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Abstract

The seasonal production of fruit and seeds resembles opening a feeding station, such as a restaurant

agents/ customers will arrive at a certain rate and pick fruit (get served) at a certain rate following some

appropriate processes. Therefore, dispersion follows the resource process. Modelling this process results

in a search/ optimisation algorithm that used dispersion as an exploration tool that, if well captured, will

find the optimum of a function over a given search space. This paper presents such an algorithm and

tests it on non-trivial problems.

I. Introduction

A variety of plants have evolved in generous ways to propagate. Propagation through seeds
is perhaps the most common of them all and one which takes advantage of all sorts of agents
ranging from wind to water, to birds and animals. Beside propagation using runners, the straw-
berry plant uses seeds as well. These seeds are judiciously placed on the surface of a very tasty
and brightly coloured fruit, the strawberries, which attract a variety of agents such as birds and
animals including humans, which help the propagation.

Plants rely heavily on the dispersion of their seeds to colonise new territories and to improve
their survival [22, 21]. There are a lot of studies and models of seed dispersion particularly for
trees [1, 2, 8, 21, 22]. Dispersion by wind and ballistic means are probably the most studied of all
approaches [18, 52, 53]. However, in the case of the strawberry plant, given the way the seeds stick
to the surface of the fruit, Figure(1), [14], dispersion by wind or mechanical means is very limited.
Animals, however, and birds in particular are the ideal agents of dispersion [30, 47, 22, 21], in this
case.

There are many biologically inspired optimization algorithms in the literature [7, 50]. Flower
pollination algorithm (FPA) is inspired by the pollination of flowers through different agents
[52], the Swarm data clustering algorithm is inspired by pollination by bees [28], Particle Swarm
Optimization (PSO) is inspired by the foraging behavior of a school of fish or a flock of birds,
[15, 10], Artificial Bee Colony (ABC) simulates the foraging behavior of honey bees [25, 26],
Firefly algorithm is inspired by the flashing fireflies when trying to attract a mate [49, 16], Social
Spider Optimization (SSO-C) is inspired by the cooperative behavior of social-spiders [12], to
name a few of them.

The Plant Propagation Algorithm (PPA) also known as the strawberry algorithm was inspired
by the way plants and specifically the strawberry plants propagate using runners, [40, 43]. The
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attraction of PPA is that it can be implemented easily for all sorts of optimization problems.
Moreover, it has few algorithm specific arbitrary parameters. PPA follows the principle that
plants in good spots with plenty of nutrients will send many short runners. They send few long
runners when in nutrient poor spots. Long runners PPA tries to explore the search space while
short runners enable the algorithm to exploit the solution space well. It is necessary to make the
performance of PPA better, in terms of convergence and efficiency.

In this paper we present a variant of PPA called the Seed-based Plant Propagation Algorithm
the feeding station model (SbPPA). The main idea is inspired by the way frugivorous birds dis-
perse the seeds of strawberry. The strawberry plants attract the frugivores and spread its seed
for conservation in many habitats through long distances [44]. However, the spatial distribution
of seeds depends on the availability of the strawberries on the plants and the number of visits by
different agents to eat fruit.

SbPPA is tested on both unconstrained and constrained benchmark problems also used in
[29, 12]. Experimental results are presented in Tables 3-4 in terms of best, mean, worst and
standard deviation for all algorithms. The paper is organised as follows: In Section II we briefly
introduce the feeding station model representing strawberry plants having fruits on them and
the main characteristics of paths followed by different agents that disperse the seeds. Section III
presents the SbPPA in pseudo code form. The experimental settings, results and convergence
graphs for different problems are given in Section IV. In Section V the conclusion and possible
future work are given.

II. Aspects of the Feeding Station Model of the Strawberry Plant

Some animals and plants depend on each other to conserve their species [41]. Thus, many plants
require, for effective seed dispersal, the visits of frugivorous birds or animals according to a
certain distribution, [21, 22, 24, 13].

Seed dispersal by different agents is also called “seed shadow”; this shows the abundance
of seeds spread locally or globally around parent plants. In this context, the strawberry feeding
station model is divided in two parts: (1) The quantity of fruit or seeds available to agents, or
the rate at which the agents will visit the plants, and (2) a probability density, that tells us about
the service rate with which the agents are served by the parent plants. This model tells us the
quantity of seeds that is spread locally compared to that dispersed globally [23, 32, 17, 33, 5].
There are two aspects that need to be balanced. First exploitation, which is represented by the
dispersal of seeds around the parent plants. Secondly, exploration which ensures that the search
space is well covered.

