runs with the lowestIGDF values by three respective algorithms. Middle: the distributions of the final solutions in
the x1-x2 space obtained in the runs with the lowestIGDX values. Right: the distributions of the final solutions in the x1+x2

2
-x3 space obtained in the

runs with the lowestIGDX values.

in which two objectives to be minimized are defined as:

f1(x) = x1 + 2

|J1|

∑

j∈J1

[xj − 0.8x1 cos(6πx1+jπ/n
3

)]2

f2(x) = 1 −√
x1 + 2

|J2|

∑

j∈J2

[xj − 0.8x1 cos(6πx1 + jπ/n)]2,

whereJ1 = {j|j is odd and2 ≤ j ≤ n} andJ2 = {j|j is even and2 ≤ j ≤ n}. Its search space is[0, 1] × [−1, 1]n−1. The
PS of LZ08-F4 is:

x1 ∈ [0, 1] andxj =

{

0.8x1 cos(6πx1+jπ/n
3

) j ∈ J1

0.8x1 cos(6πx1 + jπ/n) j ∈ J2

,

and its PF is:
f2 = 1 −

√

f1, f1 ∈ [0, 1].

In our experiment on LZ08-F4,n, the number of decision variables is set to be30, andN , the population size is300 as
suggested in [32]. All the other parameter settings are the same as in Section IV. Fig. 11 plots the final population obtained
in the run with the lowestIGDF value among 20 independent runs. It is evident that MMEA can solve LZ08-F4 effectively.
Such success implies that MMEA is able to detect the dimensionality of the PS of a regular MOP like LZ08-F4 and a regular
MOP does not pose a serious challenge to MMEA.
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Fig. 7. The best approximations obtained by three algorithms for F4. (a): Omni-Optimizer. (b): KP1. (c): MMEA. Left: thedistributions of the final solutions
in the objective space obtained in the runs with the lowestIGDF values by three respective algorithms. Middle: the distributions of the final solutions in
the x1-x2 space obtained in the runs with the lowestIGDX values. Right: the distributions of the final solutions in the x1+x2

2
-x3 space obtained in the

runs with the lowestIGDX values.

B. Can MMEA deal with a MOP of Class I?

A MOP of Class II has a continuous PS of dimensionality largerthanm − 1, while the PS of a MOP of Class I consists
of a number of disconnected continuous manifolds. To investigate the ability of MMEA to tackle MOPs in Class I, we have
executed MMEA on DT05-F4.4 [24], in which the two objectivesto be minimized are as follows:

f1(x) =
∑n

i=1
sin(πxi)

f2(x) =
∑n

i=1
cos(πxi),

and the search space is[0, 6]n. The PF of DT05-F4.4 is:

f2 = −
√

25 − f2
1 , f1 ∈ [−5, 0],

and its PS consists of3n disconnected parts, each of them is a line segment.
In our experiment on DT05-F4.4,n, the number of decision variables is set to be5, andN , the population size is1, 000.

All the other parameter settings are the same as in Section IV. Fig. 12 presents the final population obtained in the run with
the lowestIGDF value among 20 independent runs. Clearly, MMEA have not produced a satisfactory approximation to the
PS. This could be because that MMEA bases on the distance defined in the objective space to clusters its population, it has
no ability to distinguish different parts of the DT05-F4.4 PS in the decision space and thus cannot find a good approximation
to its PS.
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Fig. 8. The best approximations obtained by three algorithms for F5. (a): Omni-Optimizer. (b): KP1. (c): MMEA. Left: thedistributions of the final solutions
in the objective space obtained in the runs with the lowestIGDF values by three respective algorithms. Middle: the distributions of the final solutions in
the x1-x2 space obtained in the runs with the lowestIGDX values. Right: the distributions of the final solutions in the x1+x2

2
-x3 space obtained in the

runs with the lowestIGDX values.

