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Abstract

Most existing multiobjective evolutionary algorithms aiat approximating the PF, the distribution of the Pareto roati
solutions in the objective space. In many real-life appiaces, however, a good approximation to the PS, the didtdhwf the
Pareto optimal solutions in the decision space, is alsoimredjby a decision maker. This paper considers a class of MDPs
which the dimensionalities of the PS and PF are differenthab & good approximation to the PF might not approximate the P
very well. It proposes a probabilistic model based mulgckiye evolutionary algorithm, called MMEA, for approxitivy the PS
and the PF simultaneously for a MOP in this class. In the nliodephase of MMEA, the population is clustered into a number
of subpopulations based on their distribution in the olpjecspace, the PCA technique is used to detect the dimerisjoofithe
centroid of each subpopulation, and then a probabilistidehs built for modelling the distribution of the Pareto iopal solutions
in the decision space. Such modelling procedure could prthe population diversity in both the decision and objectipaces.
To ease the burden of setting the number of subpopulatiodgnamic strategy for periodically adjusting it has beenpaed in
MMEA. The experimental comparison between MMEA and the twloeo methods, KP1 and Omni-Optimizer on a set of test
instances, some of which are proposed in this paper, have rbade in this paper. It is clear from the experiments that MME
has a big advantage over the two other methods in approxighatth the PS and the PF of a MOP when the PS is a nonlinear
manifold, although it might not be able to perform signifitarbetter in the case when the PS is a linear manifold.

Index Terms

Multiobjective optimization, Pareto optimality, estinmt of distribution algorithm, principal component anasys

I. INTRODUCTION
This paper considers the followirgpntinuous multiobjective optimization problem (continuous MOP):

minimize F(z) = (fi(2),- -, fm(2)) 1)
subject to x € []las, b4
i=1
where—oco < a; < b; < +oo foralli =1,...,n. [][as;,b;] C R™ is the decision space and= (z1,...,z,) € R" is the
i=1
decision variable vecto# : [] [a;,b;] — R™ consists ofm real-valued continuous objective functiofigx) , i = 1,...,m.
1=1
R™ is the objective space.
Let u = (u1,...,Um), v = (v1,...,vn) € R™ be two vectorsu is said todominate v, if « # v andu; < v; for
all i = 1,...,m. z* is called (globally) Pareto optimal if there is no otherz such thatF'(z) dominatesF(z*). The set

of all the Pareto optimal points, denoted by PS, is called Raesto set. The image of the PS on the objective space,
PF= {y € R™|y = F(z),z € PS}, is called thePareto front [1], [2].

Most existing multiobjective evolutionary algorithms (NEBs) aim at finding an approximation to PFs [2]-[15]. Howewer
some real-world applications, particularly when the prefiee (i.e. utility function) of a decision maker is not clgalefined,
a good approximation to both the PF and the PS should be eztjoyr the decision maker for facilitating their decision mnak
as argued in [16]-[18]. If the mapping from the PS to the PFnis-tw-one and relatively uniform, a good approximation to
the PF could approximate the PS well too. Otherwise, thiddcoat be the case. Two typical classes of continuous MOPS, in
which the approximation of their PSs should be carefullyradsed, are as follows:
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« Class I: A finite number of different points in the PS may hdwe $ame image in the PF under the mappthfom the
PS to the PF, but the PS and the PF are of the same dimensipmdlith ism — 1 under some mild conditions [19].
Therefore, the PS could consist of a number of disconneastintious(m — 1)-D manifolds. ZDT6 [20], Jinl [21] and
the SYM-PART instances [22] are test instances in this class

« Class Il: The PF is &n — 1)-D continuous manifold and the PS is a continuous manifold bfgher dimensionality. All
the inverse images of a point in the PF could constitute azewn-dimensional continuous manifold. Some WFG test
instances [23] are in this class.

To generate a good approximation to both the PS and the PF oDR, Mn algorithm should arguably have an effective
mechanism to encourage and maintain the population diyersdt only in the objective space as most MOEAs do, but
also in the decision space. For this reason, Deb and Tiwandoced the crowding distance in the decision space irgo th
nondominated sorting scheme in Omni-Optimizer [24], a ga&limtion of NSGA-II [25], for promoting the populationvdirsity
in the decision space. Chan and Ray suggested using twdiseleperators in MOEAS, one encourages the diversity in the
objective space and the other does so in the decision spéteTfey implemented KP1 and KP2, two algorithms using these
two selection operators. It should be pointed out that thePgl@hat KP1, KP2 and Omni-Optimizer attempt to deal with are
of Class I. Rudolplet al also proposed to use a restart strategy for finding a goodajppation to the PS of a MOP of Class
I [22], [27]. To the best of our knowledge, no effort has beesden for dealing with problems of Class Il. The major purpose
of this paper is to study how to approximate both the PS andPthef a MOP of Class II.

