Research Repository

Feature learning from incomplete EEG with denoising autoencoder

Li, Junhua and Struzik, Zbigniew and Zhang, Liqing and Cichocki, Andrzej (2015) 'Feature learning from incomplete EEG with denoising autoencoder.' Neurocomputing, 165. pp. 23-31. ISSN 0925-2312

Feature_Learning_from_Incomplete_EEG_with_Denoising_Autoencoder.pdf - Submitted Version

Download (920kB) | Preview


An alternative pathway for the human brain to communicate with the outside world is by means of a brain computer interface (BCI). A BCI can decode electroencephalogram (EEG) signals of brain activities, and then send a command or an intent to an external interactive device, such as a wheelchair. The effectiveness of the BCI depends on the performance in decoding the EEG. Usually, the EEG is contaminated by different kinds of artefacts (e.g., electromyogram (EMG), background activity), which leads to a low decoding performance. A number of filtering methods can be utilized to remove or weaken the effects of artefacts, but they generally fail when the EEG contains extreme artefacts. In such cases, the most common approach is to discard the whole data segment containing extreme artefacts. This causes the fatal drawback that the BCI cannot output decoding results during that time. In order to solve this problem, we employ the Lomb–Scargle periodogram to estimate the spectral power from incomplete EEG (after removing only parts contaminated by artefacts), and Denoising Autoencoder (DAE) for learning. The proposed method is evaluated with motor imagery EEG data. The results show that our method can successfully decode incomplete EEG to good effect.

Item Type: Article
Additional Information: Incomplete EEG
Uncontrolled Keywords: Brain computer interface; Spectral power estimation; Denoising autoencoder; Motor imagery
Divisions: Faculty of Science and Health
Faculty of Science and Health > Computer Science and Electronic Engineering, School of
SWORD Depositor: Elements
Depositing User: Elements
Date Deposited: 05 Mar 2020 12:36
Last Modified: 15 Jan 2022 01:28

Actions (login required)

View Item View Item