Browse by Person
Up a level |
Article
Cihan, Mehmet Sefa and Williams, Gerald (2024) Strong Digraph Groups. Canadian Mathematical Bulletin. pp. 1-10. DOI https://doi.org/10.4153/s0008439524000390
Cihan, Mehmet Sefa and Williams, Gerald (2024) Finite groups defined by presentations in which each defining relator involves exactly two generators. Journal of Pure and Applied Algebra, 4 (4). p. 107499. DOI https://doi.org/10.1016/j.jpaa.2023.107499
Mohamed, Esamaldeen and Williams, Gerald (2023) Counting isomorphism classes of groups of Fibonacci type with a prime power number of generators. Journal of Algebra, 633. pp. 887-905. DOI https://doi.org/10.1016/j.jalgebra.2023.04.032
Chinyere, Ihechukwu and Williams, Gerald (2023) Redundant relators in cyclic presentations of groups. Journal of Group Theory. pp. 1095-1126. DOI https://doi.org/10.1515/jgth-2022-0127
Isherwood, Shaun and Williams, Gerald (2022) On the Tits alternative for cyclically presented groups with length four positive relators. Journal of Group Theory. pp. 837-850. DOI https://doi.org/10.1515/jgth-2021-0131
Noferini, Vanni and Williams, Gerald (2022) Cyclically presented groups as Labelled Oriented Graph groups. Journal of Algebra, 605. pp. 179-198. DOI https://doi.org/10.1016/j.jalgebra.2022.04.018
Chinyere, Ihechukwu and Williams, Gerald (2022) Generalized polygons and star graphs of cyclic presentations of groups. Journal of Combinatorial Theory, Series A, 190. p. 105638. DOI https://doi.org/10.1016/j.jcta.2022.105638
Chinyere, Ihechukwu and Williams, Gerald (2022) Hyperbolicity of T(6) Cyclically Presented Groups. Groups, Geometry, and Dynamics, 16 (1). pp. 341-361. DOI https://doi.org/10.4171/GGD/651
Chinyere, Ihechukwu and Williams, Gerald (2022) Fractional Fibonacci groups with an odd number of generators. Topology and its Applications, 312. p. 108083. DOI https://doi.org/10.1016/j.topol.2022.108083
Mohamed, Esamaldeen and Williams, Gerald (2022) An Investigation Into the Cyclically Presented Groups with Length Three Positive Relators. Experimental Mathematics, 31 (2). pp. 537-551. DOI https://doi.org/10.1080/10586458.2019.1655817
Noferini, Vanni and Williams, Gerald (2021) Matrices in companion rings, Smith forms, and the homology of 3-dimensional Brieskorn manifolds. Journal of Algebra, 587. pp. 1-19. DOI https://doi.org/10.1016/j.jalgebra.2021.07.018
Chinyere, Ihechukwu and Williams, Gerald (2021) Hyperbolic groups of Fibonacci type and T(5) cyclically presented groups. Journal of Algebra, 580. pp. 104-126. DOI https://doi.org/10.1016/j.jalgebra.2021.04.003
Howie, James and Williams, Gerald (2020) Planar Whitehead graphs with cyclic symmetry arising from the study of Dunwoody manifolds. Discrete Mathematics, 343 (12). p. 112096. DOI https://doi.org/10.1016/j.disc.2020.112096
Cuno, Johannes and Williams, Gerald (2020) A class of digraph groups defined by balanced presentations. Journal of Pure and Applied Algebra, 224 (8). p. 106342. DOI https://doi.org/10.1016/j.jpaa.2020.106342
Mohamed, Esamaldeen and Williams, Gerald (2019) Isomorphism theorems for classes of cyclically presented groups. International Journal of Algebra and Computation, 29 (06). pp. 1009-1017. DOI https://doi.org/10.1142/S0218196719500383
Williams, Gerald (2019) Generalized Fibonacci groups H(r,n,s) that are connected labelled oriented graph groups. Journal of Group Theory, 22 (1). pp. 23-39. DOI https://doi.org/10.1515/jgth-2018-0032
Bogley, WA and Williams, G (2017) Coherence, subgroup separability, and metacyclic structures for a class of cyclically presented groups. Journal of Algebra, 480. pp. 266-297. DOI https://doi.org/10.1016/j.jalgebra.2017.02.002
Howie, J and Williams, G (2017) Fibonacci type presentations and 3-manifolds. Topology and its Applications, 215. pp. 24-34. DOI https://doi.org/10.1016/j.topol.2016.10.012
Bogley, WA and Williams, G (2016) Efficient Finite Groups Arising in the Study of Relative Asphericity. Mathematische Zeitschrift, 284 (1). pp. 507-535. DOI https://doi.org/10.1007/s00209-016-1664-3
