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Abstract—Nature-inspired algorithms are proving to be very
successful on complex optimisation problems. A new algorithm,
inspired by the way plants, and in particular the strawberry
plant, propagate is presented. The algorithm is explained, tested
on standard test functions, and compared with the well known
Nelder-Mead algorithm. The new approach is then applied to
a complex process design problem that arises in Chlorobenzene
purification, a problem that exhibits strong nonlinear behaviour
and has a small feasible region.

Index Terms—Optimisation, Optimisation methods, Pareto
optimisation, Process design.

I. INTRODUCTION

Since the advent of Simulated Annealing of Metropolis et
al. [1] and the Genetic Algorithm of Holland [2], a flurry of
nature-inspired algorithms has been introduced with increasing
successes on the most challenging problems in nonlinear and
combinatorial optimisation. These successes are particularly
notable when comparing against classical gradient-based ap-
proaches to optimisation.

Nature-inspired algorithms and heuristic procedures have
some notable drawbacks; unlike classical approaches, they
have a rather limited theory to support them. They also are
mainly stochastic, and dependent on often many parameters
the setting of which is usually arbitrary. This means that results
change from run to run and replication of results by different
researchers may be hard to achieve.

It is also true that of the current nature-inspired algorithms,
few, if any, are inspired by plants. Consider for a moment
the way plants propagate. Given their resilience, their ability
to colonise new territories in search of favourable growing
conditions, they must have developed effective propagation
strategies. In the following we report on a particular plant,
namely the strawberry plant, observe its propagation strategy
and see how an effective algorithm can be designed based on
this strategy.

II. THE STRAWBERRY PLANT APPROACH TO SURVIVAL
THROUGH AN ADAPTED PROPAGATION STRATEGY

The strawberry plant (Fragaria X ananassa) [3] belongs to
the Rose family. The strawberry-growing industry started in
Paris in the seventeenth century with the European variety.
In 1714, Amedee-Francois Frezier, a mathematician and engi-
neer, hired by Louis XIV to draw maps of South America

returned from Chile with some Chilean strawberry plants
which give a larger fruit. Subsequent crossings and selections
led to the modern plant.

A. Propagation strategy

Seeds appear on the fruit and, in principle, the plant can
propagate using them. This should be true for the pure
varieties; hybrids, like the modern ones, are generally infertile.
Instead, these plants use runners to propagate.

The maiden plant sends runners which, upon touching the
ground, grow roots from which daughter plants emerge. The
question of interest to an optimisation audience is whether
the mother plant sends runners in a totally random fashion or
if there is an underlying principle or strategy that the plant
follows to optimise its propagation and ultimately its survival.

If a strawberry plant is left alone to grow as in the wild,
one can observe, after a period of time of two to three seasons
that strong and well-established plants have a concentration of
younger plants around them. On the other hand, those plants
which are less established and do not look very strong send
few but long runners.

Although runners are sent in all directions, there is a
concentration toward areas with better lighting and humidity.
This must be due to what, in the botanical parlance, is called
tropism or growth response to stimuli [4].

B. Observations and assumptions

It is assumed, therefore, that the strawberry plant, as well
as other plants, have an underlying propagation strategy. This
strategy is developed over time to ensure the survival of the
specie. Put crudely, a plant “will strive” to have its offspring
in areas of the ground that offer the necessary nutrients and
growth potential. When a plant is in a good spot it will send
short runners in large numbers; when it is in a poor spot it will
send long runners in search of better spots. The long runners
are in small numbers since they are an investment and, being
in a poor spot, the plant may not have sufficient resources to
send many such runners.

