Sharan, Roneel V and Xiong, Hao and Berkovsky, Shlomo (2021) Benchmarking audio signal representation techniques for classification with convolutional neural networks. Sensors, 21 (10). p. 3434. DOI https://doi.org/10.3390/s21103434
Sharan, Roneel V and Xiong, Hao and Berkovsky, Shlomo (2021) Benchmarking audio signal representation techniques for classification with convolutional neural networks. Sensors, 21 (10). p. 3434. DOI https://doi.org/10.3390/s21103434
Sharan, Roneel V and Xiong, Hao and Berkovsky, Shlomo (2021) Benchmarking audio signal representation techniques for classification with convolutional neural networks. Sensors, 21 (10). p. 3434. DOI https://doi.org/10.3390/s21103434
Abstract
Audio signal classification finds various applications in detecting and monitoring health conditions in healthcare. Convolutional neural networks (CNN) have produced state-of-the-art results in image classification and are being increasingly used in other tasks, including signal classification. However, audio signal classification using CNN presents various challenges. In image classification tasks, raw images of equal dimensions can be used as a direct input to CNN. Raw time-domain signals, on the other hand, can be of varying dimensions. In addition, the temporal signal often has to be transformed to frequency-domain to reveal unique spectral characteristics, therefore requiring signal transformation. In this work, we overview and benchmark various audio signal representation techniques for classification using CNN, including approaches that deal with signals of different lengths and combine multiple representations to improve the classification accuracy. Hence, this work surfaces important empirical evidence that may guide future works deploying CNN for audio signal classification purposes.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | convolutional neural networks;; fusion; interpolation; machine learning; spectogram; time-frequency image |
Divisions: | Faculty of Science and Health > Computer Science and Electronic Engineering, School of |
SWORD Depositor: | Unnamed user with email elements@essex.ac.uk |
Depositing User: | Unnamed user with email elements@essex.ac.uk |
Date Deposited: | 15 Nov 2024 15:28 |
Last Modified: | 15 Nov 2024 15:28 |
URI: | http://repository.essex.ac.uk/id/eprint/39619 |
Available files
Filename: Benchmarking Audio Signal Representation Techniques for Classification with Convolutional Neural Networks.pdf
Licence: Creative Commons: Attribution 4.0