Lonnqvist, Ben and Clarke, Alasdair DF and Chakravarthi, Ramakrishna (2020) Crowding in humans is unlike that in convolutional neural networks. Neural Networks, 126. pp. 262-274. DOI https://doi.org/10.1016/j.neunet.2020.03.021
Lonnqvist, Ben and Clarke, Alasdair DF and Chakravarthi, Ramakrishna (2020) Crowding in humans is unlike that in convolutional neural networks. Neural Networks, 126. pp. 262-274. DOI https://doi.org/10.1016/j.neunet.2020.03.021
Lonnqvist, Ben and Clarke, Alasdair DF and Chakravarthi, Ramakrishna (2020) Crowding in humans is unlike that in convolutional neural networks. Neural Networks, 126. pp. 262-274. DOI https://doi.org/10.1016/j.neunet.2020.03.021
Abstract
Object recognition is a primary function of the human visual system. It has recently been claimed that the highly successful ability to recognise objects in a set of emergent computer vision systems---Deep Convolutional Neural Networks (DCNNs)---can form a useful guide to recognition in humans. To test this assertion, we systematically evaluated visual crowding, a dramatic breakdown of recognition in clutter, in DCNNs and compared their performance to extant research in humans. We examined crowding in three architectures of DCNNs with the same methodology as that used among humans. We manipulated multiple stimulus factors including inter-letter spacing, letter colour, size, and flanker location to assess the extent and shape of crowding in DCNNs. We found that crowding followed a predictable pattern across architectures that was different from that in humans. Some characteristic hallmarks of human crowding, such as invariance to size, the effect of target-flanker similarity, and confusions between target and flanker identities, were completely missing, minimised or even reversed. These data show that DCNNs, while proficient in object recognition, likely achieve this competence through a set of mechanisms that are distinct from those in humans. They are not necessarily equivalent models of human or primate object recognition and caution must be exercised when inferring mechanisms derived from their operation.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | convolutional neural networks; object recognition; crowding |
Divisions: | Faculty of Science and Health Faculty of Science and Health > Psychology, Department of |
SWORD Depositor: | Unnamed user with email elements@essex.ac.uk |
Depositing User: | Unnamed user with email elements@essex.ac.uk |
Date Deposited: | 25 Mar 2020 11:26 |
Last Modified: | 30 Oct 2024 17:22 |
URI: | http://repository.essex.ac.uk/id/eprint/27160 |
Available files
Filename: LonnqvistClarkeChakravarthi2019Revision.pdf
Licence: Creative Commons: Attribution-Noncommercial-No Derivative Works 3.0
Filename: 1903.00258v2.pdf