Telloni, Agnese Ilaria and Williams, Gerald (2014) Smith forms of circulant polynomial matrices. Linear Algebra and Its Applications, 458. pp. 559-572. DOI https://doi.org/10.1016/j.laa.2014.06.032
Williams, Gerald (2014) Smith forms for adjacency matrices of circulant graphs. Linear Algebra and its Applications, 443. pp. 21-33. DOI https://doi.org/10.1016/j.laa.2013.11.006
Williams, G (2014) Fibonacci type semigroups. Algebra Colloquium, 21 (4). pp. 647-652. DOI https://doi.org/10.1142/s1005386714000595
Williams, G (2012) Groups of Fibonacci type revisited. International Journal of Algebra and Computation, 22 (8). p. 1240002. DOI https://doi.org/10.1142/S0218196712400024
Williams, G (2012) Largeness and SQ-universality of cyclically presented groups. International Journal of Algebra and Computation, 22 (4). p. 1250035. DOI https://doi.org/10.1142/S021819671250035X
Howie, J and Williams, G (2012) Tadpole Labelled Oriented Graph Groups and Cyclically Presented Groups. Journal of Algebra, 371. pp. 521-535. DOI https://doi.org/10.1016/j.jalgebra.2012.09.001
Williams, G (2010) Unimodular integer circulants associated with trinomials. International Journal of Number Theory, 06 (04). pp. 869-876. DOI https://doi.org/10.1142/s1793042110003289
Edjvet, M and Williams, G (2010) The cyclically presented groups with relators xi xi+k xi+l. Groups, Geometry, and Dynamics, 4 (4). pp. 759-775. DOI https://doi.org/10.4171/ggd/104
Williams, G (2009) The aspherical Cavicchioli-Hegenbarth-Repovš generalized Fibonacci groups. Journal of Group Theory, 12 (1). pp. 139-149. DOI https://doi.org/10.1515/JGT.2008.066
Howie, J and Williams, G (2008) The Tits alternative for generalized triangle groups of type (3, 4, 2). Algebra and Discrete Mathematics, 2008 (4). pp. 40-48.
Kopteva, N and Williams, G (2008) The Tits alternative for non-spherical Pride groups. Bulletin of the London Mathematical Society, 40 (1). pp. 57-64. DOI https://doi.org/10.1112/blms/bdm092
Williams, G (2007) Euler Characteristics for One-Relator Products of Groups. Bulletin of the London Mathematical Society, 39 (4). pp. 641-652. DOI https://doi.org/10.1112/blms/bdm052
Williams, G (2007) Pseudo-elementary Generalized Triangle Groups. Journal of Group Theory, 10 (1). pp. 101-115. DOI https://doi.org/10.1515/jgt.2007.009
Williams, G and Howie, J (2006) Free subgroups in certain generalized triangle groups of type (2,m,2). Geometria Dedicata, 119 (1). pp. 181-197. DOI https://doi.org/10.1007/s10711-006-9068-x
Williams, G (2006) The Tits alternative for Groups defined by Periodic Paired Relations. Communications in Algebra, 34 (4). pp. 251-258. DOI https://doi.org/10.1080/00927870500346248
Williams, G and Ellis, G (2005) On the cohomology of Generalized Triangle Groups. Commentarii Mathematici Helvetici, 80 (3). pp. 571-591. DOI https://doi.org/10.4171/cmh/26
Williams, G (2003) Arithmeticity of Orbifold Generalised Triangle Groups. Journal of Pure and Applied Algebra, 177 (3). pp. 309-322. DOI https://doi.org/10.1016/s0022-4049(02)00180-9
Williams, G (2002) Euler Characteristics for Orbifold Generalised Triangle Groups. Mathematical Proceedings of the Cambridge Philosophical Society, 132 (3). pp. 435-438. DOI https://doi.org/10.1017/s030500410100562x
Book Section
Williams, Gerald and Bogley, William A and Edjvet, Martin (2019) Aspherical Relative Presentations All Over Again. In: Groups St Andrews 2017 in Birmingham. London Mathematical Society Lecture Note Series . Cambridge University Press, pp. 169-199. ISBN 9781108728744. Official URL: http://doi.org/10.1017/9781108692397.008
Williams, G (2000) Generalised Triangle Groups of type (2,m,2). In: Computational and Geometric Aspects of Modern Algebra. London Mathematical Society Lecture Note Series . Cambridge University Press, pp. 266-279. ISBN 9780521788892. Official URL: http://dx.doi.org/10.1017/cbo9780511600609.019