Ullah, Rahmat and Arslan, Tughrul (2021) Parallel Delay Multiply and Sum Algorithm for Microwave Medical Imaging Using Spark Big Data Framework. Algorithms, 14 (5). p. 157. DOI https://doi.org/10.3390/a14050157
Ullah, Rahmat and Arslan, Tughrul (2021) Parallel Delay Multiply and Sum Algorithm for Microwave Medical Imaging Using Spark Big Data Framework. Algorithms, 14 (5). p. 157. DOI https://doi.org/10.3390/a14050157
Ullah, Rahmat and Arslan, Tughrul (2021) Parallel Delay Multiply and Sum Algorithm for Microwave Medical Imaging Using Spark Big Data Framework. Algorithms, 14 (5). p. 157. DOI https://doi.org/10.3390/a14050157
Abstract
Microwave imaging systems are currently being investigated for breast cancer, brain stroke and neurodegenerative disease detection due to their low cost, portable and wearable nature. At present, commonly used radar-based algorithms for microwave imaging are based on the delay and sum algorithm. These algorithms use ultra-wideband signals to reconstruct a 2D image of the targeted object or region. Delay multiply and sum is an extended version of the delay and sum algorithm. However, it is computationally expensive and time-consuming. In this paper, the delay multiply and sum algorithm is parallelised using a big data framework. The algorithm uses the Spark MapReduce programming model to improve its efficiency. The most computational part of the algorithm is pixel value calculation, where signals need to be multiplied in pairs and summed. The proposed algorithm broadcasts the input data and executes it in parallel in a distributed manner. The Spark-based parallel algorithm is compared with sequential and Python multiprocessing library implementation. The experimental results on both a standalone machine and a high-performance cluster show that Spark significantly accelerates the image reconstruction process without affecting its accuracy.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | microwave imaging; mapreduce; medical imaging; Spark framework; parallel algorithm; high-performance computing |
Divisions: | Faculty of Science and Health Faculty of Science and Health > Computer Science and Electronic Engineering, School of |
SWORD Depositor: | Unnamed user with email elements@essex.ac.uk |
Depositing User: | Unnamed user with email elements@essex.ac.uk |
Date Deposited: | 11 Oct 2023 14:41 |
Last Modified: | 30 Oct 2024 21:30 |
URI: | http://repository.essex.ac.uk/id/eprint/36616 |
Available files
Filename: algorithms-14-00157-v2.pdf
Licence: Creative Commons: Attribution 4.0