Li, Junhua and Struzik, Zbigniew and Zhang, Liqing and Cichocki, Andrzej (2015) Feature learning from incomplete EEG with denoising autoencoder. Neurocomputing, 165. pp. 23-31. DOI https://doi.org/10.1016/j.neucom.2014.08.092
Li, Junhua and Struzik, Zbigniew and Zhang, Liqing and Cichocki, Andrzej (2015) Feature learning from incomplete EEG with denoising autoencoder. Neurocomputing, 165. pp. 23-31. DOI https://doi.org/10.1016/j.neucom.2014.08.092
Li, Junhua and Struzik, Zbigniew and Zhang, Liqing and Cichocki, Andrzej (2015) Feature learning from incomplete EEG with denoising autoencoder. Neurocomputing, 165. pp. 23-31. DOI https://doi.org/10.1016/j.neucom.2014.08.092
Abstract
An alternative pathway for the human brain to communicate with the outside world is by means of a brain computer interface (BCI). A BCI can decode electroencephalogram (EEG) signals of brain activities, and then send a command or an intent to an external interactive device, such as a wheelchair. The effectiveness of the BCI depends on the performance in decoding the EEG. Usually, the EEG is contaminated by different kinds of artefacts (e.g., electromyogram (EMG), background activity), which leads to a low decoding performance. A number of filtering methods can be utilized to remove or weaken the effects of artefacts, but they generally fail when the EEG contains extreme artefacts. In such cases, the most common approach is to discard the whole data segment containing extreme artefacts. This causes the fatal drawback that the BCI cannot output decoding results during that time. In order to solve this problem, we employ the Lomb–Scargle periodogram to estimate the spectral power from incomplete EEG (after removing only parts contaminated by artefacts), and Denoising Autoencoder (DAE) for learning. The proposed method is evaluated with motor imagery EEG data. The results show that our method can successfully decode incomplete EEG to good effect.
Item Type: | Article |
---|---|
Additional Information: | Incomplete EEG |
Uncontrolled Keywords: | Brain computer interface; Spectral power estimation; Denoising autoencoder; Motor imagery |
Divisions: | Faculty of Science and Health Faculty of Science and Health > Computer Science and Electronic Engineering, School of |
SWORD Depositor: | Unnamed user with email elements@essex.ac.uk |
Depositing User: | Unnamed user with email elements@essex.ac.uk |
Date Deposited: | 05 Mar 2020 12:36 |
Last Modified: | 23 Sep 2022 19:32 |
URI: | http://repository.essex.ac.uk/id/eprint/26956 |
Available files
Filename: Feature_Learning_from_Incomplete_EEG_with_Denoising_Autoencoder.pdf