As a queuing system [11], there are two basic components to this model: (1) the rate at which
agents arrive at the strawberry plants, (2) the rate at which the agents eat fruit and leave the
plants to disperse the seeds. The agents arrive at plants in a random process. Assume that
during any unit of time, whenever the fruits are available, at most one agent will arrive at a
time to the plants, satisfying the orderliness condition. It is further supposed that the probability
of arrivals of agents to the plants remain the same for a particular period of time. This means
that the arrival rate of agents is higher when there are ripe fruit on the plants and remains the
same for a further period when there is no fruit on plants; this is called stationarity condition.
The arrival of one agent does not affect the rest of arrivals; this is called independence. Based
on these assumptions, we conclude that the probability of arrival of k agents during a cycle t of
fruit production by strawberry plants can be denoted by random variable X′, [31]. This can be
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expressed mathematically as

P(X′ = k) =
(λt)ke−λt

k!
, (1)

where λ denotes the mean arrival rate of agents per unit time, t is the length of the time interval.
On the other hand, the time taken by agents in successfully eating fruit and leaving to disperse
its seeds, in other words the service time for agents are expressed by a random variable, which
follows the exponential probability distribution [3]. This can be expressed as follows,

S(t) = µe−µt, (2)

where µ is the average number of agents that can eat fruit at time t. As some fruit goes to the
ground around the plants after becoming fully ripe, this shows that the number of arrivals are
less than the fruits available on plants. Mathematically, this can be expressed as the arrival rate
of agents is less than the fruits available on all plants, where λ < µ.

We assume that the system is in steady state. Let A denote the average number of agents on
the plants, and Aq the average number of agents in the queue. If we denote the average number
of agents eating fruits by λ

µ , then by Little’s formulas [36], we have

A = Aq +
λ

µ
, (3)

based on Equation (3), we need to maximize the following problem

Maximize Aq = A− λ

µ
, (4)

subject to g1(λ, µ) = λ, µ > 0,

g2(λ, µ) = λ < µ + 1,
(5)

where A = 10, which represents the population size in the implementation. The simple limits on
the variables are 0 < λ, µ ≤ 100, After solving the problem we get λ = 1.1, µ = 0.1 and Aq = 1.

Moreover, frugivores may travel for a long distance to disperse seeds far away from parent SP;
in doing so, they obey a Lévy distribution [45, 46, 38].

II.1 Lévy distribution

Randomization in metaheuristics is generally achieved by utilizing pseudorandom numbers, in
light of some regular stochastic methodologies. Lévy distributions is one of the probability den-
sity distributions for random variables. Here the random variables represent the directions of
arbitrary flights by frugivores. This function of random variables ranges over real numbers with
a domain called "search space".

The flight lengths of the agents served by SP, is assumed to be a heavy tailed power law
distribution represented by,

L(s) ∼ |s|−1−β, (6)

where L(s) denotes the Lévy distribution with index β ∈ (0, 2).
Lévy flights are a unique arbitrary excursions whose step lengths are drawn from (6). Another

form of Lévy distribution can be written as,

L(s, γ, µ) =











√

γ

2π
exp

[

− γ

2(s− µ)

] (

1
(s− µ)

) 3
2

, 0 < µ < s < ∞

0 Otherwise,

(7)
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this implies that

lim
s→∞

L(s, γ, µ) =

√

γ

2π

(

1
s

) 3
2

, (8)

In terms of Fourier transform [50] the limiting value of L(s) can be written as under,

lim
s→∞

L(s) =
αβΓ(β) sin(πβ

2 )

π|s|1+β
, (9)

where Γ(β) is the Gamma function defined by

Γ(β) =
∫ ∞

0
xβ−1e−xdx. (10)

The steps are generated by using Mantegna’s algorithm. This algorithm ensures the behaviour of
Lévy flights to be symmetric and stable as shown in Figure (3b).

III. Strawberry Plant Propagation Algorithm: The Feeding Station

Model

The Plant Propagation Algorithm (PPA), recently developed in [40, 43], emulates the way straw-
berry plants (SP) propagate by runners. Here we considered the propagation through seeds. The
main objective of SbPPA is the optimal reproduction of new plants through seeds dispersion, by
using different dispersal means.