In [13], we studied a “regular” continuous MOP in which botetPF and FS are piecewise continuous manifolds of
(m — 1)-D dimensionality, and proposed RM-MEDA, an estimation wtribution algorithm (EDA) for approximating its PF.
In this paper, we generalize the idea of RM-MEDA and proposeodel based multiobjective evolutionary algorithm, adlle
MMEA, for approximating the PS and the PF of a MOP of Class Il siamgbusly. MMEA has the following features:

« The population diversity in the decision space is promatdtsireproduction generator, instead of in the selecticeraiprs

as in Omni-Optimizer, KP1 and KP2. The NDS-selection, whichised in RM-MEDA, is employed in MMEA.

« To build a probabilistic model of promising solutions, thepplation is divided, based on their distribution in theeathive
space, into a number of subpopulations. Therefore, the lptpn diversity in the objective space can be promoted. To
ease the burden of tuning the number of subpopulations, andigal strategy for tuning it has been adopted in MMEA.

« The principal component analysis technique is used to tétecdimensionality of the centroid of each subpopulation
in the decision space, and then a probabilistic model canubefbr modelling its distribution in the decision space. |
such a way, the population diversity in the decision spacel@aencouraged.

The rest of the paper is organized as follows: Section IIgihe details of the algorithm. Section Il presents thegrenfince
metrics and the test instances, some of which are firstlygseg in this paper. Section IV compares MMEA with KP1 and
Omni-Optimizer on these test instances. More discussionthe ability of MMEA are provided in Section V. Section VI
concludes this paper and lists some future research topics.

Il. ALGORITHM
A. Framework
At each generation, the proposed algorithm, MMEA, mairgain

« A population of N solutions (i.e. points in[] [a;, b;]):
i=1

o Their F-values:F(z!),..., F(2™).

MMEA adopt the following widely used estimation of distriimn algorithm framework:

Phase 1 Initialization: Generate an initial populatio® and compute thé’-values of these solutions iR.

Phase 2 Modélling: Build a model for modelling the distribution of the individis in P.

Phase 3 Reproduction: Generate a set of new solutiofsby sampling from the model built in Phase 2 and compute the
F-values of these solutions if.

Phase 4 Selection: SelectN solutions fromP |J @ and replace all the solutions iR by them.

Phase 5 Stopping Condition: If a stoping condition is met, stop and return all the solsién P and their corresponding
F-values. Otherwise, go tBhase 2.

In the following, we give and discuss the implementationsnaidelling, reproduction and selection.

B. Modelling

In a successful algorithm for approximating both the PS aed™ of (1), the individuals in its population should apjntate
the PS in the decision space and their images should conteetge PF in the objective space as the search goes on. Therefo
one could model the PS and the PF based on information eadr&icim the population. Such models can be further used for



sampling new good solutions. Such an idea has been used ® exdent in RM-MEDA. The problem that RM-MEDA was
designed for is a ‘regular” continuous MOP, in which both #® and the PF are of the same dimensionality. In this paper,
the same idea is used in the modelling phase of MMEA for dgakith a MOP of Class II.
The modelling phase in MMEA works as follows:
Step 1 Building a Utopian PF: Based on information from the current populatié build a (m — 1)-D simplex in the
objective space as a Utopian PF.
Step 2 Determining the Number of Subpopulations. DetermineK, the number of subpopulations used in modelling the
PS.
Step 3 Selecting Reference Points: SetY!, ... YX, K points which are uniformly spread dAPF in the objective space,
to be K reference points.
Step 4 Clustering: For each reference poiit’, compute, in the objective space, its Euclidian distanaesltthe individual
solutions inP. Select the2X] closest solutions t&”* and let them constitute subpopulatiéh.
Step 5 Principal Component Analysis and Maodelling: Do Principal Component Analysis (PCA) on each subpopufatio
P and build a model for it.
In the following, we give the details of the major steps in #i®ve modelling phase.
1) Building a Utopian PF: We assume that the PF of the MOP in question igmf— 1)-D. Therefore, it is reasonable to
use a(m — 1)-D simplex as a Utopian PF. The following procedure is usedawstruct such a simpleX:
Step 1.1 Fori = 1,...,m, find the individual solutiorz? in P such thatz’ is a nondominated solution i and it
has the largesf; function value among all the nondominated solutiong’in
Step 1.2 Initialize S as the(m — 1)-D simplex with vertexed”(z1), ..., F(z™) in the objective space. Movg along
its normal direction to a position such that (a) no pointSircan be dominated by any solutions iy and (b) the
moved distance should be as short as possible.
Step 1.3 Let Ay, ..., A, be the vertexes of the moved simpl8x Compute the center of:

