Dai, H (2017) A new rejection sampling method without using hat function. Bernoulli, 23 (4A). pp. 2434-2465. DOI https://doi.org/10.3150/16-BEJ814
Dai, H (2017) A new rejection sampling method without using hat function. Bernoulli, 23 (4A). pp. 2434-2465. DOI https://doi.org/10.3150/16-BEJ814
Dai, H (2017) A new rejection sampling method without using hat function. Bernoulli, 23 (4A). pp. 2434-2465. DOI https://doi.org/10.3150/16-BEJ814
Abstract
This paper proposes a new exact simulation method, which simulates a realisation from a proposal density and then uses exact simulation of a Langevin diffusion to check whether the proposal should be accepted or rejected. Comparing to the existing coupling from the past method, the new method does not require constructing fast coalescence Markov chains. Comparing to the existing rejection sampling method, the new method does not require the proposal density function to bound the target density function. The new method is much more efficient than existing methods for certain problems. An application on exact simulation of the posterior of finite mixture models is presented.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | conditioned Brownian motion; coupling from the past; diffusion bridges; exact Monte Carlo simulation; Langevin diffusion; mixture models; rejection sampling |
Subjects: | Q Science > QA Mathematics |
Divisions: | Faculty of Science and Health Faculty of Science and Health > Mathematics, Statistics and Actuarial Science, School of |
SWORD Depositor: | Unnamed user with email elements@essex.ac.uk |
Depositing User: | Unnamed user with email elements@essex.ac.uk |
Date Deposited: | 06 Nov 2013 12:11 |
Last Modified: | 30 Oct 2024 16:17 |
URI: | http://repository.essex.ac.uk/id/eprint/8257 |
Available files
Filename: BEJ814.pdf