Ariyo, Oludare and Lesaffre, Emmanuel and Verbeke, Geert and Quintero, Adrian (2022) Bayesian Model Selection for Longitudinal Count Data. Sankhya B, 84 (2). pp. 516-547. DOI https://doi.org/10.1007/s13571-021-00268-9
Ariyo, Oludare and Lesaffre, Emmanuel and Verbeke, Geert and Quintero, Adrian (2022) Bayesian Model Selection for Longitudinal Count Data. Sankhya B, 84 (2). pp. 516-547. DOI https://doi.org/10.1007/s13571-021-00268-9
Ariyo, Oludare and Lesaffre, Emmanuel and Verbeke, Geert and Quintero, Adrian (2022) Bayesian Model Selection for Longitudinal Count Data. Sankhya B, 84 (2). pp. 516-547. DOI https://doi.org/10.1007/s13571-021-00268-9
Abstract
We explore the performance of three popular model-selection criteria for generalised linear mixed-effects models (GLMMs) for longitudinal count data (LCD). We focus on evaluating the conditional criteria (given the random effects) versus the marginal criteria (averaging over the random effects) in selecting the appropriate data-generating model. We advocate the use of marginal criteria, since Bayesian statisticians often use the conditional criteria despite previous warnings. We discuss how to compute the marginal criteria for LCD by a replication method and importance sampling algorithm. Besides, we show via simulations to what extent we err when using the conditional criteria instead of the marginal criteria. To promote the usage of the marginal criteria, we developed an R function that computes the marginal criteria for longitudinal models based on samples from the posterior distribution. Finally, we illustrate the advantages of the marginal criteria on a well-known data set of patients who have epilepsy.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | Replication sampling; Marginal likelihood; Bayesian model selection |
Divisions: | Faculty of Science and Health Faculty of Science and Health > Mathematics, Statistics and Actuarial Science, School of |
SWORD Depositor: | Unnamed user with email elements@essex.ac.uk |
Depositing User: | Unnamed user with email elements@essex.ac.uk |
Date Deposited: | 07 Feb 2023 18:36 |
Last Modified: | 30 Oct 2024 21:27 |
URI: | http://repository.essex.ac.uk/id/eprint/33986 |
Available files
Filename: Bayesian model selection for longitudinal count data.pdf