1 m
0=-— ; A;.
Then enlargeS by moving its vertexes:

fori=1,...,m.
The major reason why we enlargeis to guide the algorithm to extend its search in the objectpace. Whem, the number
of the objectives is 25 is a one-D line segment in the objective space. Fig. 1 illies howsS is generated in such a case.

A

(b)

~VY

~Y

(@

Fig. 1. lllustration of building a Utopian PF in the case obtabjectives. (a) Find the extreme points and initializepder S. (b) Move S along its normal
direction. (c) EnlargeS.

2) Determining the Number of Subpopulations: To reduce the problem-dependenceif the value of K is changing
dynamically and periodically during the search. More aiftirly,
K = szn + (\_éj)mOd(Kmam - szn)
where
« t is the current generation number,
o Koin and K,,,,, are predetermined minimal and maximal values grrespectively,
o At is a predetermined length of the time interval during whick value ofK is fixed.



3) Sdecting Reference Points and Clustering: Reference points uniformly spread on the Utopian PF anderdifft
subproblems are associated with different reference poiterefore, the search effort could be distributed teedsfit reference
points of the Utopian PF in a relatively uniform way. In clishg, different subpopulations may overlap, which aims at
improving the search performance in between differentresfee points.

4) PCA and Modelling: The individual solutions in subpopulatid® should, hopefully, scatter around part of the PS in the
decision space as the search goes on. For simplicity, we calelnthe centroid of?’ as a hyper-rectangkg’ in the decision
space and regard each individual% as an observation of the following random rector:

E=C+e,

where( is uniformly randomly distributed o®?, e ~ N(0,0?I) is an-dimensional zero-mean Gaussian vecfos then x n
identity matrix ands; > 0.
Now the task is how to estimat®® ando;. We do it as follows:

Step 5.1 Compute the sample mean and the sample covariance matiie éhdividual solutions inP’:
e P
and

1 _ _
Cov = P=1 Z (x—z)(x—2z)".

zEP?

where|Pi| is the cardinality ofP?.
Step 5.2 Compute the eigenvalues 6fov’:

ANo>N > >N
and their corresponding unity eigenvectors: o _
Vi Ve .. V.
Step 5.3 Setn?, the dimensionality oft? to be the smallest integer such that:

SN >08) N
j=1 j=1
Step 5.4 Compute the range of the projections of the pointsPinonto the firstn? principal component directions:
l =min(zr — )TW
re P

and

Tyri
= ma — V
= e = 7

forj=1,...,n

Step 5.5 Set
o' ={z € Rz =7 —|—Z 1o¢J 7
15 —0.25(0% —ub) < o <ub+0.25(uf — 1Y),
j=1,...,n"}.
Step 5.6 Set

1 2
g; = n—ni Z /\j'
j=n'+1

The dimensionality of the PS is unknown, so is thatdgf the centroid ofP?. In Step 5.3, the dimensionality @’ is
set such thatb’ holds at leasB80% of the variation in the solutions iP?. ®¢ extends by50% along each of the first’
principal component directions, the smalle$tD hyper-rectangle containing the projections of all th&usons of P? on the
space spanned by, ..., V', from z'. The motivation behind this extension is to extrapolateghits in P* for searching
unexploited promising areas in the decision spacis. modelled as a Gaussian noise vector and all its comporeatsi.d.,
which facilitates the sampling procedure.

The three major differences in the modelling phase betwddriMEDA and MMEA are:

« In clustering, RM-MEDA uses the local PCA [28] technique &rtiion the population into several clusters. In contrast
MMEA in this paper selects the subpopulation centers froemWhopian PF and does clustering based on the distances



in the objective space, which is computationally cheaparrédver, the local PCA could not be applied in MMEA since
the dimensionality of each subpopulation centroid must teelgtermined in the local PCA and such dimensionality is
unknown in the problems MMEA aims to solve.

o The number of clusters is preset in RM-MEDA. While MMEA in shpaper changes the number of subpopulations
dynamically, which lightens the burden of tuning this altfonic parameter.

