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This paper applies the fast Fourier transform (FFT) approach, within the Black-Scholes framework, to the valuation of options
whose time to maturity can be extended to a future date (extendible options). We determine the valuation of the extendible options
as sums of expectations of indicator functions, leading to a semianalytic expression for the value of the options over a range of strikes.
Compared to Monte Carlo simulation, numerical examples demonstrate that the FFT is both computationally more efficient and
higher in accuracy.

1. Introduction

An extendible option allows its time to expiration to be
extended to a future date for a fee with a different strike
price at the extended expiration time. Longstaff [1] discusses
a number of applications of extendible options, such as
extendible bonds and warrants, and applications in real
estate, demonstrating that extendible options are important
in financial markets. For example, Dias and Rocha [2] price
petroleum concessions using a mean-reverting framework
including jumps for an extendible option. Extendible options
can be classified as a holder- or writer-extendible call option
or a holder- or writer-extendible put option. Options that
are extended by their writer have no fee and they are more
straightforward to price. To the best of our knowledge,
Longstaff [1] was the first to study extendible options. Chung
and Johnson [3] extend the work of Longstaff [1] to a general
case where the holder or the writer can extend the option
more than once and provide a general closed-form pricing
solution for 𝑛-time extendible options.

In order to price options, many numerical techniques are
available, such as Monte Carlo simulation and the Fourier
transformmethod.The fast Fourier transform (FFT) was first

introduced by Cooley and Tukey [4] to obtain the discrete
Fourier transform (DFT) and its inverse. Implementing the
DFT involves 𝑁 points where, for added efficiency, 𝑁 is a
power of 2 and it is essential to have an extensively large 𝑁

data set, which reduces the number of computations from
𝑂(𝑁
2
) to 𝑂(𝑁 ln𝑁). Monte Carlo simulation often requires

substantially more time to compute option prices, while the
FFT, which was first implemented to option pricing by Carr
and Madan [5], is often more straightforward and effective.
This has been demonstrated by a number of authors, such
as Pillay and O’Hara [6] and Ibrahim et al. [7]. Hence, the
FFT has gained popularity as an effective option pricing
methodology (see [8, 9]), and a significant amount of research
has extended this method to price various types of options,
for instanceAsian options [10], spread options [11], and power
options [12]. The FFT technique is widely applicable and has
been shown to performwell in terms of its speed and accuracy
in some other affine models, such as stochastic volatility,
stochastic interest rates, and jumps (see [13–15]).

In this paper, we review the pricing framework for
extendible call options under the Black and Scholes [16]
model first developed by Longstaff [1]. By following the
work of Carr and Madan [5], we apply the FFT method to
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numerically compute the prices of extendible call options.
For an effective implementation of the FFT, we provide an
analytical representation of the characteristic functions for
the extendible options. The usefulness of the FFT is that this
technique gives a range of option prices for a collection of
strike prices for a given maturity. In addition, we estimate the
price of extendible options via Monte Carlo simulation for
comparison.

The paper is organized as follows. Section 2 reviews the
closed-form formulas for the holder-extendible call options
under the Black-Scholes model as provided in Longstaff
[1]. Section 2.1 develops a pricing procedure for holder-
extendible call options using the FFT approach where the
characteristic functions are given, while Section 2.2 applies
the Monte Carlo simulation using an Euler scheme and a
Milstein scheme. Section 3 presents the numerical results,
and Section 4 concludes the paper.

2. Extendible Option

In this section, we derive a closed-form solution for holder-
extendible call options as given by Longstaff [1], which is the
focus of this paper. An analogous approach can be used to
value extendible put options.

Let (Ω,F,Q) be a probability space on which a Brownian
motion,𝑊

𝑡
, 0 ≤ 𝑡 ≤ 𝑇, is defined, whereF

𝑡
, 0 ≤ 𝑡 ≤ 𝑇, is the

natural filtration generated by the Brownianmotion. Suppose
that Q is a risk-neutral measure under which the asset price
process 𝑆

𝑡
, 0 ≤ 𝑡 ≤ 𝑇, is governed by the following dynamics:

𝑑𝑆
𝑡
= 𝑟𝑆
𝑡
𝑑𝑡 + 𝜎𝑆

𝑡
𝑑𝑊
𝑡
. (1)

Within the Black-Scholes framework, the volatility 𝜎 and the
risk-free interest rate 𝑟 are assumed to be constant. Using Itô’s
lemma, the process followed by the logarithmic asset price
𝑥
𝑡
:= ln 𝑆