VI. CONCLUSION

A good approximation to both the PS and PF of a MOP could be required in some real-world applications. A good
approximation to the PF of a MOP might not be a good approximation to the PS, for example, when the MOP in question is
of Class I or II. Some effort has been made to approximate boththe PS and the PF of a MOP of Class I. This paper represents
a first attempt to do so for a MOP of Class II.

MMEA proposed in this paper generalizes the idea used in RM-MEDA to a MOP of Class II for approximating its PS and PF
simultaneously. In the modelling phase of MMEA, the population is clustered into a number of subpopulations based on their
distribution in the objective space, the PCA technique is used to detect the dimensionality of the centroid of each subpopulation,
and then a probabilistic model is built for modelling the distribution of the Pareto optimal solutions in the decision space.
Such modelling procedure could promote the population diversity in both the decision and objective spaces. New solutions
are sampled from the model thus built. To ease the burden of setting the number of subpopulations, a dynamic strategy for
periodically adjusting the number of subpopulations has been adopted in MMEA. The population for the next generation is
selected by the NDS-selection. The comparison between MMEAand the two other algorithms, KP1 and Omni-Optimizer on
a set of test instances, some of which were proposed in this paper, have been made in this paper. It is very clear that MMEA
has a big advantage over the two other algorithms in approximating both the PS and the PF of a MOP of Class II when the
PS is a nonlinear manifold, although it might not be able to perform significantly better when the PS is a linear manifold. We
have also investigated the ability of MMEA to deal with a regular MOP and a MOP of Class I.

The future research topics along this line may include:
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Fig. 9. The best approximations obtained by three algorithms for F6. (a): Omni-Optimizer. (b): KP1. (c): MMEA. Left: thedistributions of the final solutions
in the objective space obtained in the runs with the lowestIGDF values by three respective algorithms. Middle: the distributions of the final solutions in
the x1-x2-x3 space obtained in the runs with the lowestIGDX values. Right: the distributions of the final solutions in the x1+x2+x3
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-x4 space obtained

in the runs with the lowestIGDX values.

• extension of MMEA to constrained MOPs, and MOPs under dynamic and/or noisy environment for approximating both
their PS and PF [35], [36].

• study of the scalability of MMEA on the numbers of decision variables and objectives [37], [38].
• use of other machine learning methods in MMEA [39].
• combination of other techniques, particularly, traditional mathematical programming methods, with MMEA for improving

the algorithm performance [40].

The C++ code of MMEA can be downloaded from Q. Zhang’s home page: http://cswww.essex.ac.uk/staff/qzhang/
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[20] E. Zitzler, K. Deb, and L. Thiele, “Comparison of multiobjective evolution algorithms: Empirical results,”Evolutionary Computation, vol. 8, no. 2, pp.

173–195, 2000.
[21] Y. Jin, “Effectiveness of weighted sum of the objectives for evolutionary multi-objective optimization: Methods, analysis and applications,” 2002, on-line

available at: http://www.soft-computing.de/edwa2002.pdf.
[22] G. Rudolph, B. Naujoks, and M. Preuss, “Capabilities ofemoa to detect and preserve equivalent pareto subsets,” inFouth International Conference on

Evolutionary Multi-Criterion Optimization (EMO 2007), ser. Lecture Notes in Computer Science, vol. 4403. Matsushima,Japan: Springer, March 2007,
pp. 36–50.

[23] S. Huband, P. Hingston, L. Barone, and L. While, “A review of multiobjective test problems and a scalable test problem toolkit,” IEEE Transactions on
Evolutionary Computation, vol. 10, no. 5, pp. 477–506, 2006.

[24] K. Deb and S. Tiwari, “Omni-optimizer: A procedure for single and multi-objective optimization,” inThird International Conference on Evolutionary
Multi-Criterion Optimization (EMO 2005), ser. Lecture Notes in Computer Science, C. A. Coello Coello, A. H. Aguirre, and E. Zitzler, Eds., vol. 3410.
Guanajuato, Mexico: Springer, March 2005, pp. 41–65.

