Batsis, Alex and Samothrakis, Spyridon (2024) Contextual reinforcement learning for supply chain management. Expert Systems with Applications, 249. p. 123541. DOI https://doi.org/10.1016/j.eswa.2024.123541
Batsis, Alex and Samothrakis, Spyridon (2024) Contextual reinforcement learning for supply chain management. Expert Systems with Applications, 249. p. 123541. DOI https://doi.org/10.1016/j.eswa.2024.123541
Batsis, Alex and Samothrakis, Spyridon (2024) Contextual reinforcement learning for supply chain management. Expert Systems with Applications, 249. p. 123541. DOI https://doi.org/10.1016/j.eswa.2024.123541
Abstract
Efficient generalisation in supply chain inventory management is challenging due to a potential mismatch between the model optimised and objective reality. It is hard to know how the real world is configured and, thus, hard to train an agent optimally for it. We address this problem by combining offline training and online adaptation. Agents were trained offline using data from all possible environmental configurations, termed contexts. During an online adaptation phase, agents search for the context maximising rewards. Agents adapted online rapidly and achieved performance close to knowing the context a-priori. In particular, they acted optimally without inferring the correct context, but by finding a suitable one for reward maximisation. By enabling agents to leverage off-line training and online adaptation, we improve their efficiency and effectiveness in unknown environments. The methodology has broader potential applications and contributes to making RL algorithms useful in practical scenarios. We have released the code for this paper under https://github.com/abatsis/supply_chain_few_shot_RL.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | Reinforcement learning; Supply chains |
Divisions: | Faculty of Science and Health Faculty of Science and Health > Computer Science and Electronic Engineering, School of |
SWORD Depositor: | Unnamed user with email elements@essex.ac.uk |
Depositing User: | Unnamed user with email elements@essex.ac.uk |
Date Deposited: | 17 Apr 2024 06:42 |
Last Modified: | 30 Oct 2024 21:16 |
URI: | http://repository.essex.ac.uk/id/eprint/38214 |
Available files
Filename: 1-s2.0-S0957417424004068-main.pdf
Licence: Creative Commons: Attribution 4.0