Assis, KDR and Santos, AF and Almeida, RC and Reed, MJ and Jaumard, B and Simeonidou, D (2020) Virtualization of elastic optical networks and regenerators with traffic grooming. Journal of Optical Communications and Networking, 12 (12). p. 428. DOI https://doi.org/10.1364/jocn.398749
Assis, KDR and Santos, AF and Almeida, RC and Reed, MJ and Jaumard, B and Simeonidou, D (2020) Virtualization of elastic optical networks and regenerators with traffic grooming. Journal of Optical Communications and Networking, 12 (12). p. 428. DOI https://doi.org/10.1364/jocn.398749
Assis, KDR and Santos, AF and Almeida, RC and Reed, MJ and Jaumard, B and Simeonidou, D (2020) Virtualization of elastic optical networks and regenerators with traffic grooming. Journal of Optical Communications and Networking, 12 (12). p. 428. DOI https://doi.org/10.1364/jocn.398749
Abstract
An elastic optical network (EON) plays an important role in transport technology for virtualization of networks. A key aspect of EONs is to establish lightpaths (virtual links) with exactly the amount of spectrum that is needed and with the possibility of grooming, the process of grouping many small traffic flows into larger units, creating a super-lightpath. Grooming eliminates the need for many guard bands between lightpaths and also saves transceivers; however, it often leads to the need to perform optical–electrical–optical conversions to multiple-data-rate optical signals at intermediate nodes. The aim of this paper is to provide a mixed-integer linear programming (MILP) formulation, as well as heuristic and meta-heuristic approaches, for the design of multiple virtual optical networks (VONs) in an elastic optical substrate network with bandwidth-variable lightpaths, modulation format constraints, and virtual elastic regenerator placement. Traffic grooming is allowed inside each VON, and a distance-adaptive modulation format technique is employed to guarantee efficiency in terms of bandwidth for a physical substrate, subject to several virtual topologies. A reduced MILP formulation without grooming capability is also proposed for comparison. The complete MILP formulation jointly solves the virtual topology design, regenerator placement, and grooming problems, as well as the routing, modulation, and spectrum assignment (RMSA) problem. The reduced MILP formulation, heuristics, and meta-heuristic, on the other hand, separate the virtual topology design problem from the RMSA problem. It is shown that the grooming approach can provide good results, since it solves the problem for a complete design when compared to the approach without grooming. Furthermore, heuristic solutions for large networks are proposed, which present good performance (in terms of saving spectrum) for the design with large instances.
Item Type: | Article |
---|---|
Divisions: | Faculty of Science and Health Faculty of Science and Health > Computer Science and Electronic Engineering, School of |
SWORD Depositor: | Unnamed user with email elements@essex.ac.uk |
Depositing User: | Unnamed user with email elements@essex.ac.uk |
Date Deposited: | 19 Nov 2020 16:40 |
Last Modified: | 30 Oct 2024 16:31 |
URI: | http://repository.essex.ac.uk/id/eprint/29111 |
Available files
Filename: Virtualization of Elastic Optical Networks and Regenerators with Traffic Grooming.pdf