With these observations and assumptions in mind, it can
be stipulated that the strawberry plant, and other plants, in
order to thrive in a given environment, solve, in effect, a
survival optimisation problem. The approach we put forward
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Require: objective f(x), x ∈ Rn

Generate a population P = {pi, i = 1, . . . ,m}
g ← 1
for g ← 1 to gmax do

compute Ni = f(pi),∀pi ∈ P
sort P in descending order of N
create new population φ
for each pi, i = 1, . . . ,m do {best m only}
ri ← set of runners where both the size of the
set and the distance for each runner (individually) is
proportional to the fitness Ni

φ ← φ ∪ ri {append to population; death occurs by
omission above}

end for
P ← φ {new population}

end for
return P , the population of solutions

Fig. 1. The plant propagation algorithm (PPA).

here consists in mapping an optimisation problem onto the
survival optimisation problem of the strawberry plant and in
adopting its strategy for survival in the environment to look
for points in the search space that give our objective function
good values and ultimately the best value.

C. Mapping an optimisation problem to the survival problem
of the strawberry plant

Consider the optimisation problem

max
x∈S

z = f(x)

where S is the search domain, often described by box con-
straints but which may also include other constraints. The
strawberry plant survival problem is to find the best spot x in
the plot S which will give best growth f(x) to the offspring
of the plant.

III. THE PLANT PROPAGATION ALGORITHM (PPA)

There are two characteristics that permeate all successful
algorithms/heuristics for global optimisation: concentration or
intensification and diversification or exploration. Concentra-
tion allows to search locally and converge to a local opti-
mum while diversification allows the search to avoid getting
trapped in the attraction region of a local optimum, giving
the algorithm the potential to find the global optimum. These
two characteristics are conflicting and the success of any
implementation of a search algorithm will depend on the
balance between the two characteristics.

The strawberry approach implements concentration by send-
ing many short runners from good solutions. It implements
diversification by sending fewer but longer runners from those
solutions which are less good. The full algorithm is presented
in Figure III.

Like most algorithms of this nature, the PPA requires
customisation through the definition of some utility functions
and the assignment of values to a number of a parameters. For

the PPA, these are as follows: the population size, the number
of generations, a fitness function, the number of runners to
create for each solution and the distance for each runner.

The PPA is based on a population of shoots, each of
which represents a solution in the search space. Each shoot is
assumed to have taken root which is equivalent to the objective
function being evaluated. Each shoot will subsequently send
out runners to explore the solution space around it. The number
of shoots is given by this parameter and is indicated by m in
the algorithm.

The algorithm is iterative with all shoots sending out runners
at each generation. This parameter provides a terminating
criterion based on how many times to send out runners and is
represented by gmax.

Solutions in the population will be sorted according to
their fitness. This fitness will naturally be a function of the
objective function values but the actual association between
objective function value and fitness may be tailored for the
specific problem addressed. It is, however, assumed by the
algorithm presented that the fitness values, f(x), will satisfy
f(x) ∈ [0, 1]; if not, the equations used for determining the
number of runners and the distance for each runner to run
should be modified. The actual fitness functions used for the
case studies presented below will be defined along with the
problem statements.

The functions used to determine the number of runners and
the distance each runner should travel are defined below. They
require that the fitness values lie strictly in (0, 1). We map the
fitness values, f(x), described above to ensure this condition:

N(x) =
1

2
(tanh (4f(x)− 2) + 1) (1)

The effect of this mapping function is shown in Figure 2. The
specific need for this mapping is discussed below. However, it
also provides a means of emphasising further better solutions
over those which are not as good.
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Fig. 2. Mapping function to convert fitness values in [0, 1] to (0, 1) while
emphasising better solutions.