𝑡
is given by

𝑑𝑥
𝑡
= (𝑟 −

1

2

𝜎
2
)𝑑𝑡 + 𝜎𝑑𝑊

𝑡
. (2)

This demonstrates that 𝑥
𝑡
follows a generalized Wiener

process with a constant drift (𝑟 − (1/2)𝜎
2
) and a constant

volatility 𝜎. Therefore, the change in 𝑥 between time 𝑡 and
𝑇 is normally distributed with a mean of (𝑟 − (1/2)𝜎

2
)(𝑇 − 𝑡)

and a variance of 𝜎2(𝑇 − 𝑡) or

ln 𝑆
𝑇
∼ 𝑁[ln 𝑆

𝑡
+ (𝑟 −

1

2

𝜎
2
) (𝑇 − 𝑡) , 𝜎

2
(𝑇 − 𝑡)] . (3)

Therefore, 𝑆
𝑇
has a log-normal distribution. The valuation

formula for a vanilla call option with a given underlying asset
price 𝑆

𝑡
, strike price 𝐾, expiration time 𝑇, risk-free interest

rate 𝑟, and volatility 𝜎 is given as follows:

𝐶 (𝑆
𝑡
, 𝐾, 𝑇 − 𝑡) = 𝑆

𝑡
𝑁(𝑑
1
) − 𝐾𝑒

−𝑟(𝑇−𝑡)
𝑁(𝑑
2
) , (4)

where

𝑑
1
=

ln (𝑆
𝑡
/𝐾) + (𝑟 + (1/2) 𝜎

2
) (𝑇 − 𝑡)

𝜎√𝑇 − 𝑡

,

𝑑
2
= 𝑑
1
− 𝜎√𝑇 − 𝑡.

(5)

Let EC be the value of an extendible call option with time
to expiration of 𝑇

1
. At the time to expiration 𝑇

1
, the holder of

the extendible call can

(1) let the call expire worthless if 𝑆
𝑇
1

< 𝐿, or
(2) exercise the call and get 𝑆

𝑇
1

− 𝐾
1
if 𝑆
𝑇
1

> 𝐻, or
(3) make a payment of an additional premium 𝐴 to

extend the call to 𝑇
2
with a new strike of 𝐾

2
if 𝐿 ≤

𝑆
𝑇
1

≤ 𝐻,

where 𝑆
𝑇
1

is the underlying asset price and strike price at time
𝑇
1
, 𝐾
1
is the strike price at time 𝑇

1
, and Longstaff [1] refers to

𝐿 and𝐻 as critical values, where 𝐿 < 𝐻.
If at expiration time 𝑇

1
the option is worth more than

the extendible value with a new strike price of 𝐾
2
for a fee

of 𝐴 for extending the expiration time 𝑇
1
to 𝑇
2
, then it is

best to exercise; that is, 𝑆
𝑇
1

− 𝐾
1
≥ 𝐶(𝑆

𝑇
1

, 𝐾
2
, 𝑇
2
− 𝑇
1
) − 𝐴 .

Otherwise, it is best to extend the expiration time of the
option to 𝑇

2
and exercise when it is worth more than zero;

that is, 𝐶(𝑆
𝑇
1

, 𝐾
2
, 𝑇
2
− 𝑇
1
) − 𝐴 > 0. Moreover, the holder of

the option should be impartial between extending and not
exercising at value 𝐿 and impartial between exercising and
extending at value 𝐻. Therefore, the critical values 𝐿 and 𝐻

are unique solutions of 𝐻 − 𝐾
1
= 𝐶(𝐻,𝐾

2
, 𝑇
2
− 𝑇
1
) − 𝐴 and

𝐶(𝐿,𝐾
2
, 𝑇
2
− 𝑇
1
) − 𝐴 = 0. See Longstaff [1] and Gukhal [17]

for an analysis of the conditions.
The price of the extendible call option is the discounted

expectation of the payoff at time 𝑇
1
and is given by the

following:

EC (𝑆
𝑡
, 𝐾
1
, 𝑇
1
, 𝐾
2
, 𝑇
2
, 𝐴)

= 𝑒
−𝑟(𝑇
1
−𝑡)

× EQ
{max [𝑆

𝑇
1

− 𝐾
1
, 𝐶 (𝑆
𝑇
1

, 𝐾
2
, 𝑇
2
− 𝑇
1
) − 𝐴, 0]}

(6)

= 𝑒
−𝑟(𝑇
1
−𝑡)EQ

[(𝑆
𝑇
1

− 𝐾
1
) 1
{𝑆
𝑇1
>𝐻}

| F
𝑡
]

+ 𝑒
−𝑟(𝑇
1
−𝑡)EQ

[ (𝐶 (𝑆
𝑇
1

, 𝐾
2
, 𝑇
2
− 𝑇
1
) − 𝐴)

× 1
{𝐿≤𝑆
𝑇1
≤𝐻}

| F
𝑡
] .

