Aslam, Shazia N and Underwood, Graham JC and Kaartokallio, Hermanni and Norman, Louiza and Autio, Riitta and Fischer, Michael and Kuosa, Harri and Dieckmann, Gerhard S and Thomas, David N (2012) Dissolved extracellular polymeric substances (dEPS) dynamics and bacterial growth during sea ice formation in an ice tank study. Polar Biology, 35 (5). pp. 661-676. DOI https://doi.org/10.1007/s00300-011-1112-0
Aslam, Shazia N and Underwood, Graham JC and Kaartokallio, Hermanni and Norman, Louiza and Autio, Riitta and Fischer, Michael and Kuosa, Harri and Dieckmann, Gerhard S and Thomas, David N (2012) Dissolved extracellular polymeric substances (dEPS) dynamics and bacterial growth during sea ice formation in an ice tank study. Polar Biology, 35 (5). pp. 661-676. DOI https://doi.org/10.1007/s00300-011-1112-0
Aslam, Shazia N and Underwood, Graham JC and Kaartokallio, Hermanni and Norman, Louiza and Autio, Riitta and Fischer, Michael and Kuosa, Harri and Dieckmann, Gerhard S and Thomas, David N (2012) Dissolved extracellular polymeric substances (dEPS) dynamics and bacterial growth during sea ice formation in an ice tank study. Polar Biology, 35 (5). pp. 661-676. DOI https://doi.org/10.1007/s00300-011-1112-0
Abstract
Extracellular polymeric substances (EPS) are known to help microorganisms to survive under extreme conditions in sea ice. High concentrations of EPS are reported in sea ice from both poles; however, production and dynamics of EPS during sea ice formation have been little studied to date. This investigation followed the production and partitioning of existing and newly formed dissolved organic matter (DOM) including dissolved carbohydrates (dCHO), dissolved uronic acids (dUA) and dissolved EPS (dEPS), along with bacterial abundances during early stages of ice formation. Sea ice was formed from North Sea water with (A) ambient DOM (NSW) and (B) with additional algal-derived DOM (ADOM) in a 6d experiment in replicated mesocosms. In ADOM seawater, total bacterial numbers (TBN) increased throughout the experiment, whereas bacterial growth occurred for 5d only in the NSW seawater. TBN progressively decreased within developing sea ice but with a 2-fold greater decline in NSW compared to ADOM ice. There were significant increases in the concentrations of dCHO in ice. Percentage contribution of dEPS was highest (63%) in the colder, uppermost parts in ADOM ice suggesting the development of a cold-adapted community, producing dEPS possibly for cryo-protection and/or protection from high salinity brines. We conclude that in the early stages of ice formation, allochthonous organic matter was incorporated from parent seawater into sea ice and that once ice formation had established, there were significant changes in the concentrations and composition of dissolved organic carbon pool, resulting mainly from the production of autochthonous DOM by the bacteria. © 2011 Springer-Verlag.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | Sea ice; Extracellular polymeric substances; Frost flowers; Bacteria; Dissolved carbohydrate; Dissolved organic matter; EPS |
Subjects: | G Geography. Anthropology. Recreation > GC Oceanography Q Science > QH Natural history Q Science > QH Natural history > QH301 Biology Q Science > QR Microbiology |
Divisions: | Faculty of Science and Health Faculty of Science and Health > Life Sciences, School of |
SWORD Depositor: | Unnamed user with email elements@essex.ac.uk |
Depositing User: | Unnamed user with email elements@essex.ac.uk |
Date Deposited: | 27 Mar 2013 12:29 |
Last Modified: | 30 Oct 2024 20:11 |
URI: | http://repository.essex.ac.uk/id/eprint/5926 |