Giannakopoulos, Yiannis and Kyropoulou, Maria (2017) The VCG Mechanism for Bayesian Scheduling. ACM Transactions on Economics and Computation, 15 (4). pp. 1-16. DOI https://doi.org/10.1145/3105968
Giannakopoulos, Yiannis and Kyropoulou, Maria (2017) The VCG Mechanism for Bayesian Scheduling. ACM Transactions on Economics and Computation, 15 (4). pp. 1-16. DOI https://doi.org/10.1145/3105968
Giannakopoulos, Yiannis and Kyropoulou, Maria (2017) The VCG Mechanism for Bayesian Scheduling. ACM Transactions on Economics and Computation, 15 (4). pp. 1-16. DOI https://doi.org/10.1145/3105968
Abstract
We study the problem of scheduling m tasks to n selfish, unrelated machines in order to minimize the makespan, in which the execution times are independent random variables, identical across machines. We show that the VCG mechanism, which myopically allocates each task to its best machine, achieves an approximation ratio of O(ln n&frac; ln ln n). This improves significantly on the previously best known bound of O(m/n) for prior-independent mechanisms, given by Chawla et al. [7] under the additional assumption of Monotone Hazard Rate (MHR) distributions. Although we demonstrate that this is tight in general, if we do maintain the MHR assumption, then we get improved, (small) constant bounds for m ≥ n ln n i.i.d. tasks. We also identify a sufficient condition on the distribution that yields a constant approximation ratio regardless of the number of tasks.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | Scheduling; Bayesian mechanism design; VCG mechanism; balls-in-bins |
Subjects: | Q Science > QA Mathematics > QA75 Electronic computers. Computer science |
Divisions: | Faculty of Science and Health Faculty of Science and Health > Computer Science and Electronic Engineering, School of |
SWORD Depositor: | Unnamed user with email elements@essex.ac.uk |
Depositing User: | Unnamed user with email elements@essex.ac.uk |
Date Deposited: | 02 Mar 2018 13:48 |
Last Modified: | 30 Oct 2024 21:05 |
URI: | http://repository.essex.ac.uk/id/eprint/21139 |
Available files
Filename: 1509.07455.pdf