(7)

An example illustration of its payoff is provided in Figure 1.
Formulating the value of a call option, 𝐶 at time 𝑇

1

with a time to expiration extended to 𝑇
2
, as the discounted

conditional expected payoff,

𝑒
−𝑟(𝑇
2
−𝑇
1
)EQ

[max (𝑆
𝑇
2

− 𝐾
2
, 0) | F

𝑡
] , (8)

yields

EC (𝑆
𝑡
, 𝐾
1
, 𝑇
1
, 𝐾
2
, 𝑇
2
, 𝐴)

= 𝑒
−𝑟(𝑇
1
−𝑡)EQ

[(𝑆
𝑇
1

− 𝐾
1
) 1
{𝑆
𝑇1
>𝐻}

| F
𝑡
]

+ 𝑒
−𝑟(𝑇
2
−𝑡)EQ
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Figure 1: An example of the payoff function for an extendible call
option for 𝐾

1
= 100, 𝐾

2
= 105, 𝑟 = 0.08, 𝜎 = 0.25, 𝑇

1
= 0.5, 𝑇

2
=

0.75, 𝐴 = 1.

× [(𝑆
𝑇
2

− 𝐾
2
) 1
{𝑆
𝑇2
>𝐾
2
}
(1
{𝑆
𝑇1
≥𝐿}

− 1
{𝑆
𝑇1
≥𝐻}

) | F
𝑡
]

− 𝑒
−𝑟(𝑇
1
−𝑡)EQ

[𝐴 (1
{𝑆
𝑇1
≥𝐿}

− 1
{𝑆
𝑇1
≥𝐻}

) | F
𝑡
] ,

(9)

or

EC (𝑆
𝑡
, 𝐾
1
, 𝑇
1
, 𝐾
2
, 𝑇
2
, 𝐴)

= 𝑆
𝑡
EQ
𝑆
[1
{𝑥
𝑇1
>ℎ}

] − 𝐾
1
𝑒
−𝑟(𝑇
1
−𝑡)EQ

[1
{𝑥
𝑇1
>ℎ}

]

+ 𝑆
𝑡
EQ
𝑆
[1
{𝑥
𝑇1
≥𝑙,𝑥
𝑇2
≥𝑘
2
}
] − 𝐾
2
𝑒
−𝑟(𝑇
2
−𝑡)EQ

[1
{𝑥
𝑇1
≥𝑙,𝑥
𝑇2
≥𝑘
2
}
]

− 𝑆
𝑡
EQ
𝑆
[1
{𝑥
𝑇1
≥ℎ,𝑥
𝑇2
≥𝑘
2
}
] + 𝐾
2
𝑒
−𝑟(𝑇
2
−𝑡)EQ

[1
{𝑥
𝑇1
≥ℎ,𝑥
𝑇2
≥𝑘
2
}
]

− 𝐴𝑒
−𝑟(𝑇
1
−𝑡)

{EQ
[1
{𝑥
𝑇1
≥𝑙}

] − EQ
[1
{𝑥
𝑇1
≥ℎ}

]} ,

(10)

where Q
𝑆
is the spot price measure, 𝑥

𝑡
= ln 𝑆

𝑡
, 𝑘
1
= ln𝐾

1
, 𝑘
2

= ln 𝐾
2
, 𝑙 = ln 𝐿, and ℎ = ln 𝐻.

