Li, Ke and Deb, Kalyanmoy and Zhang, Qingfu and Kwong, Sam (2015) An Evolutionary Many-Objective Optimization Algorithm Based on Dominance and Decomposition. IEEE Transactions on Evolutionary Computation, 19 (5). pp. 694-716. DOI https://doi.org/10.1109/tevc.2014.2373386
Li, Ke and Deb, Kalyanmoy and Zhang, Qingfu and Kwong, Sam (2015) An Evolutionary Many-Objective Optimization Algorithm Based on Dominance and Decomposition. IEEE Transactions on Evolutionary Computation, 19 (5). pp. 694-716. DOI https://doi.org/10.1109/tevc.2014.2373386
Li, Ke and Deb, Kalyanmoy and Zhang, Qingfu and Kwong, Sam (2015) An Evolutionary Many-Objective Optimization Algorithm Based on Dominance and Decomposition. IEEE Transactions on Evolutionary Computation, 19 (5). pp. 694-716. DOI https://doi.org/10.1109/tevc.2014.2373386
Abstract
Achieving balance between convergence and diversity is a key issue in evolutionary multiobjective optimization. Most existing methodologies, which have demonstrated their niche on various practical problems involving two and three objectives, face significant challenges in many-objective optimization. This paper suggests a unified paradigm, which combines dominance- and decomposition-based approaches, for many-objective optimization. Our major purpose is to exploit the merits of both dominance- and decomposition-based approaches to balance the convergence and diversity of the evolutionary process. The performance of our proposed method is validated and compared with four state-of-The-art algorithms on a number of unconstrained benchmark problems with up to 15 objectives. Empirical results fully demonstrate the superiority of our proposed method on all considered test instances. In addition, we extend this method to solve constrained problems having a large number of objectives. Compared to two other recently proposed constrained optimizers, our proposed method shows highly competitive performance on all the constrained optimization problems.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | Constrained optimization; decomposition; evolutionary computation; many-objective optimization; Pareto optimality; steady state |
Subjects: | Q Science > QA Mathematics > QA75 Electronic computers. Computer science |
Divisions: | Faculty of Science and Health Faculty of Science and Health > Computer Science and Electronic Engineering, School of |
SWORD Depositor: | Unnamed user with email elements@essex.ac.uk |
Depositing User: | Unnamed user with email elements@essex.ac.uk |
Date Deposited: | 23 Oct 2015 12:35 |
Last Modified: | 05 Dec 2024 16:51 |
URI: | http://repository.essex.ac.uk/id/eprint/15357 |