Ilott, NE and Schneider, T and Mill, J and Schalkwyk, LC and Brolese, G and Bizarro, L and Stolerman, IP and Dempster, E and Asherson, P (2014) Long-term effects of gestational nicotine exposure and food-restriction on gene expression in the striatum of adolescent rats. PloS One, 9 (2). creators-Schalkwyk=3ALeonard_C=3A=3A. DOI https://doi.org/10.1371/journal.pone.0088896
Ilott, NE and Schneider, T and Mill, J and Schalkwyk, LC and Brolese, G and Bizarro, L and Stolerman, IP and Dempster, E and Asherson, P (2014) Long-term effects of gestational nicotine exposure and food-restriction on gene expression in the striatum of adolescent rats. PloS One, 9 (2). creators-Schalkwyk=3ALeonard_C=3A=3A. DOI https://doi.org/10.1371/journal.pone.0088896
Ilott, NE and Schneider, T and Mill, J and Schalkwyk, LC and Brolese, G and Bizarro, L and Stolerman, IP and Dempster, E and Asherson, P (2014) Long-term effects of gestational nicotine exposure and food-restriction on gene expression in the striatum of adolescent rats. PloS One, 9 (2). creators-Schalkwyk=3ALeonard_C=3A=3A. DOI https://doi.org/10.1371/journal.pone.0088896
Abstract
Gestational exposure to environmental toxins such as nicotine may result in detectable gene expression changes in later life. To investigate the direct toxic effects of prenatal nicotine exposure on later brain development, we have used transcriptomic analysis of striatal samples to identify gene expression differences between adolescent Lister Hooded rats exposed to nicotine in utero and controls. Using an additional group of animals matched for the reduced food intake experienced in the nicotine group, we were also able to assess the impact of imposed food-restriction on gene expression profiles. We found little evidence for a role of gestational nicotine exposure on altered gene expression in the striatum of adolescent offspring at a significance level of p<0.01 and |log2 fold change >0.5|, although we cannot exclude the possibility of nicotine-induced changes in other brain regions, or at other time points. We did, however, find marked gene expression differences in response to imposed food-restriction. Food-restriction resulted in significant group differences for a number of immediate early genes (IEGs) including Fos, Fosb, Fosl2, Arc, Junb, Nr4a1 and Nr4a3. These genes are associated with stress response pathways and therefore may reflect long-term effects of nutritional deprivation on the development of the stress system.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | Corpus Striatum; Animals; Rats; Prenatal Exposure Delayed Effects; Nicotine; Caloric Restriction; Microarray Analysis; Age Factors; Gene Expression Regulation, Developmental; Pregnancy; Female; Male; Metabolic Networks and Pathways; Stress, Physiological; Transcriptome |
Subjects: | Q Science > QH Natural history > QH426 Genetics |
Divisions: | Faculty of Science and Health Faculty of Science and Health > Life Sciences, School of |
SWORD Depositor: | Unnamed user with email elements@essex.ac.uk |
Depositing User: | Unnamed user with email elements@essex.ac.uk |
Date Deposited: | 24 Oct 2014 13:44 |
Last Modified: | 22 May 2024 05:21 |
URI: | http://repository.essex.ac.uk/id/eprint/11039 |
Available files
Filename: journal.pone.0088896.pdf
Licence: Creative Commons: Attribution 3.0