Items where Author is "Williams, G"
Up a level |
Article
López Sánchez, GF and Williams, G and Aggio, D and Vicinanza, D and Stubbs, B and Kerr, C and Johnstone, J and Roberts, JD and Smith, L (2017) Prospective associations between measures of gross and fine motor coordination in infants and objectively measured physical activity and sedentary behaviour in childhood. Medicine, 96 (46). e8424-e8424. DOI https://doi.org/10.1097/MD.0000000000008424
Bogley, WA and Williams, G (2017) Coherence, subgroup separability, and metacyclic structures for a class of cyclically presented groups. Journal of Algebra, 480. pp. 266-297. DOI https://doi.org/10.1016/j.jalgebra.2017.02.002
Howie, J and Williams, G (2017) Fibonacci type presentations and 3-manifolds. Topology and its Applications, 215. pp. 24-34. DOI https://doi.org/10.1016/j.topol.2016.10.012
Bogley, WA and Williams, G (2016) Efficient Finite Groups Arising in the Study of Relative Asphericity. Mathematische Zeitschrift, 284 (1). pp. 507-535. DOI https://doi.org/10.1007/s00209-016-1664-3
Williams, G (2014) Fibonacci type semigroups. Algebra Colloquium, 21 (4). pp. 647-652. DOI https://doi.org/10.1142/s1005386714000595
Williams, G (2012) Groups of Fibonacci type revisited. International Journal of Algebra and Computation, 22 (8). p. 1240002. DOI https://doi.org/10.1142/S0218196712400024
Williams, G (2012) Largeness and SQ-universality of cyclically presented groups. International Journal of Algebra and Computation, 22 (4). p. 1250035. DOI https://doi.org/10.1142/S021819671250035X
Howie, J and Williams, G (2012) Tadpole Labelled Oriented Graph Groups and Cyclically Presented Groups. Journal of Algebra, 371. pp. 521-535. DOI https://doi.org/10.1016/j.jalgebra.2012.09.001
Williams, G (2010) Unimodular integer circulants associated with trinomials. International Journal of Number Theory, 06 (04). pp. 869-876. DOI https://doi.org/10.1142/s1793042110003289
Edjvet, M and Williams, G (2010) The cyclically presented groups with relators xi xi+k xi+l. Groups, Geometry, and Dynamics, 4 (4). pp. 759-775. DOI https://doi.org/10.4171/ggd/104
Williams, G (2009) The aspherical Cavicchioli-Hegenbarth-Repovš generalized Fibonacci groups. Journal of Group Theory, 12 (1). pp. 139-149. DOI https://doi.org/10.1515/JGT.2008.066
Howie, J and Williams, G (2008) The Tits alternative for generalized triangle groups of type (3, 4, 2). Algebra and Discrete Mathematics, 2008 (4). pp. 40-48.
Kopteva, N and Williams, G (2008) The Tits alternative for non-spherical Pride groups. Bulletin of the London Mathematical Society, 40 (1). pp. 57-64. DOI https://doi.org/10.1112/blms/bdm092
Williams, G (2007) Euler Characteristics for One-Relator Products of Groups. Bulletin of the London Mathematical Society, 39 (4). pp. 641-652. DOI https://doi.org/10.1112/blms/bdm052
Williams, G (2007) Pseudo-elementary Generalized Triangle Groups. Journal of Group Theory, 10 (1). pp. 101-115. DOI https://doi.org/10.1515/jgt.2007.009
Williams, G and Howie, J (2006) Free subgroups in certain generalized triangle groups of type (2,m,2). Geometria Dedicata, 119 (1). pp. 181-197. DOI https://doi.org/10.1007/s10711-006-9068-x
Williams, G (2006) The Tits alternative for Groups defined by Periodic Paired Relations. Communications in Algebra, 34 (4). pp. 251-258. DOI https://doi.org/10.1080/00927870500346248
Williams, G and Ellis, G (2005) On the cohomology of Generalized Triangle Groups. Commentarii Mathematici Helvetici, 80 (3). pp. 571-591. DOI https://doi.org/10.4171/cmh/26
Williams, G (2003) Arithmeticity of Orbifold Generalised Triangle Groups. Journal of Pure and Applied Algebra, 177 (3). pp. 309-322. DOI https://doi.org/10.1016/s0022-4049(02)00180-9
Williams, G (2002) Euler Characteristics for Orbifold Generalised Triangle Groups. Mathematical Proceedings of the Cambridge Philosophical Society, 132 (3). pp. 435-438. DOI https://doi.org/10.1017/s030500410100562x
Book Section
Williams, G (2000) Generalised Triangle Groups of type (2,m,2). In: Computational and Geometric Aspects of Modern Algebra. London Mathematical Society Lecture Note Series . Cambridge University Press, pp. 266-279. ISBN 9780521788892.