Corollary 1. The price of an extendible call option with time to
expiration 𝑇

1
and strike price 𝐾

1
, whose expiration time may

be extended to 𝑇
2
upon a payment of an additional premium

𝐴, with a new strike price 𝐾
2
is specified as

𝐸𝐶 (𝑆
𝑡
, 𝐾
1
, 𝑇
1
, 𝐾
2
, 𝑇
2
, 𝐴)

= [𝑆
𝑡
𝑁(𝑎
1
) − 𝐾
1
𝑒
−𝑟(𝑇
1
−𝑡)

𝑁(𝑎
2
)]

+ [𝑆
𝑡
𝑁
2
(𝑏
1
, 𝑐
1
, 𝜌) − 𝐾

2
𝑒
−𝑟(𝑇
2
−𝑡)

𝑁
2
(𝑏
2
, 𝑐
2
, 𝜌)]

− [𝑆
𝑡
𝑁
2
(𝑎
1
, 𝑐
1
, 𝜌) − 𝐾

2
𝑒
−𝑟(𝑇
2
−𝑡)

𝑁
2
(𝑎
2
, 𝑐
2
, 𝜌)]

− 𝐴𝑒
−𝑟(𝑇
1
−𝑡)

[𝑁 (𝑏
2
) − 𝑁 (𝑎

2
)] ,

(11)

where 𝑁(𝑥) denotes the standard univariate cumulative nor-
mal distribution function, 𝑁

2
(𝑥, 𝑦, 𝜌) denotes the standard

bivariate cumulative normal distribution function with a
correlation coefficient, 𝜌 = √(𝑇

1
− 𝑡)/(𝑇

2
− 𝑡), and

𝑎
1
=

ln (𝑆
𝑡
/𝐻) + (𝑟 + (1/2) 𝜎

2
) (𝑇
1
− 𝑡)

𝜎√𝑇
1
− 𝑡

,

𝑎
2
= 𝑎
1
− 𝜎√𝑇

1
− 𝑡,

𝑏
1
=

ln (𝑆
𝑡
/𝐿) + (𝑟 + (1/2) 𝜎

2
) (𝑇
1
− 𝑡)

𝜎√𝑇
1
− 𝑡

,

𝑏
2
= 𝑏
1
− 𝜎√𝑇

1
− 𝑡,

𝑐
1
=

ln (𝑆
𝑡
/𝐾
2
) + (𝑟 + (1/2) 𝜎

2
) (𝑇
2
− 𝑡)

𝜎√𝑇
2
− 𝑡

,

𝑐
2
= 𝑐
1
− 𝜎√𝑇

2
− 𝑡.

(12)

Longstaff [1] also discusses several special cases of an
extendible option, such that if 𝐿 > 0 and 𝐻 = ∞, then
the extendible option reduces to a compound option on
𝐶(𝑆
𝑡
, 𝐾
2
, 𝑇
2
− 𝑇
1
) with strike price 𝐴, and if 𝐿 → 𝐾

1
, the

value of the extension privilege approaches zero; hence the
value of the extendible options is simply 𝐶(𝑆

𝑡
, 𝐾
1
, 𝑇
1
) (for

more discussion on the special cases of the extendible options,
see Longstaff [1]).

2.1. Fast Fourier Transform. The FFT approach evaluates an
(output) array of the following form:

𝑌 [𝑙
1
, . . . , 𝑙
𝑛
]

:=

𝑁−1

∑

𝑗
1
=0

⋅ ⋅ ⋅

𝑁−1

∑

𝑗
𝑛
=0

𝑒
−𝑖(2𝜋/𝑁)𝑗

1
𝑙
1
−⋅⋅⋅−𝑖(2𝜋/𝑁)𝑗

𝑛
𝑙
𝑛
𝑋[𝑗
1
, . . . , 𝑗

𝑛
] ,

(13)

for any complex (input) array {𝑋[𝑗
1
, . . . , 𝑗

𝑛
] ∈ C | 𝑗

1
, . . . , 𝑗

𝑛
=

0, . . . , 𝑁 − 1}. In addition, to implement the FFT method to
option pricing, a closed-form representation of the character-
istic function is required. For the case of extendible options,
we require univariate and bivariate characteristic functions,
which are provided by the following lemmas.

Lemma 2. Under the risk-neutral measure Q, the univariate
characteristic function is given by

𝜑
𝑥
𝑇1

(𝑢
1
)

= exp {𝑖𝑢
1
[𝑥
𝑡
+ (𝑟 −

1

2

𝜎
2
) (𝑇
1
− 𝑡)] −

1

2

𝜎
2
(𝑇
1
− 𝑡) 𝑢

2

1
} ,

𝜑
𝑥
𝑇2

(𝑢
2
)

= exp {𝑖𝑢
2
[𝑥
𝑇
1

+ (𝑟 −

1

2

𝜎
2
) (𝑇
2
− 𝑇
1
)]

−

1

2

𝜎
2
(𝑇
2
− 𝑇
1
) 𝑢
2

2
} .

