Yang, Delong and Zhong, Xunyu and Gu, Dongbing and Peng, Xiafu and Hu, Huosheng (2020) Unsupervised framework for depth estimation and camera motion prediction from video. Neurocomputing, 385. pp. 169-185. DOI https://doi.org/10.1016/j.neucom.2019.12.049
Yang, Delong and Zhong, Xunyu and Gu, Dongbing and Peng, Xiafu and Hu, Huosheng (2020) Unsupervised framework for depth estimation and camera motion prediction from video. Neurocomputing, 385. pp. 169-185. DOI https://doi.org/10.1016/j.neucom.2019.12.049
Yang, Delong and Zhong, Xunyu and Gu, Dongbing and Peng, Xiafu and Hu, Huosheng (2020) Unsupervised framework for depth estimation and camera motion prediction from video. Neurocomputing, 385. pp. 169-185. DOI https://doi.org/10.1016/j.neucom.2019.12.049
Abstract
Depth estimation from monocular video plays a crucial role in scene perception. The significant drawback of supervised learning models is the need for vast amounts of manually labeled data (ground truth) for training. To overcome this limitation, unsupervised learning strategies without the requirement for ground truth have achieved extensive attention from researchers in the past few years. This paper presents a novel unsupervised framework for estimating single-view depth and predicting camera motion jointly. Stereo image sequences are used to train the model while monocular images are required for inference. The presented framework is composed of two CNNs (depth CNN and pose CNN) which are trained concurrently and tested independently. The objective function is constructed on the basis of the epipolar geometry constraints between stereo image sequences. To improve the accuracy of the model, a left-right consistency loss is added to the objective function. The use of stereo image sequences enables us to utilize both spatial information between stereo images and temporal photometric warp error from image sequences. Experimental results on the KITTI and Cityscapes datasets show that our model not only outperforms prior unsupervised approaches but also achieving better results comparable with several supervised methods. Moreover, we also train our model on the Euroc dataset which is captured in an indoor environment. Experiments in indoor and outdoor scenes are conducted to test the generalization capability of the model.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | Unsupervised deep learning; Depth estimation; Camera motion prediction; Convolutional neural network |
Divisions: | Faculty of Science and Health Faculty of Science and Health > Computer Science and Electronic Engineering, School of |
SWORD Depositor: | Unnamed user with email elements@essex.ac.uk |
Depositing User: | Unnamed user with email elements@essex.ac.uk |
Date Deposited: | 20 Dec 2019 09:17 |
Last Modified: | 30 Oct 2024 17:02 |
URI: | http://repository.essex.ac.uk/id/eprint/26313 |
Available files
Filename: 1-s2.0-S0925231219317588-main.pdf
Licence: Creative Commons: Attribution-Noncommercial-No Derivative Works 3.0