Meaburn, Emma L and Schalkwyk, Leonard C and Mill, Jonathan (2010) Allele-specific methylation in the human genome. Epigenetics, 5 (7). pp. 578-582. DOI https://doi.org/10.4161/epi.5.7.12960
Meaburn, Emma L and Schalkwyk, Leonard C and Mill, Jonathan (2010) Allele-specific methylation in the human genome. Epigenetics, 5 (7). pp. 578-582. DOI https://doi.org/10.4161/epi.5.7.12960
Meaburn, Emma L and Schalkwyk, Leonard C and Mill, Jonathan (2010) Allele-specific methylation in the human genome. Epigenetics, 5 (7). pp. 578-582. DOI https://doi.org/10.4161/epi.5.7.12960
Abstract
Across the genome, outside of a small-number of known imprinted genes and regions subject to X-inactivation in females, DNA methylation at CpG dinucleotides is often assumed to be complementary across both alleles in a diploid cell. However, recent findings suggest the reality is more complex, with the discovery that allele-specific methylation (ASM) is a common feature across the human genome. A key observation is that the majority of ASM is associated with genetic variation in cis, although a noticeable proportion is also non-cis in nature and mediated, for example, by parental origin. ASM appears to be both quantitative, characterized by subtle skewing of DNA methylation between alleles, and heterogeneous, varying across tissues and between individuals. These findings have important implications for complex disease genetics; while cis-mediated ASM provides a functional consequence for non-coding genetic variation, heterogeneous and quantitative ASM complicates the identification of disease-associated loci. We propose that non-cis ASM could contribute toward the "missing heritability" of complex diseases, rendering certain loci hemizygous and masking the direct association between genotype and phenotype. We suggest that the interpretation of results from genome-wide association studies can be improved by the incorporation of epi-allelic information and that in order to fully understand the extent and consequence of ASM in the human genome, a comprehensive sequencing-based analysis of allelic methylation patterns across tissues and individuals is required. © 2010 Landes Bioscience.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | DNA methylation; allele-specific methylation; allele-specific expression; tissue-specific methylation; epigenetics; imprinting; genome-wide association study (GWAS); genetics; complex disease; missing heritability |
Subjects: | Q Science > QH Natural history > QH426 Genetics |
Divisions: | Faculty of Science and Health Faculty of Science and Health > Life Sciences, School of |
SWORD Depositor: | Unnamed user with email elements@essex.ac.uk |
Depositing User: | Unnamed user with email elements@essex.ac.uk |
Date Deposited: | 11 Dec 2014 11:33 |
Last Modified: | 04 Dec 2024 06:46 |
URI: | http://repository.essex.ac.uk/id/eprint/11078 |
Available files
Filename: epi%2E5%2E7%2E12960.pdf
Licence: Creative Commons: Attribution-Noncommercial 3.0