The number of runners generated by a solution should
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be proportional to its fitness. By default, we have used the
following function:

nr = dnmaxNire (2)

where nr is the number of runners to generate for solution i
in the current population, after sorting, nmax is the maximum
number of runners to generate, Ni is the mapped fitness (using
equation 1 above) of solution i, and r ∈ [0, 1] is a randomly
chosen number for each individual solution at each generation.
The combination of the fitness mapping function and the
ceiling operator ensures that every solution will generate at
least one runner, even for the least fit solutions, ones with
fi(x) ≡ 0. The most fit solutions will generate at most nmax

runners. For all case studies presented in this paper, nmax = 5.
The distance each runner will cover follows a similar rule

although one where it is inversely proportional to the fitness,
as described above. This distance is:

dr,j = 2(1−Ni)(r − 0.5) (3)

for j = 1, . . . , n, where n is the dimension of the search
space. Each dr,j will be in (-1,1). The fitness mapping function
ensures that the best solutions will have the potential to send
out runners some distance > 0 even if fi(x) ≡ 1. The distance
calculated will be used to update the solution i based on the
bounds on xj :

x∗j = xj + (bj − aj)dr,j (4)

These x∗j values are then adjusted to ensure that the new point
generated is within the bounds [aj , bj ]. Given equation 3, there
will be some preference for points being generated at the
bounds of the search space. For chemical engineering process
design problems, such as the main case study presented below,
this is actually a useful property; for more general problems,
this is likely to be a slight disadvantage at best.

IV. COMPUTATIONAL RESULTS ON STANDARD TEST
FUNCTIONS

Before attempting a problem from the chemical engineering
domain, we evaluated the proposed method on a set of
functions over domains described by box constraints [5], [6].

Table I presents the results of our implementation of the
PPA. For each problem, the method has been run 10 times. In
all cases, except as noted below, we have used the following
values for the parameters of the PPA: gmax = 30, m = 30,
and nmax = 5. The fitness function is defined as

f(z) =
zmax − z

zmax − zmin

where zmin and zmax are the minimum and maximum objec-
tive function values in the current population and our objective
is to minimise; if all solutions in the population have the same
objective function value, all solutions are given a fitness of 0.5.

The best result obtained, over the 10 runs, is presented, in
terms of objective function value, as well as the percentage

TABLE I
SUMMARY OF RESULTS OBTAINED WITH THE NOVEL PPA METHOD. TEN
ATTEMPTS WERE MADE FOR EACH PROBLEM AND SOLUTIONS OBTAINED
WERE COMPARED WITH THE THEORETICAL OPTIMAL SOLUTION KNOWN.
a AND b ARE THE LOWER AND UPPER BOUNDS ON x, THE DECISION

VARIABLES.

Problem a b x0 Best objective Success rate (%)

Six hump -3 3 1 -1.0316 80
camel back -2 2 1

Branin -5 15 0 -0.3980 100
-5 15 0

Easom -100 100 -1 -0.9997 50
-100 100 1

Goldstein -2 2 1 3.0002 90
Price -2 2 1

Martin -20 20 0 0.0000 100
Gaddy -20 20 0

Rastrigin -10 10 -3 0.0092 90
-10 10 2

Rosenbrock -5 10 0 0.0002 100
-5 10 0

Schwefel -500 500 0 -837.9650 70
-500 500 0

of the time that the method is able to find the optimum
point, to within 1% of the box size from the location of
the known theoretical optimum. Only one problem, Easom,
poses a significant challenge to this new method although,
even in this case, the PPA method finds the optimum half of
the time. The PPA is successful almost always for all the other
problems.

It should be noted that these same problems have been
attempted with the Nelder-Mead simplex method [7], using
the implementation provided by Kelley [8] using the same
initial guesses. In all but two problems, the PPA was able
to find a better solution, often significantly better. In the two
exceptions, the methods were equivalent.

From the table, we see that the PPA method is able to find
solutions close to the optima for all problems. It performs
significantly better than the Nelder-Mead method in all cases.
This gave confidence in the ability of this method to perform
well on more challenging problems. It has, thus, been tried on
an optimisation problem from an industrial application.