We assume that the arrival of different agents to the plants for eating fruits, is according to
Poisson distribution. The mean arrival rate λ = 1.1, and NP = 10 is the total number of agents
in our population. Let k = 1, 2, . . . , A be the number of agents visiting the plants per unit time.
By using these assumptions we get Figure (2) according to Equation (1).
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Figure 2: Agents arrival at strawberry plants to eat fruit and disperse seed
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(a) Strawberry fruit with seeds (b) Strawberry garden flower (c) A fruit eaten by bird(s)

(d) A bird eating strawberries

(e) Strawberry plants spreading

seed and sending runners around

them

Figure 1: Strawberry plant propagation: through seed dispersion [48, 39, 37, 35]
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The probability Poiss(λ) < 0.05 means that, the chances for seeds to be taken far away from
SP, are lower and the propagation is supported either by runners or seeds fallen down from
plants. In this case, Equation (11) below is used, which is helping the algorithm to exploit the
search space,

x∗i,j =

{

xi,j + ξ j(xi,j − xl,j) if PR ≤ 0.8

xi,j Otherwise,
(11)

where PR denotes the perturbation rate and it tunes the intensity of displacements by which the
seeds will be dispersed locally around the SP, x∗i,j, xi,j ∈ [aj bj] are the jth coordinates of the seeds

Xi and X∗i respectively, aj and bj are the jth lower and upper bounds defining the search space of
the problem and ξ j ∈ [−1 1]. The indices l and i are mutually exclusive.

On the other hand, if Poiss(λ) ≥ 0.05 (we choose 0.05 to give more weight to global disper-
sion), here the complete role of global dispersion is played by seeds, this is implemented by using
the following equation,

x∗i,j =

{

xi,j + Li(xi,j − θj) if PR ≤ 0.8, θj ∈ [aj bj]

xi,j Otherwise.
(12)

Here Li is a step drawn from the Lévy distribution [50], θj is a random coordinate within the
search space. The effects on the current solutions due to perturbations applied by Equation (11)
and Equation (12) are shown in Figure (3).

As mentioned in the pseudo-code of SbPPA, we first collect best solutions from the first NP
trial runs to form a population of potentially good solutions denoted by popbest. The convergence
rate of SbPPA, is shown in Figures (4-5), for different test problems used in our experiments. The
statistical results best, worst, mean and standard deviation are calculated based on popbest.
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The seed based propagation process of SP can be represented in the following steps:

1. The dispersal of seeds or the propagation by runners in the neighbourhood of the SP, as
shown in Figure 1e, is carried out either by fruit fallen from strawberry plants after they
become ripe or by runners. The step lengths for this phase are calculated using Equation
(11).

2. Seeds are spread globally through frugivores, as shown in Figure 1c,d. The step lengths for
those travelling agents are drawn from the Lévy distribution.

3. The probabilities, Poiss(λ), that a certain amount k of agents will arrive to SP to eat fruits
and disperse it, is used as a switch between global and local search.

For implementation, we assume that each SP produces one fruit, and each fruit is assumed to
have one seed, we mean by a solution Xi the position of the ith seed to be dispersed. The number
of seeds in the population is denoted by NP. Initially we generate a random population of NP

seeds using Equation (13),
xi,j = aj + (bj − aj)ηj, j = 1, ..., n (13)

where xi,j ∈ [aj, bj] is the jth entry of solution Xi, aj and bj are the jth coordinates of the bounds
describing the search space of the problem and ηj ∈ (0, 1). This means Xi = [xi,j], for j = 1, ..., n

represents the position of the ith seed in population pop.

IV. Experimental Setting And Discussion

In our experiments we test SbPPA against other state-of-the-art algorithms. Our set of test prob-
lems include benchmark constrained and unconstrained optimization problems [42, 34, 12]. The
results are compared in terms of best, worst, mean and standard deviations obtained by SbPPA,
ABC [25, 27], PSO [20], FF [16], HPA [29] and SSO-C [12]. The detailed descriptions of these prob-
lems are given in Appendix I. The significance of results are shown according to the following
notations:

• (+) when SbPPA is better

• (-) when SbPPA is worse

• (≈) when the results are approximately same as SbPPA.

IV.1 Parameter Settings

The parameter settings are give in Table 1-2:
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Algorithm 1 Seed-based Plant Propagation Algorithm (SbPPA): The Feeding Station Model

1: Initialize: gmax ← maximum number of generations, maxeval ← maximum function evalua-
tions, r ← counter for trial runs

2: Set r = 1
3: if r ≤ NP then

4: Create a random population of seeds pop = {Xi | i = 1, 2, ..., NP}, using Equation (13)
and add the best solutions from each trial run, in popbest.