« In modelling each subpopulation, RM-MEDA sets the dimenality of its centroid to bgm — 1), while MMEA needs
to estimate it. This difference is due to the fact that these algorithms are for different MOPs.

C. Sampling
A new solutionz is generated in Phase 4 of MMEA as follows:

Step 1 Uniformly randomly generate an integerfrom {1,2,..., K}.

Step 2 Uniformly randomly generate a point from ®*. Generate a noise vectef from N (0, oy 1).

Step 3 Returnz = o’ +¢’.

Step 4 If z;, an element of: is not in [a;, b;], randomly select a solutiop from subpopulatiork (obtained in Step 4 in
modelling phase), and rest:

W= 2 +6)

0 al, if 27 < adf,
e if i > b

where

In our implementation, the above procedure is repedfetimes for generatingv solutions in Phase 4.

D. Sdection
The selection operator used in the experimental studiggidlDS-selection, a version of non-dominated sorting seh@%]
proposed in [13]. It works as follows:
Step 1 SetQ = PUQ and P = 0.
Step 2 Partition into different frontsFy, . .., F; by using the fast non-dominated sorting approach [25].kSet0.

Do
k=k+1,
P =PUF;,
Until |P| > N.

Step 3 While |P| > N, Do
For all the individual members i, N P, compute their crowding distances iy N P. Remove the element
in Fj, N P with the smallest crowding distance frofm In the case when there are more than one members
with the smallest crowding distance, randomly choose omkramove it.

In Step 2, the NDS-Selection partitiods into different frontsF, ..., F; such that thej-th front F; contains all the non-
dominated solutions ifPUQ}\ (U/Z] F;). Therefore, there is no solution fiPUQ}\ (U, F;) that could dominate a solution
in F‘7

The crowding distance, used in Step 3, of painin S is defined as the average side length of the large® rectangle
in the objective space subject to the two constraints: (el ed its sides is parallel to a coordinate axis, and Ki§}) is the
only point in F(S) = {F(y)|y € S} that is an interior point in the rectangle. A solution withader crowding distance is
given priority to be selected since it could increase theupsttipn diversity in the objective space.

Ill. TESTINSTANCES ANDPERFORMANCEMETRICS
A. Test Instances

MMEA is for approximating both the PS and the PF of a MOP of €ldsOnly the WFG instances, among the continuous
MOP test instances we have found in the literature, are isCla Two WFG instances: WFG6 and WFG7, have been used
in our experiments. Based on the experiments in [23], thedMFG7 could be “easily” and “quickly” found by NSGA-II,
while WFG6 is “hard” for NSGA-II. It could be because that thiejectives in WFG7 are separable while it is not the case in
WFG6. The PSs of these two test instances are 2-D rectanglbe idecision space when their control parameters are set as
in Table I. To study the behaviors of algorithms on nonline&s, we have designed several MOP test instances of Class Il
with nonlinear PSs. All these test instances are listed WieTa Figs. 2 and 3 plot their PFs and the projections of tRSs
onto lower-D spaces.



TABLE |

TESTINSTANCES USED IN OUR EXPERIMENTSF1-2ARE WFG INSTANCES, F3-F7ARE NEW DESIGNED TEST INSTANCESZ = (21, ...,Zn).

Instance | Range ofz; |

Objectives, PS and PF

| Remarks

F1

F2

F3

F4

F5

Fe6

F7

[0, 21]

[0,2i]

[0,1]

[0,1]

[0,1]

[0,1]

[0,1]

WFG6 (M =2,k = 2 [23]
PS:z;, =0.7i,fori =3,...,n
PF: f1 = 2sin(t), fo = 4005(

WFGT (M =2,k =2) [23]
PS:z; =0.7i,fori=3,...,n
PF: f1 = 2sin(t), fo = 4cos(

fi(@) = (z1 +72)/2,
fa(@) = g(@)(1 = \/ 1),
whereg(z) =1+ -5 i h(z;)? and

2x; — sin(0.5f17) cos(2m f1 + im/n) — 1, i is even,
h(wzi) = { 22; — cos(0.5f17) sin( (27 f1 +im/n)) — 1, i is odd.
) 0.5 + 0.5sin(0.5f17) COS(27‘(‘f1 +1im/n), 1 is even,
PSiz; = { 0.5 4 0.5 cos(0.5f1 ) sm( (27 f1 +4m/n)), iis odd.
fori=3,...,n,and0 < z1,z2 < 1.

