Camp, Emma F and Nitschke, Matthew R and Rodolfo-Metalpa, Riccardo and Houlbreque, Fanny and Gardner, Stephanie G and Smith, David J and Zampighi, Marco and Suggett, David J (2017) Reef-building corals thrive within hot-acidified and deoxygenated waters. Scientific Reports, 7 (1). 2434-. DOI https://doi.org/10.1038/s41598-017-02383-y
Camp, Emma F and Nitschke, Matthew R and Rodolfo-Metalpa, Riccardo and Houlbreque, Fanny and Gardner, Stephanie G and Smith, David J and Zampighi, Marco and Suggett, David J (2017) Reef-building corals thrive within hot-acidified and deoxygenated waters. Scientific Reports, 7 (1). 2434-. DOI https://doi.org/10.1038/s41598-017-02383-y
Camp, Emma F and Nitschke, Matthew R and Rodolfo-Metalpa, Riccardo and Houlbreque, Fanny and Gardner, Stephanie G and Smith, David J and Zampighi, Marco and Suggett, David J (2017) Reef-building corals thrive within hot-acidified and deoxygenated waters. Scientific Reports, 7 (1). 2434-. DOI https://doi.org/10.1038/s41598-017-02383-y
Abstract
<jats:title>Abstract</jats:title><jats:p>Coral reefs are deteriorating under climate change as oceans continue to warm and acidify and thermal anomalies grow in frequency and intensity. <jats:italic>In vitro</jats:italic> experiments are widely used to forecast reef-building coral health into the future, but often fail to account for the complex ecological and biogeochemical interactions that govern reefs. Consequently, observations from coral communities under naturally occurring extremes have become central for improved predictions of future reef form and function. Here, we present a semi-enclosed lagoon system in New Caledonia characterised by diel fluctuations of hot-deoxygenated water coupled with tidally driven persistently low pH, relative to neighbouring reefs. Coral communities within the lagoon system exhibited high richness (number of species = 20) and cover (24–35% across lagoon sites). Calcification rates for key species (<jats:italic>Acropora formosa</jats:italic>, <jats:italic>Acropora pulchra</jats:italic>, <jats:italic>Coelastrea aspera</jats:italic> and <jats:italic>Porites lutea</jats:italic>) for populations from the lagoon were equivalent to, or reduced by <jats:italic>ca</jats:italic>. 30–40% compared to those from the reef. Enhanced coral respiration, alongside high particulate organic content of the lagoon sediment, suggests acclimatisation to this trio of temperature, oxygen and pH changes through heterotrophic plasticity. This semi-enclosed lagoon therefore provides a novel system to understand coral acclimatisation to complex climatic scenarios and may serve as a reservoir of coral populations already resistant to extreme environmental conditions.</jats:p>
Item Type: | Article |
---|---|
Uncontrolled Keywords: | Animals; Anthozoa; Acids; Oxygen; Ecosystem; Temperature; Seasons; Seawater; Adaptation, Physiological; Hydrogen-Ion Concentration; Geography; New Caledonia; Climate Change; Coral Reefs |
Subjects: | G Geography. Anthropology. Recreation > GC Oceanography G Geography. Anthropology. Recreation > GE Environmental Sciences |
Divisions: | Faculty of Science and Health Faculty of Science and Health > Life Sciences, School of |
SWORD Depositor: | Unnamed user with email elements@essex.ac.uk |
Depositing User: | Unnamed user with email elements@essex.ac.uk |
Date Deposited: | 20 Jul 2017 15:26 |
Last Modified: | 30 Oct 2024 20:30 |
URI: | http://repository.essex.ac.uk/id/eprint/19938 |
Available files
Filename: s41598-017-02383-y.pdf
Licence: Creative Commons: Attribution 3.0