(14)
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Lemma 3. Under the risk-neutral measure Q, the bivariate
characteristic function is given by

𝜑
𝑥
𝑇1
,𝑥
𝑇2

(𝑢
1
, 𝑢
2
)

= exp {𝑖𝑢
1
[𝑥
𝑡
+ (𝑟 −

1

2

𝜎
2
) (𝑇
1
− 𝑡)] −

1

2

𝑢
2

1
𝜎
2
(𝑇
1
− 𝑡)}

× exp {𝑖𝑢
2
[𝑥
𝑡
+ (𝑟 −

1

2

𝜎
2
) (𝑇
2
− 𝑡)] −

1

2

𝑢
2

2
𝜎
2
(𝑇
2
− 𝑡)} .

(15)

The univariate characteristic function is used in Carr and
Madan [5] to price a European option using FFT within the
Black-Scholes dynamics. By employing the Radon-Nikodym
derivatives, the characteristic function under measureQ and
the spot price measureQ

𝑆
are related as follows:

𝜑
𝑆

𝑥
𝑇1

(𝑢
1
) = 𝑒
−𝑟(𝑇
1
−𝑡)−𝑥

𝑡EQ
[𝑒
𝑖(𝑢
1
−𝑖)𝑥
𝑇1 | F

𝑡
] ,

𝜑
𝑆

𝑥
𝑇1
,𝑥
𝑇2

(𝑢
1
, 𝑢
2
) = 𝑒
−𝑟(𝑇
2
−𝑡)−𝑥

𝑡EQ
[𝑒
𝑖𝑢
1
𝑥
𝑇1
+𝑖(𝑢
2
−𝑖)𝑥
𝑇2 | F

𝑡
] .

(16)

Hence, from (10), we consider the following expectations
which can be expressed in integral form as follows:

EQ
[1
{𝑥
𝑇1
>ℎ}

] = ∫

∞

ℎ

𝑝 (𝑥
𝑇
1

) 𝑑𝑥
𝑇
1

, (17)

EQ
[1
{𝑥
𝑇1
≥𝑙,𝑥
𝑇2
≥𝑘
2
}
] = ∫

∞

𝑙

∫

∞

𝑘
2

𝑝 (𝑥
𝑇
1

, 𝑥
𝑇
2

) 𝑑𝑥
𝑇
2

𝑑𝑥
𝑇
1

, (18)

EQ
[1
{𝑥
𝑇1
≥ℎ,𝑥
𝑇2
≥𝑘
2
}
] = ∫

∞

ℎ

∫

∞

𝑘
2

𝑝 (𝑥
𝑇
1

, 𝑥
𝑇
2

) 𝑑𝑥
𝑇
2

𝑑𝑥
𝑇
1

, (19)

EQ
[1
{𝑥
𝑇1
≥𝑙}

] = ∫

∞

𝑙

𝑝 (𝑥
𝑇
1

) 𝑑𝑥
𝑇
1

, (20)

EQ
[1
{𝑥
𝑇1
≥ℎ}

] = ∫

∞

ℎ

𝑝 (𝑥
𝑇
1

) 𝑑𝑥
𝑇
1

, (21)

where 𝑝(⋅) is the probability density of 𝑋 under the risk-
neutral probability Q. It is clear that integrals (17), (20), and
(21) are similar, so are integrals (18) and (19). Hence we first
apply the FFT to integral (18). Following Carr andMadan [5],
we multiply (18) by dampening factors 𝛼

1
and 𝛼

2
to ensure

square-integrability as follows:

𝑒
𝛼
1
𝑙+𝛼
2
𝑘
2
∫

∞

𝑙

∫

∞

𝑘
2

𝑝 (𝑥
𝑇
1

, 𝑥
𝑇
2

) 𝑑𝑥
𝑇
2

𝑑𝑥
𝑇
1

, for 𝛼
1
, 𝛼
2
> 0.

(22)

Then, by applying the Fourier transform, we have the follow-
ing:

𝜓 (𝑢
1
, 𝑢
2
)

= ∬

∞

−∞

𝑒
𝑖𝑢
1
𝑙+𝑖𝑢
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𝑘
2
(𝑒
𝛼
1
𝑙+𝛼
2
𝑘
2

× ∫

∞

𝑙

∫

∞

𝑘
2

𝑝 (𝑥
𝑇
1

, 𝑥
𝑇
2

) 𝑑𝑥
𝑇
2

𝑑𝑥
𝑇
1

) .