PFZf2=1—\/ﬁ,0§f1§1-

fi(z) = (=1 +x2)/2,
fa(x) = g(x) — f12,

whereg(z) =

(x;)?, and

h(zs) = { 2z, — f1 cos(27rf1 +im/n) —1, iis even,

¢ 2z; — fisin(2rwf1 +in/n) —1, ¢ is odd.
0.5+ 0.5f1 cos(2m f1 +im/n), i is even,
0.5+ 0.5f1 sin(2mx1 + iw/n), < is odd,
fori=3,...,n,and0 < zj,x2 < 1.
PFfo=1-/7,0< fi <1,

fi(z) = (21 +22)/2,
f2(x) = g() — fr + Sin(27rf1)/(27f),

whereg(z) = (x;)?, and
2z, — f1 cos(27rf1 +im/n) —1, i is even,
h(wzi) = { 2z; — f1 sm(, 2nfi +iw/n)) —1, iis odd.
) 0.540.5f1 Cos(27rf1 + im/n), 1 is even,
PSiz; = { 0.5+ 0.5f1 sm( (2mz1 + 4w /n)), i is odd,
fori=3,...,n, andogxl,x2<1

PF. fo=1-— f1 +sin(2nf1)/(27), 0 < f1 < 1.

fi(z) = (=1 + z2 + x3)/3,
f2(z) = g(z) - ff,
whereg(z) =14 =5 Z h(z;)?, and

h(z:) = { 2x; — sm(O 5f17r) cos(27rf1 +im/n) — 1, i is even,
Y7 2w — cos(0.5f17) sm( (27 f1 +im/n)) —1 iis odd.
PS 1, — { 0.5 4 0.5sin(0.5f1m) cos(27rf1 +im/n), i is even,
Pl 0.5+ 0.5¢c0s(0.5f17) sm( (27 f1 +4mw/n)), iis odd,
fore=4,...,n, andOle,xg,xggl

PFif2=1—f12,0§f1§1-

fi(z) = g(z) cos(0.25m(z1 + z2)) sin(0.57z3),
f2(x) = g(x) cos(0.25m(x1 + z2)) cos(0.5mz3),
f3(z) = g(z) sin(0. 257r(wl + x2)),

whereg(z) =14 25 E h(z:)?,

2x; sm(O 57ry) Cos(27ry +im/n) — 1, i is even,
h(wz:) = 2x; — cos(0.5my) sm( (2ry + im/n)) — i is odd,
andy = (z1 + z2 + z3)/3.
PS: ., — { 0.5 4 0.5sin(0. 5f17r)cos(27rf1 +im/n), i is even,
"7 0.5+ 0.5cos(0. 5f17r)sm( (27 f1 +9mw/n)), iis odd,
fori=4,... nandOle,xQ,xggl

PF: f1 = cos(s) sin(t), f2 = cos(s) cos(t), f3 = sin(s), 0 < s,t < w/2.

PS is a 2-D rectangle.
PS is concave.
two objectives.

PS is a 2-D rectangle.
PF is concave.
two objectives.

PS is a 2-D nonlinear surface.
PF is convex.

two objectives.

PS is a 2-D nonlinear surface.
PF is concave.

two objectives.

PS is a 2-D nonlinear surface.
PF is not concave or convex.

two objectives.

PS is 3-D continuous
nonlinear manifold.

PF is concave.

two objectives.

PS is 3-D continuous
nonlinear manifold.
PF is concave.

three objectives.
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Fig. 2. The PFs and the PSs for F1-F4. (a): F1. (b): F2. (c):(&8.F4. Left: the PFs in the objective space. Middle: thejgmtions of the PSs onto the
x1-T2 Space. Right: the projections of the PSs ontothers space for F1 and F2, and onto tﬁé%-xg space for F3 and F4.
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Fig. 3. The PFs and the PSs for F5-F7. (a): F5. (b): F6. (c):.LET: PFs in the objective space. Middle: the projectionghaf PSs onto the;-z2 space

for F5, and onto ther;-z2-z3 space for F6 and F7. Right: the projections of the PSs ontc“tjg"2 — x5 space for F5, and onto th&lt22123.5, space
for F6 and F7.

B. Performance Metrics

The Inverted Generational Distance (IGD) metric [13], [BOlised to assess the algorithm performances in our expetdame
studies. LetP* be a set of uniformly distributed Pareto optimal points ie #F (or PS). Lef? be an approximation of*.
The metric is defined as follows.

Z’UEP* d(v’ P)

L .
whered(v, P) is a distance betweemand P and|P*| is the cardinality ofP*.

