Brose, Ulrich and Blanchard, Julia L and Eklöf, Anna and Galiana, Nuria and Hartvig, Martin and R Hirt, Myriam and Kalinkat, Gregor and Nordström, Marie C and O'Gorman, Eoin J and Rall, Björn C and Schneider, Florian D and Thébault, Elisa and Jacob, Ute (2017) Predicting the consequences of species loss using size-structured biodiversity approaches. Biological Reviews of the Cambridge Philosophical Society, 92 (2). pp. 684-697. DOI https://doi.org/10.1111/brv.12250
Brose, Ulrich and Blanchard, Julia L and Eklöf, Anna and Galiana, Nuria and Hartvig, Martin and R Hirt, Myriam and Kalinkat, Gregor and Nordström, Marie C and O'Gorman, Eoin J and Rall, Björn C and Schneider, Florian D and Thébault, Elisa and Jacob, Ute (2017) Predicting the consequences of species loss using size-structured biodiversity approaches. Biological Reviews of the Cambridge Philosophical Society, 92 (2). pp. 684-697. DOI https://doi.org/10.1111/brv.12250
Brose, Ulrich and Blanchard, Julia L and Eklöf, Anna and Galiana, Nuria and Hartvig, Martin and R Hirt, Myriam and Kalinkat, Gregor and Nordström, Marie C and O'Gorman, Eoin J and Rall, Björn C and Schneider, Florian D and Thébault, Elisa and Jacob, Ute (2017) Predicting the consequences of species loss using size-structured biodiversity approaches. Biological Reviews of the Cambridge Philosophical Society, 92 (2). pp. 684-697. DOI https://doi.org/10.1111/brv.12250
Abstract
Understanding the consequences of species loss in complex ecological communities is one of the great challenges in current biodiversity research. For a long time, this topic has been addressed by traditional biodiversity experiments. Most of these approaches treat species as trait-free, taxonomic units characterizing communities only by species number without accounting for species traits. However, extinctions do not occur at random as there is a clear correlation between extinction risk and species traits. In this review, we assume that large species will be most threatened by extinction and use novel allometric and size-spectrum concepts that include body mass as a primary species trait at the levels of populations and individuals, respectively, to re-assess three classic debates on the relationships between biodiversity and (i) food-web structural complexity, (ii) community dynamic stability, and (iii) ecosystem functioning. Contrasting current expectations, size-structured approaches suggest that the loss of large species, that typically exploit most resource species, may lead to future food webs that are less interwoven and more structured by chains of interactions and compartments. The disruption of natural body-mass distributions maintaining food-web stability may trigger avalanches of secondary extinctions and strong trophic cascades with expected knock-on effects on the functionality of the ecosystems. Therefore, we argue that it is crucial to take into account body size as a species trait when analysing the consequences of biodiversity loss for natural ecosystems. Applying size-structured approaches provides an integrative ecological concept that enables a better understanding of each species' unique role across communities and the causes and consequences of biodiversity loss.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | Ecosystem; Biodiversity; Food Chain; Extinction, Biological |
Divisions: | Faculty of Science and Health Faculty of Science and Health > Life Sciences, School of |
SWORD Depositor: | Unnamed user with email elements@essex.ac.uk |
Depositing User: | Unnamed user with email elements@essex.ac.uk |
Date Deposited: | 16 Mar 2022 17:26 |
Last Modified: | 30 Oct 2024 17:37 |
URI: | http://repository.essex.ac.uk/id/eprint/25000 |
Available files
Filename: Brose et al (2016) Manuscript.pdf