5: Evaluate the population.
6: end if

7: while r > NP do

8: Use population popbest.
9: end while

10: Set ngen = 1,
11: while (ngen < gmax) or (neval < maxeval) do

12: for i = 1 to NP do

13: if Poiss(λ)i ≥ 0.05 then, ⊲ (Global or local seed dispersion)
14: for j = 1 to n do ⊲ (n is number of dimensions)
15: if rand≤ PR then, ⊲ (PR=Perturbation rate)
16: Update the current entry according to Equation (12)
17: end if

18: end for

19: else

20: for j = 1 to n do

21: if rand≤ PR then,
22: Update the current entry according to Equation (11)
23: end if

24: end for

25: end if

26: end for

27: end while

28: Return: Update current population.

Table 1: Parameters used for each algorithm for solving unconstrained global optimization problems f1− f10,
All experiments are repeated 30 times.

PSO [15, 29] ABC [25, 29] HPA [29] SbPPA

M=100 SN=100 Agents=100 NP=10
Gmax = (Dimension×20,000)

NP MCN= (Dimension×20,000)
NP Iteration number= (Dimension×20,000)

NP Iteration number= (Dimension×20,000)
NP

c1 = 2 MR=0.8 c1 = 2 PR=0.8, Poiss(λ) = 0.05

c2 = 2 limit= (SN×dimension)
2 c2 = 2 k = 1, 2, . . . , A

W= (Gmax−iterationindex)
Gmax

- limit= (SN×dimension)
2 λ = 1.1

- - W= (Gmax−iterationindex)
Gmax

-
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Table 2: Parameters used for each algorithm for solving constrained optimization problems f11 − f18,
All experiments are repeated 30 times.

PSO [20] ABC [27] FF [16] SSO-C [12] SbPPA

M=250 sn=40 Fireflies=25 N=50 NP=10

Gmax = 300 MCN=6000 Iteration number= 2000 Iteration number=500 Iteration number=2400

c1 = 2 MR=0.8 q=1.5 PF=0.7 PR=0.8, Poiss(λ) = 0.05

c2 = 2 - α = 0.001 - k = 1, 2, . . . , A

Weight factors= 0.9 to 0.4 - - - λ = 1.1
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Figure 4: Performance of SbPPA on unconstrained global optimization problems
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Table 3: Results obtained by SbPPA, HPA, PSO and ABC. All
problems in this table are unconstrained.

Fun Dim Algorithm Best Worst Mean SD

1 4 ABC (+) 0.0129 (+) 0.6106 (+) 0.1157 (+) 0.111
PSO (-) 6.8991E-08 (+) 0.0045 (+) 0.001 (+) 0.0013
HPA (+) 2.0323E-06 (+) 0.0456 (+) 0.009 (+) 0.0122
SbPPA 1.08E-07 7.05E-06 3.05E-06 3.14E-06

2 2 ABC (+) 1.2452E-08 (+) 8.4415E-06 (+) 1.8978E-06 (+) 1.8537E-06
PSO (≈) 0 (≈) 0 (≈) 0 (≈) 0
HPA (≈) 0 (≈) 0 (≈) 0 (≈) 0
SbPPA 0 0 0 0

3 2 ABC (≈) 0 (+) 4.8555E-06 (+) 4.1307E-07 (+) 1.2260E-06
PSO (≈) 0 (+) 3.5733E-07 (+) 1.1911E-08 (+) 6.4142E-08
HPA (≈) 0 (≈) 0 (≈) 0 (≈) 0
SbPPA 0 0 0 0

4 2 ABC (≈) -1.03163 (≈) -1.03163 (≈) -1.03163 (≈) 0
PSO (≈) -1.03163 (≈) -1.03163 (≈) -1.03163 (≈) 0
HPA (≈) -1.03163 (≈) -1.03163 (≈) -1.03163 (≈) 0
SbPPA -1.031628 -1.031628 -1.031628 0

5 6 ABC (≈) -50.0000 (≈) -50.0000 (≈) -50.0000 (-) 0
PSO (≈) -50.0000 (≈) -50.0000 (≈) -50.0000 (-) 0
HPA (≈) -50.0000 (≈) -50.0000 (≈) -50.0000 (-) 0
SbPPA -50.0000 -50.0000 -50.0000 5.88E-09

6 10 ABC (+) -209.9929 (+) -209.8437 (+) -209.9471 (+) 0.044
PSO (≈) -210.0000 (≈) -210.0000 (≈) -210.0000 (-) 0
HPA (≈) -210.0000 (≈) -210.0000 (≈) -210.0000 (+) 1
SbPPA -210.0000 -210.0000 -210.0000 4.86E-06