The IGD metric can measure both diversity and convergence. To héwe dG D value, P must be very close to the PF
(or PS) and cannot miss any part of the whole PF (or PS).

We denotel GD metric asIGDF when P* is a set of points in the PF ant{v, P) is the Euclidian distance measured in
the objective space, and d& DX when P* is a set of points in the PS anf{v, P) is the Euclidian distance measured in
the decision space.

In our experiments, 1,000 points, in whigh or ¢ taking 1,000 equidistant values from their lower boundshtgirt upper
bounds, are selected from the respective PFs of F1-F6 #©*bfer computing thelGD F metrics.50 x 50 = 2, 500 points in
the PF of F7 withs, ¢ = % X G, 4—19 X Gy j‘l—g x %, are taken to formP* for computing the/G D F' metric for experiments
on F7.50 x 50 = 2,500 points in the respective PSs of F1-F5, in whichandzx, take 50 equidistant values from their lower
bounds to their upper bounds respectively, are taken to #Brnfior computing thelGDX metrics.25 x 25 x 25 = 15,625
points in the respective PSs of F6 and F7, in whighx, andxs take 25 equidistant values from their lower bounds to their

IGD(P*,P) =



upper bounds respectively, are taken toefor computing the/ GDX metrics.

IV. EXPERIMENTAL RESULTS
A. Experimental Settings and Algorithms in Comparison

The studies in [22], [26], [27] have shown that popular MOE#sch as PAES [30], NSGA-II [25] and SPEA2 [31], cannot
approximate both the PF and the PS simultaneously since thethods could not maintain the population diversity inislen
space. MOEA/D, a recent MOEA based on aggregation propas¢82j, can not do so either for the same reason. In our
experiments, we have compared MMEA with KP1 [26hd Omni-Optimizer [24] As mentioned in Introduction, both of
them try to approximate both the PF and the PS of a MOP by priomdte population diversity in the decision space in
their selection operators. The simulated binary cross@BiX) [33] and the polynomial mutation [34] are used in thése
methods for generating offspring.

Table Il lists all the parameter settings in our experiments

TABLE Il
EXPERIMENTAL SETTINGS

The number of variables n =20
population size for all the algorithms N = 250 (F1-F5)
N = 500 (F6-F7)

maximal number of subpopulation  Kpee = 30
MMEA  minimal number of subpopulation Kmin =5
the length of the time interval At =10
crossover parameter in SBX Ne = 20
Omni crossover rate P. =028
KP1 parameter in polynomial mutation  7,, = 20
mutation rate Pn=1/n

All the algorithms stop after 500 generations. The popataih each algorithm is initialized uniformly and randomiythe
decision space. The following results are based on 20 indkp runs of each algorithm on each test instance.

TABLE IlI
STATISTICAL RESULTS OFI DGF AND IGDX METRICS OF THETHREEALGORITHMS ONF1-F7 (nean + std.)

Instance Omni KP1 MMEA
F1 IGDF  0.0682+ 0.0128 0.0574L 0.0076  0.0106 + 0.0022
IGDX  26.8558+ 4.2276  21.4472t 5.2046 0.5480 4+ 0.1751
F2 IGDF  0.03854 0.0204 0.0107: 0.0007  0.0080 + 0.0006
IGDX 0.31264 0.0431 0.2749 4+ 0.0414 0.3076+ 0.0442
F3 IGDF  0.55154 0.0197 0.0918+ 0.0194 0.0177 4 0.0090
IGDX 1.0390+ 0.0139 0.4456+ 0.0638 0.1280 + 0.0226
F4 IGDF 0.21004 0.1242 0.1316f 0.1107 0.0313 £+ 0.0479
IGDX 0.66924+ 0.1951 0.4729t 0.2220 0.1398 + 0.1107
F5 IGDF 0.1914+ 0.0532 0.0294f 0.0038 0.0139 + 0.0033
IGDX 0.5234+ 0.0850 0.2473f 0.0385 0.1008 + 0.0072
F6 IGDF 0.13764+ 0.0657 0.10374 0.0177 0.0294 + 0.0236
IGDX 05744+ 0.1342 0.4680+ 0.0668  0.1584 + 0.0209
F7 IGDF 0.60454 0.0600 0.7451t 0.0000 0.0591 + 0.0024
IGDX  1.0656+ 0.0289 1.3134 0.0291  0.2400 4 0.0116

B. F1-F2

F1 and F2 have the same PS, which is a 2-D rectangle paraliel-ie space. The objectives are nonseparable in F1 but
separable in F2 [23]. The means and standard deviations edound in Table 11l of the/lGDF and IGDX values of the
20 final populations obtained by each algorithm for F1 and F2.

