Fytas, Nikolaos G and Martin-Mayor, Martin and Parisi, Giorgio and Picco, Marco and Sourlas, Nicolas (2023) Finite-size scaling of the random-field Ising model above the upper critical dimension. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 108 (4). 044146-. DOI https://doi.org/10.1103/PhysRevE.108.044146
Fytas, Nikolaos G and Martin-Mayor, Martin and Parisi, Giorgio and Picco, Marco and Sourlas, Nicolas (2023) Finite-size scaling of the random-field Ising model above the upper critical dimension. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 108 (4). 044146-. DOI https://doi.org/10.1103/PhysRevE.108.044146
Fytas, Nikolaos G and Martin-Mayor, Martin and Parisi, Giorgio and Picco, Marco and Sourlas, Nicolas (2023) Finite-size scaling of the random-field Ising model above the upper critical dimension. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 108 (4). 044146-. DOI https://doi.org/10.1103/PhysRevE.108.044146
Abstract
Finite-size scaling above the upper critical dimension is a long-standing puzzle in the field of statistical physics. Even for pure systems various scaling theories have been suggested, partially corroborated by numerical simulations. In the present manuscript we address this problem in the even more complicated case of disordered systems. In particular, we investigate the scaling behavior of the random-field Ising model at dimension D=7, i.e., above its upper critical dimension Du=6, by employing extensive ground-state numerical simulations. Our results confirm the hypothesis that at dimensions D>Du, linear length scale L should be replaced in finite-size scaling expressions by the effective scale Leff=LD/Du. Via a fitted version of the quotients method that takes this modification, but also subleading scaling corrections into account, we compute the critical point of the transition for Gaussian random fields and provide estimates for the full set of critical exponents. Thus, our analysis indicates that this modified version of finite-size scaling is successful also in the context of the random-field problem.
Item Type: | Article |
---|---|
Divisions: | Faculty of Science and Health Faculty of Science and Health > Mathematics, Statistics and Actuarial Science, School of |
SWORD Depositor: | Unnamed user with email elements@essex.ac.uk |
Depositing User: | Unnamed user with email elements@essex.ac.uk |
Date Deposited: | 02 Nov 2023 18:15 |
Last Modified: | 30 Oct 2024 21:31 |
URI: | http://repository.essex.ac.uk/id/eprint/36698 |
Available files
Filename: PhysRevE.108.044146.pdf
Licence: Creative Commons: Attribution 4.0