7 30 ABC (+) 2.6055E-16 (+) 5.5392E-16 (+) 4.7403E-16 (+) 9.2969E-17
PSO (≈) 0 (≈) 0 (≈) 0 (≈) 0
HPA (≈) 0 (≈) 0 (≈) 0 (≈) 0
SbPPA 0 0 0 0

8 30 ABC (+) 2.9407E-16 (+) 5.5463E-16 (+) 4.8909E-16 (+) 9.0442E-17
PSO (≈) 0 (≈) 0 (≈) 0 (≈) 0
HPA (≈) 0 (≈) 0 (≈) 0 (≈) 0
SbPPA 0 0 0 0

9 30 ABC (≈) 0 (+) 1.1102E-16 (+) 9.2519E-17 (+) 4.1376E-17
PSO (≈) 0 (+) 1.1765E-01 (+) 2.0633E-02 (+) 2.3206E-02
HPA (≈) 0 (≈) 0 (≈) 0 (≈) 0
SbPPA 0 0 0 0

10 30 ABC (+) 2.9310E-14 (+) 3.9968E-14 (+) 3.2744E-14 (+) 2.5094E-15
PSO (≈) 7.9936E-15 (+) 1.5099E-14 (-) 8.5857E-15 (+) 1.8536E-15
HPA (≈) 7.9936E-15 (+) 1.5099E-14 (+) 1.1309E-14 (+) 3.54E-15
SbPPA 7.994E-15 7.99361E-15 7.994E-15 7.99361E-15
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Table 4: Results obtained by SbPPA, PSO, ABC, FF and SSO-C. All problems in this table

are standard constrained optimization problems

Fun Fun Name Optimal Algorithm Best Mean Worst SD

11 CP1 -15 PSO (≈) -15 (≈) -15 (≈) -15 (-) 0
ABC (≈) -15 (≈) -15 (≈) -15 (-) 0
FF (+) 14.999 (+) 14.988 (+) 14.798 (+) 6.40E-07
SSO-C (≈) -15 (≈) -15 (≈) -15 (-) 0
SbPPA -15 -15 -15 1.95E-15

12 CP2 -30665.539 PSO (≈) -30665.5 (+) -30662.8 (+) -30650.4 (+) 5.20E-02
ABC (≈) -30665.5 (+) -30664.9 (+) -30659.1 (+) 8.20E-02
FF (≈) -3.07E+04 (+) -30662 (+) -30649 (+) 5.20E-02
SSO-C (≈) -3.07E+04 (≈) -30665.5 (+) -30665.1 (+) 1.10E-04
SbPPA -30665.5 -30665.5 -30665.5 2.21E-06

13 CP3 -6961.814 PSO (+) -6.96E+03 (+) -6958.37 (+) -6942.09 (+) 6.70E-02
ABC (-) -6961.81 (+) -6958.02 (+) -6955.34 (-) 2.10E-02
FF (+) -6959.99 (+) -6.95E+03 (+) -6947.63 (-) 3.80E-02
SSO-C (-) -6961.81 (+) -6961.01 (+) -6960.92 (-) 1.10E-03
SbPPA -6961.5 -6961.38 -6961.45 0.043637

14 CP4 24.306 PSO (-) 24.327 (+) 2.45E+01 (+) 24.843 (+) 1.32E-01
ABC (+) 24.48 (+) 2.66E+01 (+) 28.4 (+) 1.14
FF (-) 23.97 (+) 28.54 (+) 30.14 (+) 2.25
SSO-C (-) 24.306 (-) 24.306 (-) 24.306 (-) 4.95E-05
SbPPA 24.34442 24.37536 24.37021 0.012632

15 CP5 -0.7499 PSO (≈) -0.7499 (+) -0.749 (+) -0.7486 (+) 1.20E-03
ABC (≈) -0.7499 (+) -0.7495 (+) -0.749 (+) 1.67E-03
FF (+) -0.7497 (+) -0.7491 (+) -0.7479 (+) 1.50E-03
SSO-C (≈) -0.7499 (≈) -0.7499 (≈) -0.7499 (-) 4.10E-09
SbPPA 0.7499 0.749901 0.7499 1.66E-07

16 Spring Not Known PSO (+) 0.012858 (+) 0.014863 (+) 0.019145 (+) 0.001262
Design ABC (≈) 0.012665 (+) 0.012851 (+) 0.01321 (+) 0.000118
Problem FF (≈) 0.012665 (+) 0.012931 (+) 0.01342 (+) 0.001454