V. INDUSTRIAL APPLICATION CASE STUDY 3:
CHLOROBENZENE PURIFICATION PROCESS DESIGN

The design and optimisation of process flowsheets is a
challenging task due to the nonlinear models required and the
multi-criteria nature of the objectives for evaluating alternative
designs. A process flowsheet consists of a number of process-
ing steps, often referred to as units, with streams connecting
the steps. The problem of design is to determine the operating
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TABLE II
FEED STREAM DEFINITION FOR THE BENZENE RECYCLE CASE STUDY.

Component Flow ( kmol
s

)

1. Benzene C6H6 0.97
2. Chlorobenzene C6H5Cl 0.01
3. Di-Chlorobenzene p-C6H4Cl2 0.01
4. Tri-Chlorobenzene C6H3Cl3 0.01

Pressure 1 atm
Temperature 313 K

1Feed

Mixer

2

Benzene

3

Chlorobenzene

Others

Fig. 3. Process structure for the chlorobenzene purification stage showing
three distillation units (numbered) with the desired product streams, Benzene
and Chlorobenzene, and one waste stream, “Others”.

conditions and sizing parameters for the units in the process to
achieve desired objectives subject to a number of constraints,
both physical (or chemical) and economic.

The case study presented here is the optimisation of a purifi-
cation section of a process for the production of chloroben-
zene. In the overall process, large quantities of benzene are
used. Due to the partial conversion in the reaction section of
the process, significant quantities of un-reacted benzene could
be wasted if not recycled. To recycle the benzene, a stream
consisting of primarily benzene needs to be further purified
to ensure that the benzene sent back upstream in the process
is pure enough to not affect the reaction. The case study we
consider here is the design of this purification stage of the
overall process.

The stage comprises three distillation units with a feed
stream described in Table II. Although the main aim is to
purify the benzene recycle stream, the feed stream to this stage
also contains some amount of the main product of the process,
chlorobenzene. It is desirable to separate this product as well
in sufficiently pure form and to avoid unnecessary loss. The
process structure we consider is presented in Figure 3.

A. Process modelling

To assess the different alternatives, economic criteria in the
form of capital and operating costs are used. Process models
are required to determine the impact of design decisions on
these criteria. For this problem, the process models consist
of the Fenske, Underwood and Gilliland short-cut correlations
often used for multi-component distillation column design [9].

These models are based on the concept of light and heavy
key species. Essentially, if the species in a mixture are sorted
according to their boiling points, the mixture can be separated
between any two adjacent species. For instance, if there were
a mixture with three species, A, B, and C, with increasing
boiling points from A to C, there would be two possible
separations for this mixture. The first would be between A
and B, yielding two streams, one with almost all of the A but
a little B and one with a little of the A, most of the B, and
essentially all of the C. The second separation possible would
be between B and C: one of the resulting streams from this
separation would have all the A, most of the B and a little C
and the other stream would have a little B and most of the C.

The Fenske equation determines the minimum number of
stages, Nmin, a distillation column will require to achieve a
given separation identified by the recovery of the light (most
volatile component in the separation) and the heavy (least
volatile of the components):

Nmin =
log

xD,lxB,h

xB,lxD,h

logαl,h

where D refers to the distillate or tops product of the dis-
tillation unit and B to the bottoms product. x is the molar
composition of each species in the streams, αl,h is the relative
volatility of the light key to the heavy key. The compositions
of the light and heavy keys in the separation are a function of
one of the design variables, the recovery desired. The higher
the recovery, the smaller the amount of each key that goes
out with the other stream so the lower the potential losses.
However, more stages are required for higher recoveries.

The Underwood equation determines the minimum amount
of reflux, the liquid sent back into the column from the top
stream to aid in achieving the separation:

Rmin =

nc∑
i=1

αixD,i

αi − θ

where θ is the solution to the nonlinear equation

nc∑
i=1

αixF,i

αi − θ
= 1− q

where F indicates the feed stream, nc is the number of species
involved in the feed stream and q is a function of the state of
the feed stream. The state depends on the energy in the stream
and that is a function of the temperature and the pressure of
the stream.

