Bellotto, Nicola and Hu, Huosheng (2010) Computationally efficient solutions for tracking people with a mobile robot: an experimental evaluation of Bayesian filters. Autonomous Robots, 28 (4). pp. 425-438. DOI https://doi.org/10.1007/s10514-009-9167-2
Bellotto, Nicola and Hu, Huosheng (2010) Computationally efficient solutions for tracking people with a mobile robot: an experimental evaluation of Bayesian filters. Autonomous Robots, 28 (4). pp. 425-438. DOI https://doi.org/10.1007/s10514-009-9167-2
Bellotto, Nicola and Hu, Huosheng (2010) Computationally efficient solutions for tracking people with a mobile robot: an experimental evaluation of Bayesian filters. Autonomous Robots, 28 (4). pp. 425-438. DOI https://doi.org/10.1007/s10514-009-9167-2
Abstract
Modern service robots will soon become an essential part of modern society. As they have to move and act in human environments, it is essential for them to be provided with a fast and reliable tracking system that localizes people in the neighborhood. It is therefore important to select the most appropriate filter to estimate the position of these persons. This paper presents three efficient implementations of multisensor-human tracking based on different Bayesian estimators: Extended Kalman Filter (EKF), Unscented Kalman Filter (UKF) and Sampling Importance Resampling (SIR) particle filter. The system implemented on a mobile robot is explained, introducing the methods used to detect and estimate the position of multiple people. Then, the solutions based on the three filters are discussed in detail. Several real experiments are conducted to evaluate their performance, which is compared in terms of accuracy, robustness and execution time of the estimation. The results show that a solution based on the UKF can perform as good as particle filters and can be often a better choice when computational efficiency is a key issue. © 2009 Springer Science+Business Media, LLC.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | People tracking; Mobile robot; Kalman filter; Particle filter; Multisensor fusion |
Subjects: | Q Science > QA Mathematics > QA75 Electronic computers. Computer science |
Divisions: | Faculty of Science and Health Faculty of Science and Health > Computer Science and Electronic Engineering, School of |
SWORD Depositor: | Unnamed user with email elements@essex.ac.uk |
Depositing User: | Unnamed user with email elements@essex.ac.uk |
Date Deposited: | 06 Mar 2013 11:45 |
Last Modified: | 06 Dec 2024 16:46 |
URI: | http://repository.essex.ac.uk/id/eprint/5521 |