Figs. 4 and 5 show, in the objective and decision spaces,istiébdtion of the final solutions obtained in the runs witiet
lowestIGDF andIGDX values of each algorithm for these two test instances, otispdy.

1We use KP1 in this paper because the experimental resul26jnhve shown that KP1 is slightly better than KP2.
2The C++ source codes of KP1 was obtained from its authors.i@ptimizer was implemented by ourselves.



f2

f2

f2

x1

(@) Omni-Optimizer

0.8

16

24

1 2
x1

x3

x3

X3

@0 oo

D 0 O OCMD GPEMTO:

(c) MMEA

Fig. 4. The best approximations obtained by three algostfion F1. (a): Omni-Optimizer. (b): KP1. (c): MMEA. Left: thdistributions of the final solutions
in the objective space obtained in the runs with the low&stD F' values by three respective algorithms. Middle: the distidns of the final solutions in
the x1-z2 space obtained in the runs with the lowdst DX values. Right: the distributions of the final solutions im th -z3 space obtained in the runs
with the lowest/GDX values.

It is clear from Table Il that in terms of theGDF metrics, MMEA is better than the two other algorithms on &eso
test instances. Figs. 4 and 5 confirm it to some extent: thé fimpulations with lowest GDF' values obtained by MMEA
approximate the PFs better than that obtained the two otheridams. Table Il indicates that in terms of tHé& DX metrics,
MMEA outperforms the two other competitors on F1 but is dliglworse than KP1 on F2. Actually, one could visually
distinguish from Fig. 4 the differences in approximatioralify in the x1-z, andx;-z3 spaces between MMEA and two other
methods on F1. It is hard, however, to tell any big differeimcapproximation quality in the decision space between MMEA
and KP1 on F2 from Fig. 5. These results indicate that MMEAIdmot always have the edge over KP1 on MOPs with
linear PSs like F2. The major reason might be that in MMEAngsa mixture of several different linear models could lead
to overfitting on these linear PSs and thus deteriorate iteance.

C. F3-F7

All these test instances have nonlinear PSs in the decigiaces The dimensionality of the PSs of F3-F5 are 2 while that
of F6 and F7 are 3. Table Ill suggests that in terms of bothifi® ' and IGDX metrics, MMEA performs better than
the two other algorithms. Taking F3 as an example, #6860 F' mean value in MMEA is just about% and 19% of that in
Omni-Optimizer and KP1, respectively, and th& DX mean value is about2% and 29% of that in Omni-Optimizer and
KP1, respectively. It is evident from Figs.6-10 that for F3; the best approximations obtained by MMEA can approxmat
the whole PF in the objective space very well, while KP1 andn®@ptimizer always miss part of the PFs. Figs. 6- 10 also
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reveal that in the decision space, the best approximatibtesreed by MMEA is significant better than that by the two othe
algorithms for F3-F7.

KP1 and Omni-Optimizer promote the population diversitythieir selection operators and mainly the SBX, which wad
originally proposed for single objective optimization,denerate new solutions. By contrast, MMEA uses the NDSctele
operator, which does not explicitly encourage the poputatliversity in the decision space, and it estimates the géial
shape of the PS and attempts to make the new solutions utyfalistribute around the estimated PS. Our experiments have
suggested that reproduction operators are of crucial itapoe in MOEAs for approximating both the PS and the PF and
one should use problem-specific knowledge in designingockprtion operators in MOEAs. The major reason that KP1 and
Omni-Optimizer fail in F3-F7 might be that the SBX is not alite for a MOP with nonlinear PSs. Actually, if two parent
solutions are Pareto optimal (i.e. in the PS), it is verylikiat their offspring under the SBX are far away from the PS.