(23)

This can be written in closed-form in terms of the character-
istic function as follows:

𝜓 (𝑢
1
, 𝑢
2
) =

𝜑
𝑥
𝑇1
,𝑥
𝑇2

[𝑢
1
− 𝑖𝛼
1
, 𝑢
2
− 𝑖𝛼
2
]

(𝑖𝑢
1
+ 𝛼
1
) (𝑖𝑢
2
+ 𝛼
2
)

. (24)

Using the inverse Fourier transform, we can recover integral
(18):

𝑒
−𝛼
1
𝑙−𝛼
2
𝑘
2

(2𝜋)
2

∬

∞

−∞

𝑒
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2
𝑘
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𝜓 (𝑢
1
, 𝑢
2
) 𝑑𝑢
2
𝑑𝑢
1
. (25)

Then, we numerically compute this by invoking the trapezoid
rule (see [11]) which approximates the integral by the follow-
ing sum:

𝑒
−𝛼
1
𝑙−𝛼
2
𝑘
2

(2𝜋)
2

𝑁−1

∑

𝑗=0

𝑁−1

∑
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𝑘
2
𝜓 (𝑢
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) Δ
2
Δ
1
, (26)

where Δ
1,2

is the distance between the points of the inte-
gration grid, 𝑢

1,𝑗
= (𝑗 − (𝑁/2))Δ

1
and 𝑢

2,𝑚
= (𝑚 −

(𝑁/2))Δ
2
, for 𝑗,𝑚 = 0, . . . , 𝑁 − 1. In order to progress, we

define a grid of size (𝑁 × 𝑁) by 𝐿
2

= {(𝑙
𝑢
, 𝑘
2,𝑝

) | 0 ≤

𝑢, 𝑝 ≤ 𝑁 − 1} where 𝜔
1,2

> 0 is the distance between
the logarithmic critical prices and the logarithmic strikes,
respectively, as follows:

𝑙
𝑢
= (𝑢 −

𝑁

2

)𝜔
1
,
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2
.

(27)

Hence, we can now evaluate the following sum: Γ(𝑙, 𝑘
2
) =

∑
𝑁−1

𝑗=0
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𝑁−1
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).
By choosing 𝜔

1,2
Δ
1,2

= 2𝜋/𝑁 this yields the following
values of sum Γ(𝑙, 𝑘

2
) on 𝐿

2
:
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𝑢
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(28)

We take the (input) array as 𝑋[𝑗,𝑚] = (−1)
𝑗+𝑚

𝜓(𝑢
1,𝑗
,

𝑢
2,𝑚

), for 𝑗, 𝑚 = 0, . . . , 𝑁 − 1. Hence, the approximation is at
(𝑁 ×𝑁) different logarithmic critical prices and strike prices
such that

𝑒
−𝛼
1
𝑙
𝑢
−𝛼
2
𝑘
2,𝑝

(2𝜋)
2

Γ (𝑙
𝑢
, 𝑘
2,𝑝

) Δ
2
Δ
1
, for 0 ≤ 𝑢, 𝑝 ≤ 𝑁 − 1. (29)

In an analogous way, by replacing 𝑙 with ℎ, we can approx-
imate integral (19). The two-dimensional FFT can also be
reduced to a one-dimensional FFT which involves integrals
(17), (20), and (21). Therefore for brevity, we exclude the
development for the one-dimensional FFT in this paper.
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2.2. Monte Carlo Simulation. In this section, we price the
extendible call option using Monte Carlo simulation [18].
Given the pricing function of an extendible call option given
in (6), the vanilla call option 𝐶 can be priced at time 𝑇

1
with

strike price 𝐾
2
and expiration time 𝑇

2
. Thus we only need to

compute the asset price until time 𝑇
1
. Let 𝑆

𝑇
1
,𝑗
be the asset

price at time 𝑇
1
on the 𝑗th path, and let 𝑤

𝑇
1
,𝑗
be the vanilla

call price with strike price 𝐾
2
and expiration time 𝑇

2
at time

𝑇
1
for the 𝑗th path; that is, 𝐶(𝑆

𝑇
1
,𝑗
, 𝐾
2
, 𝑇
2
− 𝑇
1
). Recall the

closed-form solution for a vanilla call option, so we have

𝐶 = 𝑆
𝑇
1

𝑁(𝑒
1
) − 𝐾
2
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2
−𝑇
1
)
𝑁(𝑒
2
) , (30)

where

𝑒
1
=

ln (𝑆
𝑇
1

/𝐾
2
) + (𝑟 + (1/2) 𝜎

2
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2
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,

𝑒
2
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1
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2
− 𝑇
1
.