SSO-C (≈) 0.012665 (+) 0.012765 (+) 0.012868 (+) 9.29E-05
SbPPA 0.012665 0.012666 0.012666 3.39E-10

17 Welded Not Known PSO (+) 1.846408 (+) 2.011146 (+) 2.237389 (+) 0.108513
Beam Design ABC (+) 1.798173 (+) 2.167358 (+) 2.887044 (+) 0.254266
Problem FF (+) 1.724854 (+) 2.197401 (+) 2.931001 (+) 0.195264

SSO-C (≈) 1.724852 (+) 1.746462 (+) 1.799332 (+) 0.02573
SbPPA 1.724852 1.724852 1.724852 4.06E-08

18 Speed Not Known PSO (+) 3044.453 (+) 3079.262 (+) 3177.515 (+) 26.21731
Reducer Design ABC (+) 2996.116 (+) 2998.063 (+) 3002.756 (+) 6.354562
Optimization FF (+) 2996.947 (+) 3000.005 (+) 3005.836 (+) 8.356535

SSO-C (≈) 2996.113 (≈) 2996.113 (≈) 2996.113 (+) 1.34E-12
SbPPA 2996.114 2996.114 2996.114 0
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Figure 5: Performance of SbPPA on constrained global optimization problems. The problems solved in this

table are standard constrained optimization problems

V. Conclusion

A new algorithm mimicking the seed-based plant propagation (SbPPA) is designed and imple-
mented for both unconstrained and constrained optimization problems. The performance of
SbPPA is compared with a number of well established algorithms. The results are compiled in
terms of best, mean, worst and standard deviation. SbPPA is very easy to implement as it needs
less arbitrary parameter settings. An alternative strategy is adopted to update our current popu-
lation. The effects on convergence are shown through convergence plots, Figures (4-5), of some
of the solved problems. Note that the success rate of SbPPA depends on the quality of the initial
population. SbPPA is being tested on discrete real world problems.
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I. Appendix

I. Set of Unconstrained Global Optimization Problems

Table 5: Unconstrained Global Optimization Problems Used In Our Experiments.

Fun Ftn. Name D C Range Min Formulation

f1 Colville 4 UN [-10 10] 0 f (x) = 100(x2
1 − x2) + (x1 − 1)2 + (x3 − 1)2 + 90(x2

3 − x4)
2 + 10.1((x2 − 1)2

+(x4 − 1)2) + 19.8(x2 − 1)(x4 − 1)

f2 Matyas 2 UN [-10 10] 0 f (x) = 0.26(x2
1 + x2

2)− 0.48x1x2

f3 Schaffer 2 MN [-100 100] 0 f (x) = 0.5 +
sin2(

√

∑
n
i=1 x2

i
)−0.5

(1+0.001(∑n
i=1 x2

i ))
2

f4 Six Hump Camel Back 2 MN [-5 5] -1.03163 f (x) = 4x2
1 − 2.1x4

1 +
1
3 x6

1 + x1x2 − 4x2
2 + 4x4

2

f5 Trid6 6 UN [-36 36] -50 f (x) = ∑
6
i=1(xi − 1)2 −∑

6
i=2 xixi−1

f6 Trid10 10 UN [-100 100] -210 f (x) = ∑
10
i=1(xi − 1)2 −∑

10
i=2 xixi−1

f7 Sphere 30 US [-100 100] 0 f (x) = ∑
n
i=1 x2

i

f8 SumSquares 30 US [-10 10] 0 f (x) = ∑
n
i=1 ix2

i

f9 Griewank 30 MN [-600 600] 0 f (x) = 1
4000 ∑

n
i=1 x2

i −∏
n
i=1 cos( xi√

i
) + 1

f10 Ackley 30 MN [-32 32] 0 f (x) = −20 exp(−0.2
√

1
n ∑

n
i=1 x2

i )− exp( 1
n ∑

n
i=1 cos(2πxi)) + 20 + e

II. Set of Constrained Global Optimization Problems Used in Our

Experiments

II.1 CP1

Min f (x) = 5 ∑
4
d=1 xd − 5 ∑

4
d=1 x2

d −∑
13
d=5 xd

subject to g1(x) = 2x1 + 2x2 + x10 + x11 − 10 ≤ 0

g2(x) = 2x1 + 2x3 + x10 + x12 − 10 ≤ 0

g3(x) = 2x2 + 2x3 + x11 + x12 − 10 ≤ 0

g4(x) = −8x1 + x10 ≤ 0

g5(x) = −8x2 + x11 ≤ 0

g6(x) = −8x3 + x12 ≤ 0

g7(x) = −2x4 − x5 + x10 ≤ 0

g8(x) = −2x6 − x7 + x11 ≤ 0

g9(x) = −2x8 − x9 + x12 ≤ 0,

where bounds are 0 ≤ xi ≤ 1 (i = 1, ..., 9, 13), 0 ≤ xi ≤ 100 (i = 10, 11, 12). The global optimum
is at x∗ = (1, 1, 1, 1, 1, 1, 1, 1, 1, , 3, 3, 3, 1), f (x∗) = −15.
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II.2 CP2

