Gul, Asma and Perperoglou, Aris and Khan, Zardad and Mahmoud, Osama and Miftahuddin, Miftahuddin and Adler, Werner and Lausen, Berthold (2018) Ensemble of a subset of kNN classifiers. Advances in Data Analysis and Classification, 12 (4). pp. 827-840. DOI https://doi.org/10.1007/s11634-015-0227-5
Gul, Asma and Perperoglou, Aris and Khan, Zardad and Mahmoud, Osama and Miftahuddin, Miftahuddin and Adler, Werner and Lausen, Berthold (2018) Ensemble of a subset of kNN classifiers. Advances in Data Analysis and Classification, 12 (4). pp. 827-840. DOI https://doi.org/10.1007/s11634-015-0227-5
Gul, Asma and Perperoglou, Aris and Khan, Zardad and Mahmoud, Osama and Miftahuddin, Miftahuddin and Adler, Werner and Lausen, Berthold (2018) Ensemble of a subset of kNN classifiers. Advances in Data Analysis and Classification, 12 (4). pp. 827-840. DOI https://doi.org/10.1007/s11634-015-0227-5
Abstract
Combining multiple classifiers, known as ensemble methods, can give substantial improvement in prediction performance of learning algorithms especially in the presence of non-informative features in the data sets. We propose an ensemble of subset of kNN classifiers, ESkNN, for classification task in two steps. Firstly, we choose classifiers based upon their individual performance using the out-of-sample accuracy. The selected classifiers are then combined sequentially starting from the best model and assessed for collective performance on a validation data set. We use bench mark data sets with their original and some added non-informative features for the evaluation of our method. The results are compared with usual kNN, bagged kNN, random kNN, multiple feature subset method, random forest and support vector machines. Our experimental comparisons on benchmark classification problems and simulated data sets reveal that the proposed ensemble gives better classification performance than the usual kNN and its ensembles, and performs comparable to random forest and support vector machines.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | Ensemble methods; Bagging; Nearest neighbour classifier; Non-informative features |
Subjects: | Q Science > QA Mathematics |
Divisions: | Faculty of Science and Health Faculty of Science and Health > Mathematics, Statistics and Actuarial Science, School of |
SWORD Depositor: | Unnamed user with email elements@essex.ac.uk |
Depositing User: | Unnamed user with email elements@essex.ac.uk |
Date Deposited: | 22 Jan 2016 13:35 |
Last Modified: | 30 Oct 2024 16:14 |
URI: | http://repository.essex.ac.uk/id/eprint/15923 |
Available files
Filename: art%3A10.1007%2Fs11634-015-0227-5.pdf
Licence: Creative Commons: Attribution 3.0