(31)

Therefore, the Monte Carlo estimator for the price of an
extendible call option is given by

EC (𝑡, 𝑥
𝑇
1

) =

𝑒
−𝑟(𝑇
1
−𝑡)

𝑛
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(32)

where 𝑛 is the number of simulations. Suppose we have 𝑥
𝑡
=

ln 𝑆
𝑡
with the following process:

𝑥
𝑡
= (𝑟 −

1

2

𝜎
2
)𝑑𝑡 + 𝜎𝑑𝑊

𝑡
. (33)

Wediscretize the asset path using the Euler scheme as follows:

𝑥
𝑗+1

= 𝑥
𝑗
+ (𝑟 −

1

2

𝜎
2
)Δ𝑡 + 𝜎Δ𝑊

𝑗
, 𝑡
𝑗
= 𝑗Δ𝑡,

Δ𝑊
𝑗
= 𝑊
𝑡
𝑗+1

− 𝑊
𝑡
𝑗

= 𝑍√Δ𝑡 with 𝑍 ∼ 𝑁 (0, 1) .

(34)

We also apply the Milstein scheme [19] that is strongly
convergent with order one such that

𝑥
𝑗+1

= 𝑥
𝑗
+ (𝑟 −

1

2

𝜎
2
)Δ𝑡 + 𝜎Δ𝑊
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1
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𝜎
2
((Δ𝑊)

2
− Δ𝑡) ,

𝑡
𝑗
= 𝑗Δ𝑡,

Δ𝑊
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− 𝑊
𝑡
𝑗

= 𝑍√Δ𝑡 with 𝑍 ∼ 𝑁 (0, 1) .

(35)

We let [𝑡 = 𝑡
0
< 𝑡
1
< ⋅ ⋅ ⋅ < 𝑡

𝑚
= 𝑇] be a partition of the time

interval [𝑡, 𝑇] of 𝑚 equal segments with length Δ𝑡
𝑗
, where

Δ𝑡
𝑗
= 𝑡
𝑗+1

− 𝑡
𝑗
and 𝑡
𝑗
= 𝑗𝑇/𝑚, for each 𝑗 = 1, . . . ,𝑀. We

draw a random sample from a normal distributionwithmean
0 and volatility 1 for each 𝑗 = 0, 1, . . . , 𝑚 to simulate (34) and
(35), thus generating a sample path for𝑥

𝑇
by simulating𝑥

𝑗
for

𝑗 = 1 to 𝑗 = 𝑚. This step is repeated to generate many paths.
We then estimate the price of the extendible call option with
Monte Carlo simulation.

Table 1: Inputs to price the extendible options.

Input Value
Initial strike price, 𝐾

1
100

Initial expiration time, 𝑇
1

0.5
Extended strike price, 𝐾

2
105

Extended expiration time 𝑇
2

0.75
Risk-free rate, 𝑟 0.08
Premium, 𝐴 1

3. Numerical Results

In this section, we present a numerical comparison between
the FFT and the Monte Carlo simulation techniques which
have been described in previous sections. (The computations
were implemented in MATLAB and conducted on an Intel
Core 2 Quad processor Q8200 @ 2.33GHz machine running
under Windows 7 Professional with 4GB RAM).

We price the extendible call option for a range of underly-
ing asset prices, 𝑆

𝑡
= 80, 90, 100, 110, 120, and 𝜎 = 0.25, with

the inputs in Table 1. We found that the dampening factor 𝛼
differs for a one-dimensional and a two-dimensional FFT. For
the one-dimensional FFT, we choose 𝛼 = 1.75 and Δ = 0.3,
while for the two-dimensional FFT, 𝛼 = {0.75, 1.75} and Δ =

0.2. Table 2 provides the CPU time taken by the FFT, Euler
scheme, and Milstein scheme to produce the prices for
extendible call options. It can be seen that FFT takes less
than half a second, on average, approximately 0.0869 seconds,
to compute the 𝑁 = 2