[25] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGA-II,”IEEE Transactions on Evolutionary
Computation, vol. 6, no. 2, pp. 182–197, 2002.

[26] K. P. Chan and T. Ray, “An evolutionary algorithm to maintain diversity in the parametric and the objective space,” in Third International Conference
on Computational Intelligence, Robotics and Autonomous Systems(CIRAS 2005), Singapore, 2005.

[27] M. Preuss, B. Naujoks, and G. Rudolph, “Pareto Set and EMOA behavior for simple multimodal multiobjective functions,” in Parallel Problem Solving
from Nature - PPSN VIX, ser. Lecture Notes in Computer Science, vol. 4193. Reykjavik, Iceland: Springer, September 2006, pp. 513–522.

[28] N. Kambhatla and T. K. Leen, “Dimension reduction by local principal component analysis,”Neural Computation, vol. 9, no. 7, pp. 1493–1516, October
1997.

[29] M. Reyes Sierra and C. A. Coello Coello, “A study of fitness inheritance and approximation techniques for multi-objective particle swarm optimization,”
in Proceedings of the Congress on Evolutionary Computation (CEC 2005). Edinburgh, U.K: IEEE Press, September 2005, pp. 65–72.

[30] J. D. Knowles and D. W. Corne, “Properties of an adaptivearchiving algorithm for storing nondominated vectors,”IEEE Transactions on Evolutionary
Computation, vol. 7, no. 2, pp. 100–116, 2003.

[31] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: improving the strength Pareto evolutionary algorithm for multiobjective optimization,” inEvolutionary
Methods for Design, Optimisation and Control. Barcelona, Spain: CIMNE, 2002, pp. 95–100.

[32] H. Li and Q. Zhang, “Comparison between NSGA-II and MOEA/D on a set of multiobjective optimization problems with complicated pareto sets,”
IEEE Transactions on Evolutionary Computation, 2008, accepted.

[33] K. Deb and R. B. Agrawal, “Simulated binary crossover for continuous search space,”Complex Systems, vol. 9, 1995.
[34] K. Deb and M. Goyal, “A combined genetic adaptive search(geneas) for engineering design,”Computer Science and Informatics, vol. 26, no. 4, pp.

30–45, 1996.
[35] Y. Jin and J. Branke, “Evolutionary optimization in uncertain environments-a survey,”IEEE Transactions on Evolutionary Computation, vol. 9, no. 3,

pp. 303–317, 2005.



[36] A. Zhou, Q. Zhang, Y. Jin, B. Sendhoff, and E. Tsang, “Prediction-based population re-initialization for evolutionary dynamic multi-objective
optimization,” in Fouth International Conference on Evolutionary Multi-Criterion Optimization (EMO 2007), ser. Lecture Notes in Computer Science,
vol. 4403. Matsushima,Japan: Springer, March 2007, pp. 832–846.

[37] C. W. Ahn and R. S. Ramakrishna, “On the scalability of real-coded bayesian optimization algorithm,”IEEE Transactions on Evolutionary Computation,
vol. 12, no. 3, pp. 307–322, 2008.

[38] L. Martı́, J. Garcı́a, A. Berlanga, and J. M. Molina, “Scalable continuous multiobjective optimization with a neural networkcbased estimation of
distribution algorithm,” inApplications of Evolutionary Computing: EvoWorkshops 2008, ser. Lecture Notes in Computer Science, M. Giacobini et al,
Ed. Berlin/Heidelberg: Springer, 2008, no. 4974, pp. 535–544.

[39] R. S. Michalski, “Learnable evolution model: Evolutionary processes guided by machine learning,”Machine Learning, vol. 38, no. 1-2, pp. 9–40, 2000.
[40] Q. Zhang, J. Sun, E. Tsang, and J. Ford, “Hybrid estimation of distribution algorithm for global optimisation,”Engineering Computations, vol. 21, no. 1,

pp. 91–107, 2003.