The actual number of stages and the actual reflux used
are correlated through the Gilliland equation. This is also a
nonlinear equation and depends on another design variable, the
reflux rate factor. The higher this value, the larger the actual
reflux rate used. The reflux rate affects the operating costs
through the use of cooling and heating utilities: larger reflux
means increased utility use). It also influences the capital cost:
higher reflux leads to a wider column but one with less stages,
usually leading to a lower capital cost overall.



In all of the above equations, the calculation of variables
such as α and q require the estimation of physical properties.
Physical property models are typically nonlinear. For this
problem, we have used the Antoine equation to determine
vapour pressures, p∗ used to calculate the relative volatilities,
α, of the species:

log p∗ = A− B

T − C
where A, B and C are the Antoine coefficients which can
be found in reference books for many species. The relative
volatilities of species are the ratio of their vapour pressures.
The temperatures will depend on the operating pressure, the
third design variable for the distillation unit. Higher pressures
will results in higher temperatures and smaller relative volatil-
ities. The former will affect the choice of heating and cooling
utilities; the latter will affect the number of stages required for
the separation required.

The process design has several constraints beyond the
physical models described above. Firstly, the benzene and
chlorobenzene product streams must meet purity requirements.
Secondly, there is a finite number of utilities available for
meeting the heating and cooling requirements and, for some
combinations of operating pressure and stream compositions,
utilities may not be available to meet the requirements imposed
by the design of the distillation units. Finally, there is a limit
on how much of the main product, chlorobenzene, can be lost
through the bottom product stream of the 3rd distillation unit.
The constraints define a feasible region that is small, well
under 1% of the box domain defined by the design variable
bounds and, together with the nonlinearities, make the problem
difficult to solve. The full model is further described elsewhere
[10].

B. Optimisation problem
The two economic criteria, operating and capital costs, are

conflicting and the engineer will be interested in the trade-
off between them due to uncertainty in energy markets and
product prices. The goal is to identify a suitable trade-off,
or Pareto, curve for this problem. The minimisation problem,
therefore, is formulated as

min
d
z = λcc + (1− λ)co (5)

where cc is the capital cost, co is an annual operating cost, λ ∈
[0, 1] and d are the design variables. For the 3 distillation unit
process, there are 9 design variables: operation pressure, P ∈
[1, 32], recovery, r ∈ [0.8, 0.999], and reflux rate factor, R ∈
[1.05, 1.5], for each distillation unit. We solve this problem
for different values of λ to generate an approximation to the
Pareto front.

The capital costs depend on the sizes of the individual
units. Cost models from Rathore et al. [9] are used. Operating
costs include the cost of heating and cooling utilities, from a
discrete set of possible choices, and maintenance costs which
are proportional to the capital costs. The operating cost models
are also from Rathore et al. [9].

C. Applying the PPA

Due to the possible presence of infeasible solutions in the
population used by the Strawberry algorithm, a new fitness
function has been defined. There are three cases: all solutions
in the population are feasible, all are infeasible and there is a
mix of feasible and infeasible solutions. For the first two, the
fitness function is as defined previously:

f =
max−y

max−min

where y is either the actual objective function value for feasible
solutions or the constraint violation for infeasible ones. For the
last case, the same mapping function is used but compressed
and shifted so that all feasible solutions are given fitness values
∈ [0.5, 1] and infeasible solutions ∈ [0, 0.5]. The procedure
is otherwise the same as described above, including the use
of the fitness mapping function (eq. 1). A population size of
m = 30 has been used, allowing the method to run for up to
gmax = 500 generations.

The solutions obtained solving this problem with λ =
0, 0.05, 0.1, . . . , 1 with ten attempts for each value of λ are
presented in figure 4. This figure contains the union of the
populations at the end of each of the runs. Two conclusions
can be drawn from this figure:

1) There appears to be little spread in the results obtained
by different runs, evidenced by the small depth of the
front. The solutions obtained all appear to converge to
points on the front as identified by the union of all of the
solutions. This can be further illustrated by comparing
the plot of all the points in Figure 4 with the plot, in
Figure 5, of only those points which are not dominated.