7 prices in a single computation,
while the exact solution computed each of the option prices
instantaneously. Euler takes slightly longer than a minute, on
average 75.4870 seconds, whereas Milstein scheme takes the
longest time to produce results, 311.0502 seconds on average.
In Table 3, we document the prices obtained using Monte
Carlo simulations with Euler andMilstein schemes.The exact
solution is used to compute the relative errors between these
two schemes. The error is given by the following:

𝜖 ≈

󵄨
󵄨
󵄨
󵄨
󵄨
ECTrue − ECApprox

󵄨
󵄨
󵄨
󵄨
󵄨

ECTrue
× 100, (36)

where ECTrue is the Black-Scholes pricing solution and
ECApprox is the estimation from the simulation. From the
table, it can be seen that the relative error for the Euler
scheme is smaller than the Milstein scheme. We also plot the
price convergence of the Monte Carlo simulation when the
underlying asset 𝑆 = 90 in Figure 2. From Tables 2 and 3, it
can be seen that the Euler scheme is more computationally
efficient than the Milstein scheme. According to Platen and
Bruti-Liberati [20], the Euler scheme has fewer terms and the
same order of weak convergence; hence, apart from efficiency
issue, the Milstein scheme also has numerical stability issue
which can be worse than that of the Euler scheme. We then
compare the extendible call prices computed by the FFT and
the exact solution. Table 4 shows the prices and percentage
differences taken relative to the FFT prices.
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Figure 2: Price convergence of Monte Carlo simulation for
extendible call options for 𝑆 = 90.

Table 2: CPU time (in seconds) for pricing an extendible call option:
FFT, Euler scheme, and Milstein scheme.

Underlying asset, 𝑆 FFT Euler scheme Milstein scheme
80 0.0821 71.4400 289.2060
90 0.0927 82.0390 310.9170
100 0.1042 81.9460 331.771
110 0.0912 77.6070 359.385
120 0.0643 64.4030 263.972

Table 3: Prices and relative error (in percent) for pricing an
extendible call option: exact solution, Euler scheme, and Milstein
scheme.

Underlying
asset, 𝑆

Exact
solution Euler price 𝜖

Milstein
Price 𝜖

80 1.4264 1.4294 0.2071 1.8025 26.3641
90 4.3154 4.3282 0.2982 4.6685 8.1827
100 9.4228 9.3505 0.7679 9.4874 0.6851
110 16.5358 16.5445 0.0524 16.3863 0.9040
120 25.0506 25.0283 0.0888 24.8268 0.8933

Table 4: Prices and relative error (in percent) for pricing an
extendible call option: exact solution and FFT.

Underlying asset, 𝑆 Exact solution FFT price 𝜖

80 1.4264 1.4247 0.1193
90 4.3154 4.2908 0.5733
100 9.4228 9.5106 0.9232
110 16.5358 16.4352 0.6121
120 25.0506 25.1067 0.2234

4. Conclusion

This paper studies the pricing of extendible options under
the Black and Scholes [16] model by developing a pricing
framework which utilizes the FFT technique. The availability

of a closed-form representation of the characteristic function
enables us to implement the FFT. The characteristic function
for the extendible options involves a univariate and a bivariate
characteristic function. Hence, the application of the FFT
technique involves a one-dimensional and a two-dimensional
FFT algorithm.

Additionally, we computed the prices of the extendible
options using Monte Carlo simulation and used the closed-
form pricing solution as a benchmark to compare the numer-
ical efficiency of the FFT and theMonteCarlo simulation.The
FFT produces a range of option prices for a range of strike
prices for a givenmaturity.Moreover, the numerical examples
show that the FFT is more computationally efficient than the
Monte Carlo simulation.

Dias andRocha [2] show that the framework of extendible
options can be applied to model oil prices using mean
reversion with jumps. Hence, further development such as
pricing extendible options with other stochastic features such
as stochastic interest rate can be applied. In the future, we plan
to use the FFT to price extendible options under the Heston
stochastic volatility model [21].

The work presented here can also be extended to a more
general case, that is, for 𝑛-extensions. The FFT has become
well established as an option pricing tool since it was first
introduced by Carr and Madan [5]. Fang and Oosterlee [22]
have introduced a Fourier-Cosine also known as the COS
method to price options, and this method has been shown
to be faster under certain circumstances. Hence, another
possible development of this work is to price extendible
options using theCOSmethod and compare the performance
of the two Fouriermethods in the case for extendible options.
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