V. MORE DISCUSSIONS
A. Could MMEA solve regular MOPS?
MMEA was designed for solving a MOP of Class I, in which thenénsionality of its PS is not lower than the number of
the objectives and not known. In fact, MMEA uses the PCA tépha to detect the PS dimensionality before modelling the

PS in its search. Now a question arises whether MMEA can t@ffdg solve a regular MOP in which the PS is(a — 1)
continuous manifold in the decision space. To study thistioe, we have tested MMEA on LZ08-F4 [32], a regular MOP,
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in which two objectives to be minimized are defined as:

fie) =1+ gy 3 [y — 0.8 con(TEpInl )

[1]
JEeJ1
folx) =1— /1 + % > [xj — 0.8z cos(6mzy + jm/n)]?,
JEJ2

where J; = {j|j is odd and2 < j < n} andJ2 = {j|j is even and < j < n}. Its search space i9,1] x [-1,1]""L. The
PS of LZ08-F4 is: Smzatn/
0.8z cos(2 LT jeJ
0,1] andz,; = 3
71 €[0,1] andz; { 0.8x1 cos(6mxy + jm/n) jeJo '

and its PF is:
f2 =1- \/Eafl € [071]

In our experiment on LZ08-F4;, the number of decision variables is set to 3 and IV, the population size i800 as
suggested in [32]. All the other parameter settings are #émeesas in Section IV. Fig. 11 plots the final population oleein
in the run with the lowesf GDF value among 20 independent runs. It is evident that MMEA aawnesLZ08-F4 effectively.
Such success implies that MMEA is able to detect the dimeasity of the PS of a regular MOP like LZ08-F4 and a regular
MOP does not pose a serious challenge to MMEA.
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B. Can MMEA deal with a MOP of Class 1?

A MORP of Class Il has a continuous PS of dimensionality lafd@n m — 1, while the PS of a MOP of Class | consists
of a number of disconnected continuous manifolds. To ingatt the ability of MMEA to tackle MOPs in Class |, we have
executed MMEA on DT05-F4.4 [24], in which the two objectiiesbe minimized are as follows:

fi(z) =30 sin(nz;)
fo(x) = 300, cos(ma;),

and the search space|is 6]". The PF of DT05-F4.4 is:

f2:_ 25_f127f1€[_570]7

and its PS consists &f* disconnected parts, each of them is a line segment.

In our experiment on DT05-F4.4,, the number of decision variables is set toheand N, the population size is, 000.
All the other parameter settings are the same as in SectioRidV/ 12 presents the final population obtained in the rui wit
the lowest/GDF' value among 20 independent runs. Clearly, MMEA have not ppred a satisfactory approximation to the
PS. This could be because that MMEA bases on the distance=définthe objective space to clusters its population, it has
no ability to distinguish different parts of the DT05-F4.8 ih the decision space and thus cannot find a good approgimati
to its PS.
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VI. CONCLUSION

A good approximation to both the PS and PF of a MOP could beimedjiin some real-world applications. A good
approximation to the PF of a MOP might not be a good approxanab the PS, for example, when the MOP in question is
of Class | or Il. Some effort has been made to approximate tahPS and the PF of a MOP of Class I. This paper represents
a first attempt to do so for a MOP of Class II.

MMEA proposed in this paper generalizes the idea used in REBDK to a MOP of Class Il for approximating its PS and PF
simultaneously. In the modelling phase of MMEA, the popolais clustered into a number of subpopulations based dn the
distribution in the objective space, the PCA technique &dus detect the dimensionality of the centroid of each spbfadion,
and then a probabilistic model is built for modelling thetdimution of the Pareto optimal solutions in the decisiomep
Such modelling procedure could promote the populationrdityein both the decision and objective spaces. New satistio
are sampled from the model thus built. To ease the burdenttifiggehe number of subpopulations, a dynamic strategy for
periodically adjusting the number of subpopulations hasnbadopted in MMEA. The population for the next generation is
selected by the NDS-selection. The comparison between MME@the two other algorithms, KP1 and Omni-Optimizer on
a set of test instances, some of which were proposed in tipsrphave been made in this paper. It is very clear that MMEA
has a big advantage over the two other algorithms in apprtkag both the PS and the PF of a MOP of Class Il when the
PS is a nonlinear manifold, although it might not be able tdgyen significantly better when the PS is a linear manifolde W
have also investigated the ability of MMEA to deal with a risguMOP and a MOP of Class I.

The future research topics along this line may include:
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Fig. 9. The best approximations obtained by three algostfon F6. (a): Omni-Optimizer. (b): KP1. (c): MMEA. Left: thdistributions of the final solutions
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« extension of MMEA to constrained MOPs, and MOPs under dynand/or noisy environment for approximating both
their PS and PF [35], [36].

« study of the scalability of MMEA on the numbers of decisionigbles and objectives [37], [38].

« use of other machine learning methods in MMEA [39].

« combination of other techniques, particularly, tradiibmathematical programming methods, with MMEA for improyi
the algorithm performance [40].

The C++ code of MMEA can be downloaded from Q. Zhang's homeephtp://cswww.essex.ac.uk/staff/qzhang/
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