2) There are gaps in the Pareto front. These are not an
artefact of the solution method but are actually a real
property of the solution. The discrete nature of utilities
means that there is a discontinuity in the operating cost
as a function of the pressure design variable. The gaps
correspond to the choice of different utilities. Moving
along the front from left to right, cheaper utilities
become available as the operating pressure changes.

For design problems, the feasible space may be a small
fraction of the domain defined by bounds on the design
variables. This is the case for this example. Often, even
finding a feasible point may be considered a success for an
optimisation method. Figure 6 shows the evolution of the best
solution in the population for a given instance of the problem.
The left axis is for a measure of constraint violation; feasible
solutions require this value to be 0. Initially, all solutions in
the population are infeasible. There is a quick reduction in
the measure of constraint violation followed by a steady and
smooth decrease to a feasible solution. Once a feasible solution
is found, the plot shows the objective function value of the best
solution in the population; the population will likely contain
infeasible solutions for some time. The right axis shows the
value of the feasible solutions. Again, we see a quick reduction
in objective function value from the point where a feasible
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Fig. 4. The full set of points returned by the various runs of the method for different values of λ ∈ [0, 1], showing an approximation to the Pareto front for
the bi-criterial optimisation problem.
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Fig. 5. The subset of non-dominated points from the set of all points showing the approximation to the Pareto front.
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Fig. 6. Graph of the solution in a population as it evolves. The population may include points at which the design is infeasible. Initially, until generation
52, all solutions in the population are infeasible with the measure of constraint violation on the left y axis. At generation 53, a feasible point has been found
and the best solution in all subsequent generations will be feasible with a value indicated by the right y axis.

solution is identified and then a steady decrease until the
method appears to converge at around 100 generations. For
this example, a population size of 30 was used.

VI. CONCLUSION

A new family of stochastic algorithms for optimisation has
been described, based on the propagation of plants, with the
presentation of a specific implementation emulating the be-
haviour of the strawberry plant. The new method implements
the two most important characteristics of successful global op-
timisation algorithms namely diversification and concentration
or exploration and intensification. Diversification/exploration
is implemented through sending long runners from plants
which are not placed in profitable spots; concentration/inten-
sification is implemented through sending short runners from
plants which are in good/profitable spots.

The concepts of good spots and long or short runners
are captured, in this new population-based method, with the
concepts of fitness and distance, respectively. Furthermore, the
concept of fitness is key to the definition of the two plant
propagation elements: generating runners to propagate and de-
termining the distance each runner travels. The implementation
has been tested on a number of test cases from the literature
and applied to a complex problem in chemical plant design.

The results show that the method is effective in identifying
the global optimum in all of the cases considered. It performs
significantly better than the Nelder-Mead direct search method,

a useful benchmark for comparison. Although there is a set of
parameters for the method, the same values of these parameters
appear to work effectively for a wide range of problems. In
other words, they appear to be robust default values.

The method has been shown to solve the industrial case
study with good convergence to the bi-criterial trade-off curve.
Through the definition of an appropriate fitness function, the
method is able to handle infeasible solutions. This is critical
for many design problems where the feasible region may be
small in comparison with the full search domain. The PPA
method is able to find feasible points quickly and then evolve
towards the best solutions steadily.

Although the parameter values chosen in this paper appear
to be suitable for the problems investigated, little analysis has
been performed to understand the impact of these parameters
on the efficiency of the method. This is planned for future
work. A second aspect we intend to consider is the incorpo-
ration of Pareto specific fitness functions that will allow the
method to target multi-criteria problems directly instead of
through a weighting function of objectives. It is likely that we
will consider a fitness function similar to that used in [11],
based in turn on the work of Deb [12].
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