Min f (x) = 5.3578547x2 + 0.8356891x1x5 + 37.293239x1 − 40792.141

subject to g1(x) = 85.334407 + 0.0056858x2x5 + 0.0006262x1x4 − 0.0022053x3 x5 − 92 ≤ 0

g2(x) = −85.334407− 0.0056858x2x5 − 0.0006262x1 x4 + 0.0022053x3x5 ≤ 0

g3(x) = 80.51249 + 0.0071317x2x5 + 0.0029955x1x2− 0.0021813x2 − 110 ≤ 0

g4(x) = −80.51249− 0.0071317x2 x5 + 0.0029955x1x2 − 0.0021813x2 + 90 ≤ 0

g5(x) = 9.300961− 0.0047026x3x5 − 0.0012547x1x3 − 0.0019085x3 x4 − 25 ≤ 0

g6(x) = −9.300961− 0.0047026x3 x5 − 0.0012547x1x3 − 0.0019085x3x4 + 20 ≤ 0,

where 78 ≤ x1 ≤ 102, 33 ≤ x2 ≤ 45, 27 ≤ xi ≤ 45 (i = 3, 4, 5). The optimum solution is
x∗ = (78, 33, 29.995256025682, 45, 36.775812905788), where f (x∗) = −30665.539. Constraints g1
and g6 are active.

II.3 CP3

Min f (x) = (x1 − 10)3 + (x2 − 20)3

subject to g1(x) = −(x1 − 5)2 − (x2 − 5)2 + 100 ≤ 0

g2(x) = (x1 − 6)2 + (x2 − 5)2 − 82.81 ≤ 0,

where 13 ≤ x1 ≤ 100 and 0 ≤ x2 ≤ 100. The optimum solution is x∗ = (14.095, 0.84296) where
f (x∗) = −6961.81388. Both constraints are active.

II.4 CP4

Min f (x) = x2
1 + x2

2 + x1x2 − 14x1 − 16x2 + (x3 − 10)2 + 4(x4 − 5)2 + (x5 − 3)2 + 2(x6 − 1)2

+5x2
7 + 7(x8 − 11)2 + 2(x9 − 10)2 + (x10 − 7)2 + 45

subject to g1(x) = −105 + 4x1 + 5x2 − 3x7 + 9x8 ≤ 0

g2(x) = 10x1 − 8x2 − 17x7 + 2x8 ≤ 0

g3(x) = −8x1 + 2x2 + 5x9 − 2x10 − 12 ≤ 0

g4(x) = 3(x1 − 2)2 + 4(x2 − 3)2 + 2x2
3 − 7x4 − 120 ≤ 0

g5(x) = 5x2
1 + 8x2 + (x3 − 6)2 − 2x4 − 40 ≤ 0

g6(x) = x2
1 + 2(x2 − 2)2 − 2x1x2 + 14x5 − 6x6 ≤ 0

g7(x) = 0.5(x1 − 8)2 + 2(x2 − 4)2 + 3x2
5 − x6 − 30 ≤ 0

g8(x) = −3x1 + 6x2 + 12(x9 − 8)2 − 7x10 ≤ 0,

where −10 ≤ xi ≤ 10 (i = 1, ..., 10). The global optimum is
x∗ = (2.171996, 2.363683, 8.773926, 5.095984, 0.9906548, 1.430574, 1.321644, 9.828726, 8.280092, 8.375927),
where f (x∗) = 24.3062091. Constraints g1, g2, g3, g4, g5 and g6 are active.
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II.5 CP5

Min f (x) = x2
1 + (x2 − 1)2

subject to g1(x) = x2 − x2
1 = 0,

where 1 ≤ x1 ≤ 1, 1 ≤ x2 ≤ 1. The optimum solution is x∗ = (±1/
√

(2), 1/2),
where f (x∗) = 0.7499.

II.6 Welded Beam Design Optimisation

The welded beam design is a standard test problem for constrained design optimisation [9, 51].
There are four design variables: the width w and length L of the welded area, the depth d and
thickness h of the main beam. The objective is to minimise the overall fabrication cost, under
the appropriate constraints of shear stress τ, bending stress σ, buckling load P and maximum
end deflection δ. The optimization model is summarized as follows, where xT = (w, L, d, h).

Minimise f (x) = 1.10471w2L + 0.04811dh(14.0+ L), (14)

subject to

g1(x) = w− h ≤ 0,

g2(x) = δ(x)− 0.25 ≤ 0,

g3(x) = τ(x)− 13, 600 ≤ 0,

g4(x) = σ(x)− 30, 000 ≤ 0,

g5(x) = 1.10471w2 + 0.04811dh(14.0+ L)− 5.0 ≤ 0,

g6(x) = 0.125− w ≤ 0,

g7(x) = 6000− P(x) ≤ 0,

(15)

where

σ(x) =
504, 000

hd2 ,

D =
1
2

√

L2 + (w + d)2,

δ =
65, 856

30, 000hd3 ,

α =
6000√

2wL
,

P = 0.61423× 106 dh3

6



1−
d

√

30
48

28



 .

Q = 6000
(

14 +
L

2

)

,

J =
√

2wL

(

L2

6
+

(w + d)2

2

)

,

β =
QD

J
,

τ(x) =

√

α2 +
αβL

D
+ β2.

(16)

II.7 Speed Reducer Design Optimization

The problem of designing a speed reducer [19] is a standard test problem. It consists of the design
variables as: face width x1, module of teeth x2, number of teeth on pinion x3, length of the first
shaft between bearings x4, length of the second shaft between bearings x5, diameter of the first
shaft x6, and diameter of the first shaft x7 (all variables continuous except x3 that is integer). The
weight of the speed reducer is to be minimized subject to constraints on bending stress of the
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gear teeth, surface stress, transverse deflections of the shafts and stresses in the shaft, [9]. The
mathematical formulation of the problem, where xT = (x1, x2, x3, x4, x5, x6, x7), is as follows.

Minimise f (x) =0.7854x1x2
2(3.3333x2

3 + 14.9334x343.0934)

− 1.508x1(x2
6 + x3

7) + 7.4777(x3
6 + x3

7) + 0.7854(x4x2
6 + x5x2

7),
(17)

subject to
g1(x) =

27
x1x2

2x3
− 1 ≤ 0,

g2(x) =
397.5

x1x2
2x2

3
− 1 ≤ 0,

g3(x) =
1.93x3

4

x2x3x4
6
− 1 ≤ 0,

g4(x) =
1.93x3

5

x2x3x4
7
− 1 ≤ 0,

g5(x) =
1.0

110x3
6

√

(

745.0x4

x2x3

)2

+ 16.9× 106 − 1 ≤ 0,

g6(x) =
1.0

85x3
7

√

(

745.0x5

x2x3

)2

+ 157.5× 106 − 1 ≤ 0,

g7(x) =
x2x3

40
− 1 ≤ 0,

g8(x) =
5x2

x1
− 1 ≤ 0,

g9(x) =
x1

12x2
− 1 ≤ 0,

g10(x) =
1.5x6 + 1.9

x4
− 1 ≤ 0,

g11(x) =
1.1x7 + 1.9

x5
− 1 ≤ 0.

(18)

The simple limits on the design variables are
2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8,
17 ≤ x3 ≤ 28, 7.3 ≤ x4 ≤ 8.3, 7.8 ≤ x5 ≤ 8.3,
2.9 ≤ x6 ≤ 3.9 and 5.0 ≤ x7 ≤ 5.5.

II.8 Spring Design Optimisation

The main objective of this problem [4, 6] is to minimize the weight of a tension/compression
string, subject to constraints of minimum deflection, shear stress, surge frequency, and limits on
outside diameter and on design variables. There are three design variables: the wire diameter x1,
the mean coil diameter x2, and the number of active coils x3, [9]. The mathematical formulation
of this problem, where xT = (x1, x2, x3), is as follows.

Minimize f (x) = (x3 + 2)x2x2
1, (19)

subject to

16



g1(x) = 1− x3
2x3

7, 178x4
1
≤ 0,

g2(x) =
4x2

2 − x1x2

12, 566(x2x3
1)− x4

1
+

1
5, 108x2

1
− 1 ≤ 0,

g3(x) = 1− 140.45x1

x2
2x3

≤ 0,

g4(x) =
x2 + x1

1.5
− 1 ≤ 0.

(20)

The simple limits on the design variables are 0.05 ≤ x1 ≤ 2.0, 0.25 ≤ x2 ≤ 1.3
and 2.0 ≤ x3 ≤ 15.0.
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